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Abstract

We here demonstrate how a set of tools that are being maintained and further developed within
the Sprakbanken Sam and SWE-CLARIN infrastructures can be employed for creating manually
labelled training data in a low-resource setting. As example text, we used the “COVID-19 Open
Research Dataset”, and created manually annotated training data for its associated Kaggle task,
“What do we know about COVID-19 risk factors?”. We first used our topic modelling tool to
1) select a text set for manual annotation, ii) classify the texts into preliminary classification cat-
egories, and iii) analyse the texts in search for potential refinements of the annotation categories.
We then annotated the text set on a more granular level by labelling the token sequences that
indicated the existence of the refined categories in the text. Finally, we used the granularly anno-
tated text set as a seed set, and applied our active learning tool for actively selecting additional
texts for annotation. For the token-sequence annotations, we used our text annotation tool, which
includes support for incorporating automatic pre-annotations.

1 Introduction

The COVID-19 Open Research Dataset (CORD-19) is a free resource with scholarly articles on viruses
from the coronavirus family, and on related topics (Wang et al., 2020). Associated with the dataset is
the Kaggle COVID-19 Open Research Dataset Challenge (Allen Institute For Al, 2020), which consists
of nine different tasks, all with the aim of extracting from the data what has been published regarding
different COVID-19-related research questions.

In order to demonstrate how a set of tools that are being maintained and further developed within
the Sprakbanken Sam and SWE-CLARIN infrastructures can be combined into a pipeline and employed
for creating a manually labelled text corpus, we used the CORD-19 dataset as an example text set.
In particular, the aim was to demonstrate how the tools can be useful in a low-resource setting, i.e.
with no existing previously annotated data, and with only limited time available for performing manual
annotations.

As the example task, for which we aimed to create manually labelled data, we selected one of the
Kaggle tasks associated with the dataset, the task “What do we know about COVID-19 risk factors?”.
For our tool demonstration, we used the version of the CORD-19 dataset that was made available in
spring 2020, which contains around 40,000 full text articles.

The first tool used in the pipeline was our topic modelling tool, Topics2Themes (Skeppstedt et al.,
2018). The tool was used for 1) selecting data for manual annotation, ii) classifying the data into prelim-
inary classification categories, and iii) analysing the text material in search for potential refinements of
the preliminary annotation categories.

The second tool used was our Sprakbanken Sam tool for manual text annotation of token sequences.
We employed this tool to manually annotate the texts selected using Topics2Themes according to the
refined annotation categories established in the previous step. The annotations were in the form of token
sequences that indicated the existence of one of the refined categories in the text.
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The third tool employed in the pipeline was our tool for active learning, PAL. We used this tool for
actively selecting additional texts to manually annotate. These further annotations were also carried out
using our Sprakbanken Sam tool for manual text annotation. PAL not only actively selects what texts to
annotate, but also provides these texts with pre-annotations, using the same machine learning model it
uses for text selection. Our manual text annotation tool allows the annotator to correct these pre-annotated
labels, as well as to provide the text with new labels. PAL, together with our text annotation tool, thus
combines parts of the functionality that is made available by i) a tool such as WebAnno (Yimam et al.,
2014), in which annotation suggestions are provided, with ii) the functionality of tools such as JANE
(Tomanek et al., 2007) and WordFreak (Morton and LaCivita, 2003), in which data selection through
active learning is carried out.

Qualitative text analyses, similar to our approach in the first step of the pipeline, have been conducted
in previous research as a preparation for creating annotation categories in the medical domain (Mowery
et al., 2012). However, we are not aware of any previous studies that have used a topic modelling tool
like Topics2Themes for this task. We are also not aware of previous studies in which this approach has
been combined with a pipeline that includes active learning and pre-annotation.

We will here present how we used the three tools in a pipeline for producing annotated texts. The
annotation tool will be presented and discussed twice, first when it is used for annotating the texts selected
with the topic modelling tool, and thereafter when it is used with pre-annotation of texts selected in the
active learning process. We will, however, start by briefly presenting the Kaggle task and our approach
for using a set of risk factor keywords for compiling a “Risk factor sub-corpus” from CORD-19.

2 The Kaggle Task and Our “Risk Factor Sub-Corpus”

For the “What do we know about COVID-19 risk factors?”-task, the participants are asked to find out
what epidemiological studies report about potential risk factors for COVID-19. Our suggestion for how
to approach this task is to train a model to recognise language expressions that are used for describing
risk factors for diseases in general, i.e. expressions that we could call “risk factor triggers”. To be able to
train such a model, a text corpus where such expressions have been manually labelled is needed.

As the first step for creating such a corpus, we compiled a “Risk factor sub-corpus” by extracting
30,000 paragraphs from CORD-19 that contained a risk factor seed word. We used a list of 104 seed
words' which we had compiled in the following manner: (i) We first constructed a list of the words
(or sometimes bi- and tri-grams) that occurred in the call for the “What do we know about COVID-19
risk factors?”-task, and that we estimated would be good seed words for more general text about risk
factors. These included, for instance, “risk factors”, “factors”, “co-infections”, “co-morbidities”, “high-
risk”, “pre-existing”, and “susceptibility of”. (ii) We, thereafter, expanded the list by adding synonyms
from the Gavagai living lexicon (Sahlgren et al., 2016). (iii) Words in the list that occurred very often
in the CORD-19 corpus were then removed from the seed list as unigrams and specified further with
bi-grams. E.g., “factors” was removed and replaced by bi-grams such as “socio-economic factors” and
“environmental factors”. (iv) We finally read some of the paragraphs containing the seed words, in search
for new words to add, and found words such as “more common among” and “more likely”.

3 Selecting, Classifying and Analysing the Data with Our Topic Modelling Tool
3.1 Method

As our time available for manual annotation was limited, we decided to focus our effort on text para-
graphs with a content typical for the 30,000 paragraphs in the risk factor sub-corpus. With limited an-
notation resources, we are not likely to be able to catch outliers, or even moderately infrequent content,
but we might be able to gather data for training a model that catches typical expressions. Finding topics
that represent re-occurring content in a text collection, and creating automatic classes in this content, can
be done in an unsupervised fashion, for instance by using topic modelling. For this task, we therefore
used the topic modelling tool, Topics2Themes. We used the tool’s ability to automatically find synonym

Uhttps://www.kaggle.com/mariaskeppstedt/trigger-words
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clusters in the text with the help of word embeddings. We used embeddings pre-trained on biomedical
text (McDonald et al., 2018; Brokos, 2018).

We configured Topics2Themes to use NMF topic modelling to try to find a maximum of 20 topics in
the dataset, since our limited annotation resources would not allow us to analyse more than 20 topics.
Since NMF is a randomised algorithm, which might produce slightly different results each time it is run,
the algorithm was run 50 times, and only topics stable enough to occur in all re-runs were retained. This
resulted in nine stable topics being detected, which indicates that it is not likely that the NMF algorithm
would have been able to find more than 20 stable topics in this text collection, even if we had configured
it to search for more topics. For each topic detected by the topic modelling algorithm, the terms and
the texts that are closely associated with the topic are presented by the Topics2Themes tool. For each
of the topics extracted, we used the annotation functionality of the tool to manually classify its 15 most
closely associated texts as to whether they contained a mention of a risk factor for a disease or not. For
the topics that had more than one text among these 15 texts that contained mentions of risk factors, we
manually classified additional associated texts in the same manner (up to 70 additional texts for each of
these topics).

In addition to classifying the texts for risk factor mentions, the functionality in Topics2Themes for
documenting re-occurring themes that are identified when manually analysing the texts was used. The
name of the tool, Topics2Themes, reflects this functionality of the tool, i.e., (i) that the automatically
created categories — the fopics detected by the topic modelling algorithm — are presented to the user, and
(ii) that the user then manually analyses the output of the algorithm and creates user-defined categories
— themes — which correspond to the content that the user identifies as important in this output. Typically,
such manually identified themes represent re-occurring information in the text collection on a more
detailed level than the automatically extracted topics. The aim of the manual analysis was in this case
to identify whether there were annotation categories in addition to “describing a disease risk factor” that
would be relevant, as well as to determine whether this category should be refined.

3.2 Results and Reflections

Topics2Themes produced nine stable topics for our corpus. Figure 1 shows the user interface of the
Topics2Themes tool, and the nine topics detected are shown in its second panel. The topic descriptions
were given by us, after we had analysed the texts most closely associated with the topics. The figure
shows when the topic “Results of studies of co-morbidities and other risk factors” has been selected
by the user (as indicated by the blue background). Blue lines connect this selected element with terms
associated with the topic (to the left), and texts associated with the topic (to the right).

In the first (and left-most) panel, which thus contains the terms associated with the topics extracted,
examples of the embedding-based synonym clustering can be seen.

In the third panel, which thus contains the texts associated with the topics, each text has an assigned
label that is a result from our manual classification. A green label (Me) assigned to the text shows that the
text has been classified as mentioning a risk factor for a disease, whereas a yellow label (No) shows that
the text has been classified as not containing any information on risk factors. We performed a manual
classification for a total of 418 texts, and 150 texts among them were classified as describing risk factors
for diseases.

Most of the manually classified texts were associated with five of the topics detected. For these five
topics, more than one of the top 15 most closely associated texts described a risk factor for a disease. As
described above, we classified additional texts for these topics, in addition to the top 15 most closely asso-
ciated texts. The five topics were: “Results of studies of co-morbidities and other risk factors”, “Causes of
respiratory tract infections in children, and whether such previous infections influence the development
of asthma”, “Mostly texts related to antibodies and immunity”, “Risk factors for influenza, symptoms
for influenza, factors influencing whether people vaccinate or not”, and “Typical reports of common
co-infections and how usual these are, and sometimes, also studies of whether they effect severity”.

The fourth (and right-most) panel contains elements added by the user, in the form or themes identified
when analysing the texts. Among the themes identified, 18 re-occurring themes were found. Examples
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include “genetics (and family history) is a factor”, “co-infection is a factor” and “age is a factor”. Five
additional examples are shown in the right-most panel in Figure 1. In 24 of the texts analysed, it is
described that something could not be shown to be a risk factor. Five of the re-occurring themes identified
described information of this type. Studies, in which it has not been possible to show that something is
a risk factor, should be important to identify when mining for risk factors, since the information mined
otherwise would be biased towards positive research results. We therefore decided to also include this
information in the data to annotate, and consequently classified each such text with the green label that
signifies that the text describes risk factors. We also used this output of the analysis — i.e., the frequent
occurrences of themes describing that something could not be shown to be a risk factor — for refining our
preliminary annotation categories, as will be described in the next section?.

4 Annotation of Token Sequences Using Our Manual Annotation Tool

4.1 Method

We then decided to provide the texts with more granular annotations, which could be useful for training
a machine learning model to detect the language that is used for expressing that something is a risk factor
for a disease, i.e., what could be called “risk factor triggers”. We therefore extended the 150 paragraphs in
which disease risk factors were described by labelling the token sequences that the authors had used for
expressing that something is a risk factor. That is, we did not annotate the token sequence that describes
the disease, nor the token sequence that describes the risk factor, but the language expressions used for
indicating that something is a risk factor. For instance the expression “carry a heightened risk of”, as
shown in Figure 2.

For this more granular annotation, we also — based on the analysis in the previous step — decided to re-
fine the annotation categories by differentiating between if the text described that something was shown
to be a risk factor, or if it described that something could not be shown to be a risk factor. We conse-
quently created two annotation categories to differentiate between if the token sequences functioned as
(1) a risk factor trigger, or (ii) a trigger indicating that something could not be shown to be a risk factor.
For instance, in the text: “2019nCoV was of clustering onset, is more likely to infect older men with co-
morbidities [...]”, the underlined text was annotated as a risk factor trigger. In contrast, the underlined
text in “The incubation periods did not significantly differ according to age, sex, or the presence of co-
morbidities [...]” was annotated as a trigger describing that something could rot be shown to be a risk
factor.

For the token sequence annotations, we used our Sprakbanken Sam tool for manual annotation of
sequences of text. The user interface of the tool is shown in Figure 2. The tool provides support for two
different types of annotations, i) one-token annotations where the annotatable tokens are pre-defined, and
ii) annotations of token sequences that are to be IOB-coded. We here used the tool setting that provides
support for the latter type.® The tool is optimised for annotation speed, both when adding new labels and
when changing existing labels. The annotator can either use the mouse to select a single token or to select
a sequence of tokens. This results in a pop-up (shown in Figure 2) which allows the annotator to quickly
choose which label to use for the token(s) selected. If a B-tag is chosen for a selected sequence of tokens,
the first token in this sequence will be given the B-tag, and the subsequent tokens in the selected region
will be given I-tags.

4.2 Results and Reflections

The total size of the text set annotated was around 50,000 tokens. In this set, there were a total of
282 token sequences indicating that something is a risk factor, and 44 token sequences indicating that
something could not be shown to be a risk factor. The types of expressions that we target thus occur very
rarely in our corpus, despite the fact that texts with a higher probability of containing mentions of risk
factors had been selected for the text set. That is, the 50,000-token text set was not a randomly selected

>The full configuration and analysis is available at: https://www.kaggle.com/mariaskeppstedt/cord19clarin2020analysis

3The IOB format for the entities in the examples sentence were thus coded as:
[... (is, B-RISK) (more, I) (likely, I) (to, I) ...] and [... (did, B-NO) (not, I) (significantly, I) (differ, I) (according, I) (to, I) ...]
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Worthy of note is that 11 % of all infants are born premature, and this population thus represents some 12.9 million infants
B-RISK
per year worldwide. 5 Preterm infants carry ~ a heightened risk of infectious ailments of both bacterial and viral cause and
undernourishment, aggravating this susceptibil g_g|sK [are a major cause of mortality and morbidity worldwide, particularly
during the first years of life, with rhinovirus be ain pathogen responsible for this socioeconomic burden. Although
strict hygiene measures have been shown to re{ B-NO | transmission and thus diminish the incidence of rhinovirus
infections, no definitive preventive measures h| ar been discovered for the effective control of this entity. On the
basis of our results, gut microbiota modulation| ific prebiotics, probiotics, or both could offer a cost-effective tool in
the fight against RT1s, hopefully also in the dey orld.

Figure 2. The pre-annotation functionality has labelled the token “carry” with the category B-RISK. The
user has then selected the subsequent four tokens for annotation. This has resulted in a pop-up with
the four possible annotation categories: (i) B-RISK is the first token — in a sequence of tokens — in an
expression which indicates that something is a risk factor, (ii) correspondingly, B-NO is the first token in
an expression indicating that something could not be shown to be a risk factor, (iii) / is the subsequent
tokens in the expression (i.e., the category of the first token in an expression determines its type in the
annotation tool), and finally (iv) O signifies that a token is not included in an expression (this is also
the default category for tokens not annotated). The user has here chosen the I category, which has the
effect that the sequence of tokens “carry a heightened risk of” will be labelled as belonging to the RISK
category when the annotated data is exported from the tool.

text set, but one with texts that had first been selected based on that they contained keywords for risk
factors, and many of them were associated with one of the five topic-modelling-topics that were related
to risk factors. Thereby, in our low-resource setting, it would probably not have been fruitful to select a
random set of texts for annotation, since it is likely that very few risk factor mentions would have been
found.

5 Selecting More Texts for Token Sequence Annotation, Using Our Active Learning
Tool

5.1 Method

The third component in our pipeline for creating annotated training data while still only employing
limited manual annotation resources was to use our active learning tool, PAL (Skeppstedt et al., 2016).
Active learning is a machine learning/data selection technique, where data for manual annotation is
actively selected by a machine learning model. Thereby, the machine learning model has the possibility
to select the data points — from a large pool of unannotated data — which are most useful for improving
the model. For instance, the machine learning model could use uncertainty sampling (Schein and Ungar,
2007; Settles, 2009), i.e., select those data points for which the model is most uncertain regarding how
the data should be classified. In a successful active learning set-up, a machine learning model trained
on relatively few data points would yield the same performance as a model trained on a larger dataset.
It is thereby possible to limit the number of training data points that need to be manually labelled. We
have previously conducted experiments with PAL, evaluating the active learning functionality through
simulations on labelled datasets (Skeppstedt et al., 2019). For the task of training a model to recognise
three different kinds of named entities in tweets, active learning was shown to be more efficient in the
use of manually labelled training data than a random selection of manually annotated tweets. That is,
models trained on actively selected tweets performed better than models trained on the same amount of
randomly selected tweets.

PAL is targeted towards small training datasets, and therefore uses an active learning approach that
is more likely to function on small datasets, in the form of uncertainty sampling using a token-level
logistic regression classifier. The tool can incorporate features in the form of word embedding vectors
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when training the logistic regression classifier. When previously evaluating PAL’s performance for named
entity recognition in tweets, the incorporation of embeddings was useful for two of the three named entity
categories evaluated.

We constructed a pool of 5,000 unlabelled data points, in the form of 5,000 paragraphs from the
CORD-19 dataset that had not yet been annotated. That is, we derived the paragraphs for the unlabelled
pool from the entire CORD-19 corpus, and not only from our keyword-based “Risk factor sub-corpus”.
We then used the annotated corpus constructed in the previous steps as the seed set, in order to let PAL
train a model to use for active selection of paragraphs from the pool of unlabelled data. We configured the
tool to select the 35 most uncertain data points in each active selection/annotation round, but to prioritise
texts which the model predicted to contain at least one pre-labelled token. As features, the model was
configured to use a concatenated vector consisting of the one-hot encoding of the token to be classified,
the one-hot encodings for its four preceding and four following tokens, as well as the embedding vectors
for all these nine tokens. We used the same biomedical embeddings (McDonald et al., 2018; Brokos,
2018) that we used for the Topics2Themes tool.

We ran the active learning process in nine iterations. For each iteration, 35 new paragraphs (those con-
taining the 35 tokens for which the machine learning model was most uncertain) were actively selected
for manual annotation. After having annotated these 35 paragraphs, they were added as new data samples
to the training dataset, i.e., to be used for training the machine learning model for the next active learning
iteration.

For each iteration in the active learning process, PAL generates a plot, in order to provide the user
with an understanding of how the uncertainty estimations for the unlabelled data pool changes during the
process.

5.2 Results and Reflections

Plots generated by PAL for two of the nine iterations are shown in Figure 3. The plots shown are those
generated when 1) the active learning process is first run (with 418 labelled samples available for training
the machine learning model), and ii) the training dataset contains a total of 698 manually labelled sam-
ples. The plot included here is shown from the point of view of a model which detects expressions that
indicate that something is a risk factor. Thereby, the colour red is used for tokens that the model classifies
as risk factor indicators, and blue is used for all other tokens. Corresponding plots (not included here)
are generated from the point of view of a model which detects expressions that indicate that something
could not be shown to be a risk factor.

To the left in the plot, the content of the pool of unlabelled data is visualised, through a t-SNE plot
(van der Maaten and Hinton, 2008) of the most frequently occurring words in the data pool. Again,
the biomedical embeddings (McDonald et al., 2018; Brokos, 2018) were used. The plot thus shows
the semantic distribution of the words in the corpus, where semantically similar words are represented
by dots that are positioned close to each other in the plot. The hue of the dot is determined by the
token instance of the word for which the model is most uncertain, i.e., the larger the uncertainty for the
classification of this token, the darker is the colour with which it is displayed.

To the right of the plot, the 35 tokens for which the model is most uncertain are shown, i.e., the tokens
on which the decision for which 35 paragraphs to select for manual annotation is based. The actual token
is shown in the center, and to its left and right, its textual context is shown. The bars show the level of
uncertainty with which the model has classified the tokens, and the bar colour is determined by the class
of the token (as classified by the model). When the model was too uncertain to be able to make a decision
for how to classify the token, the bar is shown in black.

Despite the few iterations in which the active learning process was run, the plots generated by PAL
show how the state of the pool of unlabelled data changes. After nine iterations, there seems to be less
uncertainty left in the data pool. This is most evident by the lengths and colours of the bars representing
the tokens, but there is also a small indication through lighter colours in the t-SNE plot and through the
bar representing the mean uncertainty in the pool of unlabelled data.

The aim of providing visualisations for the uncertainty left in the pool of unlabelled data is to make the
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Expressions indicating that something is a risk factor

418 training samples

RISK model trained on 418 samples
Data pool:

Classification uncertainty for the
most uncertain tokens in data pool:

Red: Tokens classified as RISK
Blue: Other tokens.

2% mean uncertainty left

: 1: 100% I Studies in mice did not reveal such immune reactions
3 - 2:100% I .. hospitalizations for stroke b?/ 3.588 amongst the elderly
3:100% I This suggests that proteases play arole in the
. . . 4:100% I ACE 2 was identified as the functional receptor for
SCI oo - X 5:100% I S. pneumoniae was significantly reduced in mice immunized
- o o .- 6: 100% I e reproduction number was  estimated to be as high
o o L 7:100% I ..ourable and fatal infections may be seen. 13
AR TN . S 8: 100% I to change the hydrogen bond donor / acceptor pro
9: 100% I . .ificantly increased compared  to children with non-LRTI
10: 100% I 2nd humans have been reported among MERS-CoV patients (
11: 100% I . The prevalence was calculated as the number of
. 12:100% I | concentration has been show to correlate with BALF
13: 100% I proteins in particular, may produce higher quality models
s 14: 100% I e each strongly and independently  associated (P <
~ e 15: 100% I does predict the difference in increment between a C-G
ke 16: 100% I N0 More bacteria were present within lymphoid tissues (
17:100% I e have shown that there has been a close
18: 99% I the youngest children are at highest risk for hospitaliza.
19: 99% I day's from symptom onset was significantly associated wit..
20: 99% I these |levels decreased as expected due to their relatively
21: 99% I did not show any significant changes ( Fig
22: 99% I ) and to the deep cervical lymph nodes into
23:99% I ..Monocyte differentiation can  have both protective and immunopa
24: 98% I 6.4 days ), long time between onset of
25: 98% I h2s advanced in industries where there is a risk
26: 98% I  outbreaks of NEC have been linked to viral infections
27:98% I /e noted an increase in BALF cells in both
28: 98% I Contrast, those regions exhibit a high degree of
29: 98% I the infection was the interaction of the F-glycoprotein of
30: 98% I therefore both are likely to traffic through lymph nodes
31: 97% I plasma protein systems are selectively activated ? d Plasma
32:97% I - This increase may reflect enhanced production of chemo
33:97% I K d s the apparent dissociation constant of the
34: 97% I the cell clones showed different degrees of CPE appeared
35:97% I study demonstrated a greater  than two-fold increase in potency

698 training samples

Classification uncertainty for the RISK model trained on 698 samples

most uncertain tokens in data pool: Data pool:
Red: Tokens classified as RISK 1% mean uncertainty left
Blue: Other tokens.
1: 100% I 40 ; 11-38) for those younger than 50
2:100% I ACE 2 was also found to play a significant
3:100% I . scase incidence patterns are  prone to underreporting owing to
. 4:100% I - 2 levels were compared only with c.
- 5:100% I | there was no significant correlation between virus pe.
»” . 6: 100% I 2/so could explain the increased risk of VRTI in
7:100% I /a5 associated with a significantly higher rate of previous
8: 100% I UG risk factors potentially contributing to incidences of stroke
9: 100% I 2N d RANTES were significantly  increased in the patients with
10: 100% I have been identified as risk factors in the pathogenesis
11: 100% I (ract infection and may be individuals with the '
] 12: 100% I e found no significant correlation between MS patients with
e co 13: 100% I to identify patients more likely to suffer disease which
e 14: 100% I Could increase the risk of mumps, whereas the
. 15: 100% I .|y White participants showed a stronger relationship betwee..
° ° 16: 99% I Case fatality ratio and difference was marginally st..
17: 99% I .0 M Munity-acquired pneumonia,the increased proportion of pati.
18: 99% I Consequence, there is an increased proportion of adults
19: 99% I [ 25 which might be an additional factor affecting
20: 99% I \O association was found between responders and
21: 99% I Viruses, which are found commonly among military cons
22:99% N DSy Chiatric consultation had a  higher risk for psychological distr..
23: 98% I |ife histories are predicted (o] have a greater number
24: 98% I, MBL plays a critical role in mediating development of
25:97% I atio R S a crucial factor in our risk
26: 96% I they could have greater impact Point of entry
27: 96% I 2" antibody titer increase fourfold or greater between acute
28:95% I the HCAI event rather than true risk factors for
29: 95% I ..virus infections become more  likely with increasing age
30: 94% I o' [FN, may play a contributory role in
31: 89% I .ated connectivity classes of linked individuals.
32:88% e ACE 2 plays a critical role in SARS pathogenesis
33:85% I PCV 7 has not reduced nasopharyngeal carriage of S
34:83% I terminated at day 21 ue to subsequent growth of
35: 82% | , and is nearly independent of the airflow patterns

Figure 3. Two of the plots generated by PAL during the active learning process: (i) When the active
learning process is first run (with 418 annotated training samples), and (ii) after a total of 698 samples
have been annotated and added to the training data. To the left, the total uncertainty in the pool of
unlabelled data is shown through a t-SNE plot (the darker the colours of the dots, the more uncertainty
is left). To the right, the classifier uncertainty for the 35 most uncertain tokens are shown, i.e., the tokens

on which the choice of which paragraphs to select for annotation was based.
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B-NO
Our study did not identify strong associations with underlying chronic illnesses, most likely because the prevalence of such
B-RISK
conditions was low ( < 10 % ) in this population. HCPs with a history of smoking had a risk for infection almost 3 times
B-NO1 I
that of nonsmokers. We found no  association between MERS-CoV infection and sex. Most case series to date have
demonstrated a male predominance among casepatients ( 15, 23, 24 ), but our study suggests this association might be
explained by social and behavioral factors that increase exposure to MERS-CoV, rather than a sex-specific difference in
biological susceptibility.

Figure 4. Automatic pre-annotations produced by PAL and imported into the Sprakbanken Sam tool for
manual annotation.

B-NOI 1 1 I I

Our study did  not identify strong associations with underlying chronic illnesses, most likely because the prevalence of such
B-RISKII I B-RISK I I

conditions was low ( < 10 % ) in this population. HCPs with a history of smoking had arisk for infection almost 3 times

I I B-NOI I B-RISK

that of nonsmokers. We found no  association between MERS-CoV infection and sex. Most case series to date have

I B-RISK I B-NOI I I I I I I

demonstrated a male predominance among casepatients ( 15,23,24 ),but  our study suggests this association might be

I I

explained by social and behavioral factors that increase exposure to MERS-CoV, rather than a sex-specific difference in
biological susceptibility.

Figure 5. Manual annotations carried out in the Sprakbanken Sam annotation tool.

active learning and annotation process more interesting. Thereby, there is a possibility to also increase the
annotator’s intrinsic motivation for the annotation task. That there was a change in visualised uncertainty
levels already after nine iterations shows that there is a potential for using these kinds of visualisations
for increasing the interest in the annotation task, also very early in the active learning process.

6 Manual Annotation of Token Sequences with Pre-Annotation

6.1 Method

The same logistic regression model, which is used for actively selecting training data samples, is also
used by PAL for providing the selected samples with pre-annotated labels.

The pre-annotations from PAL were in previous versions of the tool only provided in the format of
the annotation tool BRAT (Stenetorp et al., 2012). However, BRAT provides a rather extensive set of
functions for text annotation, which also has the effect that the procedure for annotating token sequences
is more time consuming than when using an annotation tool specifically adapted for this task, e.g., the
annotation tool which we have developed at Sprakbanken Sam. We have therefore made it possible to
also import pre-annotations from PAL into the Sprakbanken Sam annotation tool.

Figure 4 shows an example of a pre-annotated text, and Figure 5 shows how manual annotations have
been provided to the same text.

6.2 Results and Reflections

Also this second part of the manually annotated corpus contains around 50,000 tokens. For this text set,
we found a total of 224 token sequences indicating that something is a risk factor, and 39 token sequences
describing that something could not be shown to be a risk factor. That is, slightly fewer token sequences
were detected in the actively selected sub-corpus, than in the one compiled through topic modelling.
While annotating the texts, we could observe that the quality of the pre-annotations was not very high.
This is exemplified by the text paragraph in figures 4 and 5. In fact, this paragraph is chosen as an example
paragraph here because it contained many instances of annotated token sequences, not because it was a
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paragraph representative for the performance of the pre-annotation. It contains one pre-annotated token
sequence that was not at all altered by the annotator, which was quite rare.

We had expected that low-quality pre-annotations would disturb the flow of the manual annotations,
and therefore not be perceived as useful by the annotator. However, the opposite was experienced. That
is, many consecutive sentences without pre-annotated content were subjectively perceived as boring to
annotate, while sentences with one or several pre-annotations were found interesting. That the lower-
quality pre-annotations were not found disturbing might be explained by the fact that the annotation tool
is optimised for annotation speed, also for altering pre-annotated content. When pre-annotated tokens
are selected by the annotator and given a different annotation category than the one provided by the pre-
annotations, the pre-annotated content is automatically removed by the annotation tool. It is also easy to
change the annotation category of a sequence, but to keep the annotated token span, by just changing the
annotation category of the first token. The simplicity with which pre-annotations can be altered comes
with a trade-off, since — unlike for the BRAT tool — a token cannot be assigned to several categories with
this set-up. However, with an annotation task that only allows one category per token, we believe it is
better to choose a tool that is optimised for annotation speed.

The sentiment towards pre-annotations with a lower quality that we present here was a subjective
assessment made by the annotator in this study. The attitude towards lower-quality pre-annotations might
vary between annotators, and not everyone might find that the presence of pre-annotations makes the
annotation task more interesting. However, one of the lessons learnt here is that it might be worth to at
least give the annotator a choice to include pre-annotations, also pre-annotations with a lower quality.
That said, pre-annotations with a very low quality are probably not found useful by any annotator.

7 Discussion and Tool/Data Availability

Our resources for manual annotation were scarce, not only in terms of the number of man-hours that we
were able to spend on creating the annotated corpus, but also in terms of competence within the medical
domain. One of the authors had previous experience in annotation guideline creation and medical text
annotation in collaboration with physicians, and was also the one who carried out the manual annotations.
However, without a medical education, some text content is difficult to understand, e.g., to distinguish
between risk factors for a disease, and causes, signs and symptoms associated with the disease. Even
more difficult is the development of comprehensive annotation guidelines, without access to medical
knowledge, e.g., guidelines regarding which annotation categories to include and regarding exactly what
should be counted as a risk factor for a disease. We, therefore, did not construct any detailed annotation
guidelines, apart from the short description of the two annotation categories given above.

While the fact that we lack medical competence might decrease the value of the annotated corpus cre-
ated, it also highlights the importance of annotation pipelines, similar to the one we have demonstrated
here. That is, annotation pipelines with the potential of supporting annotation guideline creation, facili-
tating annotation, and minimising the amount of annotated data required. While it is possible to obtain
laymen annotations for English texts at a low cost, annotations carried out by annotators with extensive
medical knowledge tend to be more expensive. Thereby, it is important to use the resource of medical ex-
pertise wisely. A topic modelling tool might give the medical expert an overview of typical categories in
the texts, which might help in determining annotation categories and creating guidelines. An annotation
tool with a high usability, and through which the annotator is able to track the status of the active learning
process, might make it faster to annotate and increase the expert’s intrinsic motivation for the annotation
task. Finally, an active selection of training data samples that are useful for a machine learning model
might make it possible to train useful models without having to manually annotate very large corpora.

Both Topics2Themes* and PAL? are freely available on GitHub. We plan to continue the development
of our tool for manual text annotation, and to also make this tool freely available. We will also continue
the development of Topics2Themes. After this study was conducted, we have added the functionality of
allowing the user to provide a manually constructed list of multiword expressions, i.e., expressions that

*https://github.com/mariask2/topics2themes
Shttps://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning
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are then treated as any other word by the topic modelling algorithm. This functionality could, however,
be extended by also providing an automatic detection of multiword expressions.

We have also made our two annotated datasets, i.e., the set selected through topic modelling and the set
selected through active learning, freely available at Kaggle.® The two datasets consist of around 100,000
tokens, with a total of 506 token sequences annotated as expressions used for describing that something
is arisk factor, and 83 token sequences annotated for descriptions of when something could not be shown
to be a risk factor. Although the small size of these annotated datasets might not be sufficient for train-
ing high-performing classification models, we welcome anyone to use these annotations for classifier
experiments, or to use them as seed sets in active learning and/or pre-annotation approaches for further
expanding the training dataset. We would also appreciate efforts from others — in particular annotators
with a medical background — to annotate the same dataset, to be able to compute inter-annotator agree-
ment, or to use the annotations as a support for developing a set of detailed annotation guidelines.

Our next step will consist of making use of data contributed by others at Kaggle. For the risk factor
task, there is structured data collected regarding studies of COVID-19 risk factors, together with links
to relevant articles. These articles might be used for collecting and annotating a text set that can be
employed as an independent gold standard, against which our approach for creating a training dataset for
risk factor mentions can be evaluated.

Although the main purpose of this study has been to demonstrate the use of different types of tools
for the creation of an annotated dataset — rather than the resulting dataset — we still consider this type
of data, and its associated Kaggle task, as important. Natural language processing tools that can help
researchers to access the content of scientific papers regarding risk factors for COVID-19 are useful,
for instance when criteria for COVID-19 vaccine prioritisation must be established. Such tools can be
developed using the kinds of annotated datasets that we have created here, and methods for efficiently
creating these datasets are therefore important.
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