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Abstract
Context-aware systems are widespread in our daily lives,
but modeling languages that address the notion of context
are rare. Variable structure systems (VSS) allow for struc-
tural and behavioral changes in physical models at runtime
(while the simulation is running) based on different situ-
ations. It is desirable to explicitly describe under which
contextual situation a specific variant of the simulation
model should be used and how to implement the switching
between these variants at runtime. In this case, contexts
could be used to control the variability of context-aware
systems. Equation-based modeling languages are suitable
for modeling complex multi-domain, multi-physical sys-
tems, and among them, Modelica is the state-of-the-art.
Unfortunately, the capabilities for VSS in Modelica are
strongly limited. As a result, several frameworks have
been proposed to address this problem by supporting dif-
ferent VSS types. However, it remains unclear which
framework contributes to which VSS type. Furthermore,
approaches have been developed to support VSS, but none
can explicitly describe contexts and their transitions. In
this work, we first introduce VSS and its different types.
Then, we provide an overview of which framework tar-
gets which VSS type. Finally, we propose a new language
extension based on Modelica, ContextModelica, that pro-
vides semantics for the direct context definition, enabling
the use of context to control and manage variability.
Keywords: modeling and simulation, Modelica, variable
structure systems, context, context-oriented programming,
ContextModelica

1 Introduction
1.1 Context-aware systems
Context-aware systems are widely present in different as-
pects of our daily lives. According to Dey, Abowd,
et al. 2000, a context is "any information that can be
used to characterize the situation of an entity. An en-

tity is a person, place, or object considered relevant to
the interaction between a user and an application, in-
cluding the user and application themselves". Many
context-aware systems operate according to system con-
texts (e.g., "a robot should stop working when a human
enters its operation area", "an iPhone will make emer-
gency calls if a car crash has been detected"). Dif-
ferent context-oriented techniques have been developed
to enhance context-aware systems, including Context-
Oriented Programming (Hirschfeld, Costanza, and Nier-
strasz 2008), commonly referred to as COP. Elyasaf, Car-
dozo, and Sturm 2023 and Elyasaf and Sturm 2023 state
"Although COP languages have existed for over 15 years,
they are still very limited for developing context-aware
systems. Also, modeling languages that address the notion
of context are rare." Thus, how the idea of COP could be
implemented in equation-based modeling languages, such
as Modelica, remains a research question.

1.2 Variable Structure Systems and Modelica
Utkin 1977 introduced variable structure systems (VSS),
which consist of continuous subsystems with a proper
switching logic and enable dynamic control of simulation
systems. In real applications, certain conditions, such as
contexts (Elyasaf and Sturm 2022), can be used to control
the variability (different modes). Modes refer to differ-
ent states; different modes correspond to different models
defined by distinct equation systems.

Figure 1 shows a minimal example. On a sunny day
(Context = Sunny), solar radiation is present, and the mode
"Solar Power" is activated. This mode engages the corre-
sponding equation system, which represents the solar pan-
els. Thus, in the Sunny context, the solar panels are acti-
vated and begin producing electricity from solar energy.
In the evening (Context = Night), solar radiation is absent,
and the mode "Standby" with its corresponding equation
system is activated (while other modes and their equation
systems are deactivated). The equation system for this
mode represents a physical state where the solar panels
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Figure 1. A minimal example of using contexts to control different modes.

are inactive. In realistic applications, multiple systems can
be switched simultaneously. All of this occurs at runtime
(simulation time); there is no need to power off the system,
switch modes, and then re-initialize and restart the simula-
tion. Typical application fields where VSS can be benefi-
cial include circuit switching, mechanical elements break-
ing apart, systems with clutches, different rocket stages,
and robot reconfigurations.

Modern modeling environments handle complex phys-
ical systems using equation-based modeling languages,
also known as acausal modeling languages. The Model-
ica language (Fritzson and Engelson 1998) (Modelica, for
short) is the state-of-the-art example, widely used in var-
ious industries like energy grids (Senkel et al. 2021) and
building systems (Wetter et al. 2014). However, like most
equation-based modeling languages, the possibilities for
VSS in Modelica (current version 3.6) are limited. Only
a few frameworks have been designed to support VSS in
Modelica, and in most cases, switching modes at runtime
fails. Zimmer 2010 attributes these limitations to the static
treatment of the differential-algebraic equations (DAEs)
and the lack of expressiveness in the Modelica language.

A classic example of VSS is the "breaking pendu-
lum" (Figure 2) which can be described as follows: a
ball attached to a string moves as a pendulum initially
(mode 1). After a few seconds, the string breaks, and
the ball moves as if in free fall (mode 2). This exam-
ple includes two modes, each corresponding to a different
model: one describes the pendulum (Listing 2), and the
other describes the free fall of the ball (Listing 3). Mode
switching is triggered by time. It is important to note that
the two models have different equation systems. Classical
Modelica environments, such as OpenModelica (Fritzson,
Pop, et al. 2022) and Dymola (Elmqvist 1979), which are
based on the current Modelica specification (Modelica As-
sociation 2023), cannot handle this situation effectively.
The simulation will fail at the moment when the modes
are switched. Typically, different modes are modeled and
simulated separately. Ideally, developers would model and
integrate different modes within a single model.
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Mode 1: Pendulum Mode 2: Free Fall

Figure 2. Two modes of the breaking pendulum.

1.3 Problem Statement and Research Objec-
tives

During literature research, two main problems related to
VSS in Modelica have been identified:

1. Despite various frameworks targeting VSS in Model-
ica (Table 1) and Modelica-like environments, it re-
mains unclear which solution contributes to which
VSS type. A detailed overview is lacking.

2. Enabling contexts significantly impacts the control of
variability and the realization of context-aware sys-
tems. However, the idea of COP has not yet been im-
plemented in Modelica. How to introduce contexts in
Modelica remains an interesting research question.

This work aims to address these two problems. The
main goals are:

1. To provide a clear classification of VSS in Modelica
and an overview of frameworks supporting their VSS
types.

2. To propose the extension ContextModelica that intro-
duces contexts into Modelica.
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Table 1. Frameworks targeting VSS in Modelica and other
equation-based modeling environments.

Frameworks

Mosilab (Nytsch-Geusen et al. 2005)
Sol (Zimmer 2010)
Hydra (Giorgidze 2012)
Modelyze (Broman and Siek 2012)
DySMo (Möckel, Mehlhase, and Nytsch-Geusen 2015)
MoVasE (Esperon, Mehlhase, and Karbe 2015)
PyVSM (Stüber 2017)
Modia.jl (Elmqvist, Neumayr, and Otter 2018)
OM.jl (Tinnerholm, Pop, Sjölund, et al. 2020)
ModelingToolkit.jl (Ma et al. 2021)

1.4 Structure of the Work
Section 2 provides a detailed explanation and classifica-
tion of VSS in Modelica. Section 3 summarizes vari-
ous frameworks designed to support different VSS types
in Modelica or Modelica-like environments, offering an
overview to understand which framework addresses which
specific VSS problem. In Section 4, we propose Con-
textModelica, developed based on OpenModelica.jl, in
short, OM.jl1 (Tinnerholm, Pop, Sjölund, et al. 2020). Our
extension combines Modelica with the concept of con-
text from the language engineering field. We demonstrate
ContextModelica with an example and discuss the cur-
rent challenges. This section also explores the potential
benefits of integrating context-aware features into existing
Modelica models. Finally, Section 5 presents the conclu-
sions and an outlook, including discussions and sugges-
tions for future research.

2 VSS in Modelica
To provide an extension that enables modeling and man-
aging VSS using contexts in Modelica, the first step is
to understand what VSS are. Definitions of VSS vary
slightly across different domains in the literature. VSS
were first introduced by Utkin 1977. Mehlhase 2015 of-
fers an overview of publications with definitions related
to VSS. In short, VSS can be summarized as "structural
change during runtime (simulation time)". In Model-
ica, VSS correspond to the switching of equation systems
based on different situations while the simulation is run-
ning. However, different types of structural change during
runtime exist, and Modelica supports only some of them
in a limited way. Consequently, various frameworks have
been designed to enhance VSS possibilities in Modelica
and Modelica-like environments. Unfortunately, since the
types of structural changes during runtime have not been
discussed in detail, it remains unclear, which framework
addresses which specific VSS type.

1https://github.com/JKRT/OM.jl (A Modelica compiler written in
Julia)

To the best of our knowledge, variables and differ-
ential index2 have the most impact on realizing VSS in
Modelica. In general, three different types can be distin-
guished based on these two factors:

1. Two modes share the same variables and differ-
ential index. Thus, the structural change does not
introduce new variables, and the differential index
remains unchanged.

2. Two modes have different variables but the same
differential index. In this case, the structural change
introduces new variables and corresponding equa-
tions, while the differential index stays the same.

3. Two modes have the same variables but different
differential indices. Here, the structural change in-
volves a change in the differential index.

At this point, some issues related to VSS arise in Mod-
elica (Benveniste, Caillaud, et al. 2019). In most cases,
the simulation fails when switching from one mode to an-
other, primarily because Modelica is static and the com-
piler cannot handle types 2 and 3 at runtime.

Regarding type 2 where each mode contains a different
set of variables, there are several sub-types. The number
of variables may either change or remain the same during
the mode transition. For simplicity, this work does not
specify different sub-types of variables.

3 State of the Art
This section provides an overview of the frameworks for
supporting different VSS types in Modelica and other
equation-based modeling environments (most of them are
Modelica-like). Table 2 summarizes the applicability of
approaches for different VSS types. All approaches can
be used for type 1.

Mosilab (Nytsch-Geusen et al. 2005) uses a Modelica
extension to describe the models and transitions
through a state chart.

Mosilab supports types 1 and 2 but does not support
type 3, as the environment only simulates index-0
models and lacks an index-reduction mechanism.

Sol (Zimmer 2010) is an experimental language designed
as a proof of concept to support variable-structure
models using dynamic casualization.

Although Sol is similar to Modelica, it is a separate
language. It enables the modeling of VSS with Sol-
Sim and allows changes to the differential index.

2For a general differential algebraic equation (DAE) F(t,x,x
′
) = 0,

the differential index is defined as "the minimum number of differentia-
tions required to translate the DAE system into a system of the ordinary
differential equations (ODEs)" (Campbell and Gear 1995) (Benveniste,
Bourke, et al. 2014). Thus, ODEs have a differential index of 0.
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Hydra (Giorgidze 2012) is an embedded acausal model-
ing language implemented in Haskell according to
the paradigm of functional hybrid modeling. Hy-
dra lacks the object-oriented characteristic present in
modeling languages such as Modelica.

Modelyze (Modeling Kernel Language) (Broman and
Siek 2012) is a host language designed for embed-
ding equation-based DSL based on gradual typing.
Modelyze has been developed with OCaml.

Dymola extensions Elmqvist, Mattsson, and Otter 2014
and Mattsson, Otter, and Elmquvist 2015 present ex-
tensions of Dymola to enable the possibility of VSS.
In the first work VSS with varying DAE index is not
supported, the second work extends the Pantelides al-
gorithm (Pantelides 1988) and allows VSS with vary-
ing DAE index. These extensions have limited func-
tionality. They have only been tested with simple
examples. Because of this, these extensions have not
been implemented in the latest stable release of Dy-
mola yet (as of May 2024).

DySMo (Dynamic Structure Modeling) (Mehlhase
2015) is a Python application that enables the simu-
lation of VSS. A case study by Möckel, Mehlhase,
and Nytsch-Geusen 2015 demonstrated the use of
DySMo in the context of building simulation.

DySMo is a script-based approach designed for sim-
ulating VSS rather than modeling them. In this ap-
proach, different models are simulated separately,
and their results are then integrated using Python.

MoVasE (Modelica Variable-structure Editor)
(Esperon, Mehlhase, and Karbe 2015) enables
structural changes to models by defining conditional
exchanges externally.

Compared to DySMo, MoVasE has the advantage of
not requiring manual creation and maintenance of all
modes and transitions. However, this approach still
has limitations in terms of the dynamic addition and
removal of components.

PyVSM (Python Variable-structure Model) (Stüber
2017) is another script-based approach using Dy-
mola’s Python interface. The idea is the same as in
DySMo: Using Modelica for simulating different
modes and Python for switching between them.

Modia.jl (Elmqvist, Neumayr, and Otter 2018) is a
Modelica-like software written in Julia. It has been
initiated by the inventor of Dymola. After several
attempts to support VSS in Dymola, as discussed
in Elmqvist, Mattsson, and Otter 2014 and Mattsson,
Otter, and Elmquvist 2015, the authors explored Ju-
lia’s potential in modeling. Modia.jl utilizes prede-
fined acausal components, as described in Neumayr
and Otter 2023.

OM.jl OpenModelica.jl (Tinnerholm, Pop, Sjölund, et
al. 2020) is a Modelica compiler written in Julia,
developed by the OpenModelica development team
from Linköping, Sweden. Leveraging Julia’s just-in-
time (JIT) compilation and multi-dispatch features,
OM.jl supports modeling VSS. It can also connect
ModelingToolkit.jl with Modelica (Tinnerholm, Pop,
Heuermann, et al. 2021).

ModelingToolkit.jl (Ma et al. 2021)3 is a Julia pack-
age for modeling and simulation that integrates Ju-
lia’s ecosystem with the modeling. Inspired by
Modelica, it features a Modelica-like syntax. Com-
pared to Modelica, ModelingToolkit.jl supports not
only ODEs and DAEs, but also partial differential
equations (PDEs), stochastic differential equations
(SDEs), and other types of equation systems. Like
Modia.jl and OM.jl, ModelingToolkit.jl supports var-
ious VSS types due to Julia’s capabilities.

Table 2. Overview of Modelica-based and Modelica-like frame-
works for different VSS types. ✓ indicates that the approach
supports this VSS type, while ✗ indicates that it does not.

VSS Types Applicability of Approaches

Type 1 All approaches (✓)

Type 2 Standard Modelica (✗)
Mosilab (✓, but only index 0)
Sol (✓)
Dymola extensions (✓)
DySMo (✓)
MoVasE (unknown, lack of literature)
PyVSM (✓)
Modia.jl (✓)
OM.jl (✓)
ModelingToolkit.jl (✓)

Type 3 Standard Modelica(✗)
Mosilab (✗)
Sol (✓)
Dymola extensions (✓)
DySMo (✓)
MoVasE (unknown, lack of literature)
PyVSM (✓)
Modia.jl (✓)
OM.jl (✓)
ModelingToolkit.jl (✓)

Despite some approaches supporting all VSS types,
none of the above approaches support the explicit spec-
ification of contexts and their transitions.

3https://docs.sciml.ai/ModelingToolkit/dev
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4 ContextModelica
The previous section introduced different approaches to
support VSS in Modelica. However, none of these ap-
proaches provide semantics to support contexts and con-
text management within Modelica for modeling and man-
aging context-aware systems. Therefore, we propose the
ContextModelica - an extension of the Modelica language
based on OM.jl, which already includes capabilities for
supporting structural transitions between variants in Mod-
elica.

This section will examine the concepts behind this ex-
tension in more detail and describes how it can be applied
to manage VSS, along with an illustrative example. Fi-
nally, we will discuss the current challenges and limita-
tions of the extension.

4.1 Units of Variability
In a software language, variability relies on variation
points (Webber and Gomaa 2004). The Variation Point
Model (VPM) is designed to model variation points con-
tained in reusable software components (Webber and Go-
maa 2004). Variation points are the units of variation in
a specification of a program. For Modelica, several kinds
of variation points can be considered, some of which are
intended by the language designers.

Class and subclass Modelica is a static object-oriented
language in which classes can be specialized by sub-
classes. These subclasses can be defined in varia-
tions. Therefore, a class is a static variation point
in Modelica, and it is common to replace a class with
one of the members of its transitively defined derived
subclasses.

Equation block An equation block defines a set of vari-
ables or derivatives, constituting the provided inter-
face of the block. In Modelica, equation blocks can
be guarded by if/else and when statements, al-
lowing them to be dynamically varied (dynamic vari-
ation point).

Equation A single equation can also be a variation point.
It is a special case of a block variation point.

As discussed, modes in VSS may differ in variables and
the differential index. Modes relate to variation points in
that these constraints about variables and the differential
index must hold also for all variants of a Modelica varia-
tion point. This means that for any pointwise variation, the
VSS types 1-3 can be distinguished. For instance, a vari-
ation point of type 1 can be a class, block, or equational
variation point.

For a class variation point, VSS type 1 is the simplest
type, where polymorphism of the class resolves the tran-
sition to another subclass. At runtime, the subclass can be
varied by wrapping all variant subclasses in a simple case
expression. In Modelica, polymorphism is not available

because subclasses must be selected statically. A block
variation point of VSS type 1 can also be handled in Mod-
elica if the block is encapsulated by a case expression. All
frameworks discussed in section 3 offer dynamic block
variation. Usually, an equational variation point of VSS
type 1 can also be managed because one equation is a sim-
ple equational block.

We will demonstrate later how ContextModelica can be
employed for the variation points described above.

4.2 Context

While addressing the lack of VSS manageability in Mod-
elica, one potential solution is to introduce a language
concept called a context. Contexts are common used in
software development to separate concerns (Hirschfeld,
Costanza, and Nierstrasz 2008). By integrating contexts
into Modelica, we can achieve better code structure and
improved manageability of VSS.

To this end, we have extended the Modelica language
to include this concept and thus created ContextModelica.
This extension introduces two new semantics, as shown
in Listing 1. First, all modes can be listed in a separate
section using the keyword "context", with each mode as-
sociated with corresponding condition. Second, the new
semantics allow for the addition of multiple equation sys-
tems, with each system labeled by the corresponding con-
text. This means that the equation system represents the
model or mode when the context is active. Additionally,
the set of contexts must include an initial state, which is
the mode that is active at the start of the simulation.

The advantage of mapping contexts to their applicable
conditions is that developers no longer need to manage the
resulting transitions between contexts. This separation of
concerns leads to cleaner and more readable code, partic-
ularly when compared to the use of if/else and when
statements in large-scale systems.

Listing 1. Semantics in ContextModelica.
model ExampleModel

/∗ pa ramete r s & v a r i a b l e s ∗/

equation on initial (ContextA)
/∗ c o r r e s p ond i n g equa t i o n s ∗/

equation on ContextB
/∗ c o r r e s p ond i n g equa t i o n s ∗/

equation on ContextC
/∗ c o r r e s p ond i n g equa t i o n s ∗/

...

context
initial on /∗ c o n d i t i o n ∗/;
ContextB on /∗ c o n d i t i o n ∗/;
ContextC on /∗ c o n d i t i o n ∗/;
...

end context;

end ExampleModel;



58 10.3384/ECP20753         DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024   OCTOBER 14-16, STORRS, CT, USA

Zizhe Wang
F6, Hy4GreenIT
Altensteig, May 12, 2023

Page 3/14

OMParser.jl OMFrontend.jl OMBackend.jl

OM.jl

Absyn.jl

OMKParser.jl

MKAbsyn.jl

OMK.jl

Figure 3. Structure of ContextModelica. The blue section represents the original OM.jl, while the green section indicates the added
preprocessor.

4.3 How It Works
ContextModelica4 is implemented as a language extension
of Modelica in Julia (OM.jl). It benefits from the structural
transitions available in OM.jl, which can be used to con-
struct state machines in Modelica. More precisely, the de-
fined contexts and their associated conditions from a given
ContextModelica model are translated into a context tran-
sition automaton comprising states and transitions, repre-
senting the possible changes of the contexts. This results
in n*(n-1) state transitions, where n is the number of exist-
ing states. The context transition automaton can be real-
ized through the dynamic recompilation features of OM.jl.

The structure of ContextModelica is illustrated in Fig-
ure 3. OMK.jl functions as a preprocessor for OM.jl and
was developed by reusing components of OM.jl, including
the ANTLR parser generator (Parr and Quong 1995) and
the abstract syntax tree (AST) module. Both have been
slightly modified to support the new semantics introduced
in ContextModelica, specifically the definition of contexts
with their corresponding conditions and the equation sys-
tems that can be tagged with context labels. In addition
to these modules, we added a code generator backed by
some OpenModelica packages. It traverses the AST con-
structed by the parser and then generates the correspond-
ing state machine using the syntax of structural transitions
provided by OM.jl. Therefore the code generator gathers
context labels, active conditions, and the associated equa-
tion sets, creating sub-models within a larger model. Af-
terward, the transitions supported by OM.jl are inserted.
The resulting state machine is an undirected graph where
every state has a transition to every other state. The output
can then be passed to OM.jl, which generates the corre-
sponding Julia code for further simulation.

ContextModelica inherits the ability of OM.jl to sup-
port the change of differential index, thus supporting type
3. Type 2 is currently not supported because all variables
and parameters share a common set. This is due to the
focus on varying the actual behavior in the individual con-
texts, which is primarily determined by the equation sys-
tems. Future modifications should allow separate defini-
tions for local variables and parameters. In conclusion,
ContextModelica supports two VSS types: types 1 and 3.

4https://github.com/dev-manuel/OMK.jl

4.4 Example

We demonstrate the proposed ContextModelica using the
classical "breaking pendulum" model, as shown in Fig-
ure 2. Listing 2 and Listing 3 show the Modelica mod-
els for the "Pendulum" mode and the "FreeFall" mode re-
spectively. With the classical Modelica software which
has limited functionality of VSS the developers need to
model and simulate them separately. In ContextModel-
ica, these two models can be integrated into one model
as VSS with two modes, as Listing 4 shows. Two differ-
ent equation sets together with switch mechanisms will be
defined in the model. The outcome of the preprocessor is
shown in Listing 5. It includes the whole context transition
automaton containing the models and transitions required
by OM.jl for further simulation. This model corresponds
to VSS type 3 because the differential index of the "Pen-
dulum" and "FreeFall" modes are different. The result is
shown in Figure 4.

Listing 2. A pendulum model written in Modelica.
model Pendulum

parameter Real g = 9.81;
parameter Real L = sqrt(200);
Real x(start = 10);
Real y(start = 10);
Real vx; Real vy;
Real phi(start=1.0); Real phid;
equation

der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

end Pendulum;

Listing 3. A free fall model written in Modelica.
model FreeFall

Real x; Real y; Real vx; Real vy;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
equation

der(x) = vx;
der(y) = vy;
der(vx) = vx0;
der(vy) = -g;

end FreeFall;
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Listing 4. Syntax for modeling the "Breaking Pendulum" model
in ContextModelica. This model corresponds to VSS type 3.
model BreakingPendulum

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
parameter Real L = sqrt(200);

// con t e x t = I n i t i a l ( Pendulum )
equation on initial

der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

// con t e x t = F r e e F a l l
equation on FreeFall

der(x) = vx;
der(y) = vy;
der(vx) = vx0;
der(vy) = -g;

// sw i t ch o f c o n t e x t s
context

initial on t < 5;
FreeFall on t >= 5;

end context;

end BreakingPendulum;

Listing 5. Transpiled model compatible with OM.jl.
model BreakingPendulum

// BreakingPendulum = BP
structuralmode

BP__Context_Initial
bP__Context_Initial_instance;

structuralmode
BP_FreeFall
bP_FreeFall_instance;

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g=9.81;
parameter Real vx0=0.0;
parameter Real L = sqrt(200);

model BP__Context_Initial
equation

/∗ equa t i on s e t ∗/
end BP__Context_Initial;

model BP_FreeFall
equation

/∗ equa t i on s e t ∗/
end BP_FreeFall;

equation
initialStructuralState(

bP__Context_Initial_instance);
structuralTransition(

bP__Context_Initial_instance,
bP_FreeFall_instance,
t >= 5);

end BreakingPendulum;

Figure 4. Simulation result of the "breaking pendulum" model
with ContextModelica.

Compare the same "breaking pendulum" model imple-
mented in ContextModelica (Listing 4) and OM.jl (List-
ing 6). ContextModelica enables the explicit definition of
contexts directly while defining the corresponding equa-
tion systems for each mode, eliminating the need to de-
fine structural modes separately. The transition process
is also simplified. In OM.jl, the transition process must
be defined with a separate equation system, while in Con-
textModelica, this is unnecessary. The explicit definition
of contexts in ContextModelica results in a cleaner struc-
ture and readable code for realizing and managing VSS,
especially in large context-aware systems.

Listing 6. Syntax of "Breaking Pendulum" model in OM.jl
model BreakingPendulum

model FreeFall
/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation
/∗ equa t i o n s ∗/

end FreeFall;

model Pendulum
/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation
/∗ equa t i o n s ∗/

end Pendulum;

structuralmode Pendulum pendulum;
structuralmode FreeFall freeFall;

equation
initialStructuralState(pendulum);
structuralTransition(

pendulum, freeFall,
t >= 5
);

end BreakingPendulum;
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The example also shows how ContextModelica can be
deployed to the block and the equational variation points.
Each equation block, or single equation in specific cases,
will be varied by switching on/off different contexts/-
modes. In conclusion, ContextModelica supports VSS
types 1 and 3 as well as block and equational variation
points, as summarized in Table 3.

Table 3. Supported VSS types and variation points of Con-
textModelica.

Supported VSS types Supported variation points

VSS type 1 ✓ Class and subclass
VSS type 2 Equation Block ✓
VSS type 3 ✓ Equation ✓

4.5 Challenges
One challenge is synchronizing variable values when tran-
sitioning from one mode to another. Currently, all vari-
ables and parameters in a model must be defined as global
ones, making them valid across all modes. For example,
in Listing 4 the variables phi and phid are only used
in the first mode (Pendulum), which results in redundant
variables for the second mode (FreeFall). This limitation
means that specific variables and parameters cannot be
defined within their corresponding modes. This charac-
teristic leads to the lack of support for VSS type 2 and
this may negatively impact the performance, especially in
large systems. Another challenge is that, currently, the
OM.jl version only supports structural transitions in the
top-level model of a program. As a result, one of the lim-
itations is that only the top-level model of a program can
have user-defined contexts. This means the use of con-
texts in submodels is not supported at the moment (e.g.
different contexts can be defined under the "BreakingPen-
dulum" model, but no contexts could be defined under the
"FreeFall" submodel). Still, the number of modes/contexts
in the top-level model is not limited. Because of this, Con-
textModelica does not fully support class/subclass varia-
tion point. Another challenge is the overlap of transition
conditions. If two conditions can be evaluated to be true
at the same time, unexpected behavior may occur because
the transition is not deterministic. For now, the developers
need to ensure that the conditions are mutually exclusive
to avoid such issues.

5 Conclusion and Future Work
To fully demonstrate and explain the restricted VSS fea-
ture in Modelica, we have discussed the background and
explained how combining COP with Modelica can help
manage variability in context-aware systems. Modeling
variability using contexts reveals the switch mechanisms,
aiding developers in understanding and maintaining mod-
els more effectively. Following this, we presented a clas-
sification of VSS types as well as a detailed overview

of various frameworks designed to support VSS in Mod-
elica or Modelica-like environments, covering different
VSS types. Unfortunately, none of these frameworks
support the explicit specification of contexts, making it
difficult to manage variability in context-aware environ-
ments. Therefore, we proposed the ContextModelica, a
context-oriented extension of Modelica ContextModelica
with easy-to-understand semantics. This approach also
avoids the complexities of using if/else and when
statements in large-scale systems. ContextModelica sup-
ports VSS types 1 and 3, as well as "equation block" and
"equation" variation points. To our knowledge, the pro-
posed ContextModelica is the first approach that intro-
duces the concept of context and COP into Modelica.
It extends the Modelica language with the explicit specifi-
cation of context, providing a novel solution to model and
manage variability in context-aware systems.

Note that the VSS can be quite complex, and this com-
plexity must be addressed in future work. On one hand,
contexts can either be mutually exclusive or overlapping,
which adds complexity to our implementation. We need
to carefully consider and address these scenarios to en-
sure that our system can handle both exclusive and non-
exclusive contexts effectively. On the other hand, in our
example, we only covered contexts that are time-relevant.
However, there can also be time-irrelevant contexts. For
instance, after the "FreeFall" mode, when the ball hits the
ground and switches to the "BouncingBall" mode, it is
challenging to define the exact moment the ball hits the
ground. In such cases, time-irrelevant contexts are use-
ful, e.g., when the ball hits the ground and its accelera-
tion vectors changes direction, at this moment, the third
mode "BouncingBall" is activated, as shown in Listing 7.
While ContextModelica can technically handle this sce-
nario, we do not consider it a verified example without
thorough testing. More tests are needed to explore poten-
tial issues that might arise in such cases.

Listing 7. Syntax for adding the "BouncingBall" mode.
model BreakingPendulum

/∗ pa ramete r s ∗/
/∗ v a r i a b l e s ∗/

equation on initial
/∗ equa t i o n s ∗/

equation on FreeFall
/∗ equa t i o n s ∗/

equation on BouncingBall
/∗ equa t i o n s ∗/

// sw i t ch o f c o n t e x t s
context

initial on t < 5;
FreeFall on t >= 5;
BouncingBall on vy < 0;

end context;

end BreakingPendulum;



61DOI        10.3384/ECP20753 OCTOBER 14-16, STORRS, CT, USA   PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Another complexity of VSS is the concept of unilateral
constraints, as explored in the works of Ch Glocker and
Pfeiffer 1992, Friedrich Pfeiffer and Christoph Glocker
2000, Enge and Maißer 2005, and Enge-Rosenblatt 2017,
as well as in the PhD theses of Christoph Glocker 1995
and Enge 2005, where the switching between modes is
driven by these constraints. For example, this occurs when
a normal "Pendulum" mode transitions to a string-bound
free-flying mode Figure 5, or in switching diodes used in
power electronics. In the first example, defining the ex-
act point of transition is difficult, unlike in a scenario in-
volving a pendulum string breaking, which can be clearly
identified. The transitions in the second example differ
depending on the direction of the switching.

Mode 1: Pendulum Mode 2: Free Flying

Figure 5. Transition from the pendulum mode to the string-
bound free-flying mode.

The two challenges discussed in Section 4.5 are also
crucial for future work. Firstly, VSS type 2 is not sup-
ported since all variables and parameters should be de-
fined as global variables and parameters, this may lead to
redundancy of variables and thus performance issues, es-
pecially in large systems. Secondly, only contexts in the
top-level model are supported. It would be more prac-
tical to also enable defining and using contexts in sub-
models. This will also allow ContextModelica to support
the class and subclass variation point. It should be noted
that OM.jl supports both structural transitions and recom-
pilation constructs. However, currently, ContextModel-
ica only supports structural transitions. Implementing the
recompilation constructs in ContextModelica would help
solve these two challenges and improve the performance
significantly. Listing 8 shows an example of recompila-
tion constructs used in OM.jl for the "breaking pendu-
lum" model5. In this example, variables and parameters
for different submodels can be defined separately in the
submodels rather than as global variables and parameters.
Implementing recompilation constructs to support VSS
type 2 and nested contexts in submodels should be consid-
ered for future development. Furthermore, more practical
and industry-oriented examples should be examined using
ContextModelica.

5https://github.com/JKRT/OM.jl/tree/master/test/Models/VSS

Listing 8. Syntax using recompilation constructs in OM.jl.
model BreakingPendulum

model FreeFall
/∗ pa ramete r s & v a r i a b l e s ∗/
equation

/∗ equa t i o n s ∗/
end FreeFall;

model Pendulum
/∗ pa ramete r s & v a r i a b l e s ∗/
equation

/∗ equa t i o n s ∗/
end Pendulum;

parameter Boolean breaks = false;
FreeFall freeFall if breaks;
Pendulum pendulum if not breaks;

equation
when 5.0 <= time then

recompilation(breaks, true);
end when;

end BreakingPendulum;
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