
72 10.3384/ECP207 72 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Integrating the IEEE/CIGRE DLL Modeling Standard to Use
“Real Code” Models for Power System Analysis in Modelica Tools

Hao Chang1 Luigi Vanfretti1

1Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, USA,
{changh7, vanfrl}@rpi.edu

Abstract
Vendors of power system simulation tools are investigat-
ing the incorporation of actual controller code into spe-
cialized simulation environments. To facilitate this, IEEE
and CIGRE have collaboratively created the IEEE/CIGRE
DLL Modeling Standard. However, adoption by simula-
tion tool providers has been minimal. The limited adop-
tion is because ’real code’ models per the IEEE/CIGRE
DLL Modeling Standard must be provided as DLLs by
equipment vendors. Thus, to support the standard, tools
need to support a standard-specific interface and provide
additional functions to execute the models.

This paper presents a method for integrating ’real
controller code’ models (RCMs) built according to the
IEEE/CIGRE DLL Modeling Standard into Modelica-
based tools. This is achieved by linking precompiled C
code to Modelica models and using components from the
OpenIPSL library. The approach is demonstrated with
an RCM of a simplified silicon-controlled rectifier exci-
tation system (SCRX). The paper discusses the details of
the implementation, challenges, and solutions. The find-
ings show that this method allows RCMs to be used in
Modelica tools for power system simulations, providing a
valuable alternative to specialized simulation tools.
Keywords: IEEE/CIGRE DLL Modeling Standard, Gener-
ator excitation, Power Systems, Power System Simulation,
External Object

1 Introduction
1.1 Motivation
In modern control systems engineering, the ability to test
and validate control strategies under diverse and realis-
tic conditions is paramount. Traditional controller test-
ing methods often fail to replicate real-world scenarios,
leading to discrepancies between the simulated and ac-
tual performance of the system under test. To bridge this
gap, the integration of controller code into simulation en-
vironments has emerged as a crucial step, often referred
to as “Software-In-the-Loop” (SIL) simulation (Schaub,
Hellerer, and Bodenmüller 2012). By incorporating the
controller code into SIL, the number of discrepancies be-
tween simulation results and field measurements can be
reduced, improving the accuracy and reliability of simula-
tion models (Ramasubramanian et al. 2024). However, in

the field of power system simulation, this remains a chal-
lenging situation for multiple reasons. One of the difficul-
ties faced is that of exchanging models between electro-
magnetic transient (EMT) simulation platforms and/or dy-
namic simulation tools (transient stability or phasor sim-
ulators). To a large extent, this is mainly due to the lack
of a standardized equation-based modeling language for
model exchange, leading to inconsistencies in simulation
results between different tools. This inconsistency can re-
sult in speculation about the accuracy of the model or the
adequacy of a simulation tool, highlighting the need for a
more consistent model exchange mechanism (Rogersten,
Vanfretti, and Li 2015).

Power system simulation tool vendors and users have
started to explore the integration of ’real controller code’
models (RCMs) into domain-specific simulation environ-
ments. They have established a joint effort within two
professional organizations (CIGRE and IEEE 1) to de-
velop a domain-specific approach to perform such integra-
tion, known as the IEEE/CIGRE DLL Modeling Standard
(ICDMS). Unfortunately, the proposed approach has only
been adopted by a few power system simulation tool ven-
dors, limiting the use of such RCMs to those tools. This
adoption has been limited because the RCMs, according
to the IEEE/CIGRE DLL Modeling Standard (ICDMS),
are to be provided as DLLs (Dynamic Link Libraries)
by equipment vendors. Hence, to support this standard
within a simulation environment, a standard-specific inter-
face needs to be called, and to run the models additional
ancillary functions need to be developed.

To expand the potential use of such models beyond
domain-specific power system tools and leverage the built-
in features of the Modelica language for integrating ex-
ternal objects, this paper presents a novel method for in-
corporating precompiled C code to support the ICDMS

1According to https://www.electranix.com/
ieee-pes-tass-realcodewg/ this is under the IEEE Task Force
“Use of Real-Code in EMT Models for Power System Analysis” and
according to https://tinyurl.com/ieee-cigre-dll-tor
this is a Joint Task Force under CIGRE Study Committe B4, with Title:
“Guidelines for Use of Real-Code in EMT Models for HVDC, FACTS
and Inverter based generators in Power Systems Analysis”.
CIGRE is the International Council on Large Electric Systems, which
is a professional global non-profit in the field of high voltage.
The Institute of Electrical and Electronics Engineers (IEEE) is a pro-
fessional association for electronics engineering, electrical engineering,
and other related disciplines

73DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

domain-specific standard within the Modelica language
and the OpenIPSL library.

1.2 Related Works
The modeling and simulation community has success-
fully developed interoperable standards, such as the Func-
tional Mock-up Interface (FMI) (Junghanns et al. 2021)
and the Functional Mock-up Interface for Embedded Sys-
tems (eFMI) (Lenord et al. 2021), which aim to stream-
line model exchange and integration in simulation envi-
ronments. However, there are still significant challenges
to achieve widespread adoption, especially in engineer-
ing areas where domain-specific approaches are the rule,
which is the case for the electrical power industry (Van-
fretti, Li, et al. 2013).

Meanwhile, within the power industry itself, previous
efforts to standardize equipment models have not been
successful due to their lack of adoption. One particular ex-
ample is that of the generic software interface developed
as part of the IEC 61400-27-1:2020 standard “Wind en-
ergy generation systems - Part 27-1: Electrical simulation
models - Generic models” (see https://webstore.
iec.ch/publication/32564), which intended to
provide both generic models and an interface method for
vendor-specific wind turbine models.

These grid standards have been unsuccessful as equip-
ment manufacturers have been slow to adopt them and
provide equipment models according to the standards, re-
sulting in persistent difficulties in model exchange. Man-
ufacturers are discouraged in adopting any of these stan-
dards due to the customers’ preference for tool-specific
implementations (e.g., PSCAD and PSS/E), which leads
to tool lock-in. Although there have been efforts in Europe
to develop the Common Grid Model Exchange Specifica-
tion (see https://tinyurl.com/cgmes2p5); sim-
ulation tools built and used outside Europe have not yet
adopted this standard. What this implies for user’s that
need functionalities not yet supported by domain-specific
simulation tools, or that want to use Modelica-complaint
simulation environments, is that the domain-specific ap-
proach has to be somehow supported within the Model-
ica ecosystem. This is what is attempted in this paper
for the case of the IEEE/CIGRE DLL Modeling Standard
(ICDMS).

In addition to implementing the ICDMS, means to sim-
ulate the reminder of the power grid in Modelica tools
are required. Fortunately, an effort to port the behavioral
model descriptions in Modelica replicating those of the
PSS/E software (the simulation tool most used in the US
and the Nordic countries) has been in place for almost a
decade (T. Bogodorova et al. 2013; Vanfretti, Tetiana Bo-
godorova, and Baudette 2014; Zhang et al. 2015), which
makes it possible to reproduce power system dynamic
simulation results like those expected by industry practi-
tioners. The OpenIPSL(de Castro et al. 2023) is a Mod-
elica library that provides robust models and enhanced
portability aimed at building an open-source software-

based encyclopedia of dynamic power system models that
can be exploited by multiple modeling tools that are com-
pliant with the Modelica language specification. The
OpenIPSL is used here to set up power grid simulation
models in which the RCMs are included.

1.3 Contributions
This paper presents a method for integrating RCMs built
according to the IEEE/CIGRE DLL Modeling Standard
(ICDMS) into Modelica-based tools. This is achieved by
linking precompiled C code to Modelica models and us-
ing components from the OpenIPSL library. The approach
is demonstrated with an RCM of a simplified silicon-
controlled rectifier excitation system (SCRX).

Our demonstration involves modifying and compiling
the code of the SCRX RCM into Dynamic Link Libraries
(DLLs), following the ICDMS. This standardization en-
sures compatibility with domain-specific standards and fa-
cilitates the seamless incorporation of controller code into
Modelica simulations. The primary contribution of this
paper is the detailed description of the process used to
integrate the precompiled DLLs into the simulation envi-
ronment, enabling extensive testing and validation of the
controller code.

2 Background on the IEEE/CIGRE
DLL Modeling Standard

To explain how the ICDMS functions, the simulation
workflow shown in Figure 1 is used. It starts with “Al-
locate Memory”, where memory for inputs, outputs, and
parameters is allocated. Model Initialization then sets ini-
tial conditions and parameters. The Update Input step
reads the current input values, followed by Run Calcula-
tion, where the model computes the output based on input
values and parameters. Finally, Update Output writes the
results to the output variables, completing one simulation
cycle. This workflow repeats, allowing dynamic simula-
tion of the controller’s behavior.

Figure 1. Model Structure and Simulation Workflow according
to the IEEE/CIGRE DLL Modeling Standard

The implementation of the workflow in Figure 1 fol-
lows the ICDMS by defining a clear structure for in-
put signals, output signals, and parameters using stan-
dardized data types and units. Standardized functions

74 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

such as Model_GetInfo, Model_CheckParameters, and
Model_Initialize ensure proper initialization and param-
eter validation. The Model_Outputs function performs the
main computational tasks, adhering to the fixed time step
approach common in the real-world controller firmware.
Each model to be developed using this approach needs to
be compiled into a DLL, enabling its use across various
simulation tools. However, this requires that the ICDMS
be supported by the simulation tool.

3 Implementing the IEEE/CIGRE
DLL Modeling Standard in Model-
ica

In the following section, the SCRX RCM is used as an
example to illustrate the implementation of the interface
between the C code and the Modelica language. The same
methodology can be applied to other controller codes fol-
lowing the same ICDMS. It should be noted that the
SCRX RCM is one of the examples used in the develop-
ment of the ICDMS.

This example demonstrates the capability to interface
a DDL of an RCM with a Modelica library and simula-
tion tool. In most cases, controller manufacturers will not
disclose their controller structure and may only provide
parameter values, which would require a clean-room re-
implementation similar to those in (Laera et al. 2022) to
be used in a Modelica tool. However, if they follow the
approach proposed in this paper, RCMs provided by man-
ufacturers could be used to run simulations without the
need of a complete re-implementation in Modelica.

3.1 External Object Integration
In ICDMS, structures store all the information about a
controller including the simulation time step, the num-
ber of input/output, the parameter values and other in-
formation. To access a structure defined in C, we have
to define a class in Modelica as shown in Listing 1. A
constructor and destructor must be specified in
a class to initialize and de-initialize an object from a class.
This is essential for the computer to allocate and free the
memory that stores the data of the structure.

Listing 1. SCRX Class Real-code Modelica Implementation.

1class SCRX9_DLL
2extends ExternalObject;
3function constructor
4output SCRX9_DLL scrx9_dll;
5external "C" scrx9_dll = init_scrx_model()

annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library");

6end constructor;
7function destructor
8input SCRX9_DLL scrx9_dll;
9external "C" deinit_scrx_model(scrx9_dll)

annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library");

10end destructor;

11end SCRX9_DLL;

The external C function init_scrx_model is called
at line 5 of Listing 1 to allocate memory space. In
annotation, the library name and directory have to be
specified for the compiler to know where to look for the
required functions.

Listing 2. init_scrx_model Function Implementation.

1__declspec(dllexport) void* __cdecl
init_scrx_model(void)

2{
3IEEE_Cigre_DLLInterface_Instance* instance =

(IEEE_Cigre_DLLInterface_Instance*)
malloc(sizeof(
IEEE_Cigre_DLLInterface_Instance));

4...
5/∗PARAMETER INITIALIZATION∗/
6...
7double * states = malloc(6 * sizeof (double)

);
8instance->DoubleStates = states;
9Model_Initialize(instance);
10
11return (void *) instance;
12}

The C functions shown in Listing 2 initialize all the
parameters (Line 5) of the instance and allocate memory
space (Line 7) to save key state values, when the construc-
tor is called. Since most controller consists of integra-
tors that require memory, line 7 allocates memory space
to store the states of the integrators. Line 11 returns the
address of the instance to access this initialized instance
later in Modelica functions. From line 4 of Listing 1, the
returned address is returned again by the constructor as an
external object of class SCRX9_DLL.

Having initialized and allocated memory, the model
needs to be accessed and integrated to a power system
model. As an excitation control system, the example
model features two primary inputs: ETERM, represent-
ing the generator’s terminal voltage, and XADIFD, rep-
resenting the field current, both initialized to steady-state
values to avoid initialization problems. The EFD output is
the generated field voltage. The object scrx9_struct
wraps the states and parameters of the SCRX controller
initialized in Line 3 of the Listing 2. The algorithm sec-
tion updates the controller’s state from the input port us-
ing the update function shown in Listing 4. The re-
sulting field voltage is obtained through model_output
function defined in Listing 5. In addition, the function
update_scrx_input shown in Listing 4 reads the val-
ues from the input ports in Modelica and updates them in
the defined C instance.

Listing 3. SCRX Controller Modelica Model.

1model SCRX
2Modelica.Blocks.Interfaces.RealInput ETERM(

start = 1);
3Modelica.Blocks.Interfaces.RealInput XADIFD(

start = 1.325);
4Modelica.Blocks.Interfaces.RealOutput EFD;

75DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

5SCRX9_DLL scrx9_struct = SCRX9_DLL();
6algorithm
7Functions.update(scrx9_struct,time,1,ETERM,0,

XADIFD,ETERM,0,0);
8EFD:=Functions.model_output(scrx9_struct);
9when terminal() then
10Functions.save_ss_state(scrx9_struct);
11end when;
12end SCRX;

Listing 4. update Function Implementation.

1__declspec(dllexport) void __cdecl
update_scrx_input(
IEEE_Cigre_DLLInterface_Instance* instance,
double sim_time_input, double vref,double ec
,

2double vs,double ifd,double vt,double vuel,
double voel) {

3MyModelInputs* inputs = (MyModelInputs*)
instance->ExternalInputs;

4inputs->IFD = ifd; // F i e l d cu r r ent
5inputs->VT = vt; // Terminal vo l tage
6... // Other input s
7sim_time = sim_time_input;
8};

Listing 5. model_output Function Implementation.

1__declspec(dllexport) double __cdecl
model_calculate(
IEEE_Cigre_DLLInterface_Instance* instance)
{

2MyModelOutputs* outputs = (MyModelOutputs*)
instance->ExternalOutputs;

3if (sim_time != pre_sim_time)
4{
5Model_Outputs(instance);
6pre_sim_time = sim_time;
7}
8return outputs->EFD;
9};

At each time step of the simulation, the program will
call model_calculate shown in Listing 5 to calculate
the output with Model_Outputs. The calculation re-
sult will return to Modelica as a floating number or a list
of floating numbers depend on the type of the controller
(multiple input single output or multiple input multiple
output).

3.2 Initialization of the External Object
Initializing the RCM requires us to ensure that the simu-
lation starts from a valid equilibrium point. Consequently,
this requires sending data to the external object and link-
ing its output to the rest of the system model. In the case
of the SCRX RCM, this means passing the measured volt-
age from the bus bar to the excitation system and returning
the field voltage value at the equilibrium condition.

To this end, the C function shown in Listing 6 is called
at the termination of each simulation (see Line 10 of List-
ing 3) to extract the current values of the controller’s in-
puts, outputs, and state variables, storing them in an array
for writing to a binary file. For the SCRX controller, the
inputs include signals such as VRef (reference voltage),

Ec (measured voltage), VOEL (over excitation limit), and
others. The output, EFD, represents the generated field
voltage. Furthermore, the state variables, stored in the
DoubleStates array (see Line 16) within the instance,
are also included. The function opens the file in binary
write mode, populates the array with the extracted values,
and writes the entire array to the file (see Line 18). This
process ensures that all critical data required by the con-
troller are preserved, enabling the analysis and potential
reinitialization of the system at the desired state in future
simulations.

Listing 6. save_ss_state Function Implementation.

1__declspec(dllexport) void __cdecl
save_states(
IEEE_Cigre_DLLInterface_Instance*
instance)

2{
3MyModelOutputs* outputs = (MyModelOutputs

*)instance->ExternalOutputs;
4MyModelInputs* inputs = (MyModelInputs*)

instance->ExternalInputs;
5int listSize = 7+1+6; %input+output+

states
6double list[listSize];
7FILE* file = fopen("list.dat", "wb");
8if (file != NULL)
9{
10list[0] = inputs->VRef;
11list[1] = inputs->Ec;
12.../∗More Input s t a t e s ∗/
13list[6] = inputs->VOEL;
14list[7] = outputs->EFD;
15for (int i = 0; i < 6; i++){
16list[8+i] = instance->

DoubleStates[i];
17}
18fwrite(list, sizeof(double), listSize

, file);
19fclose(file);
20}
21}

3.3 Illustration with the SCRX Excitation
Model

The SCRX excitation model is a simplified control sys-
tem designed to regulate the field voltage of a synchronous
generator, thereby maintaining the machine’s AC voltage
at a specified reference set-point. This section introduces
the excitation controller and illustrates its block diagram
and overall system structure shown in Fig.2.

Synchronous
Machine

Regulator
Exciter

Synchronous
Machine

Power
System

Exciation System

Excitation Control System

Figure 2. Synchronous Machine Control System(IEEE 2007).

The Synchronous Machine Regulator generates control

76 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 3. Excitation Control System (“IEEE Standard Defini-
tions for Excitation Systems for Synchronous Machines” 2022).

signals based on the reference voltage (V_REF) and feed-
back signals from the synchronous machine. It takes these
inputs to produce an appropriate control command for
the exciter. The Exciter modulates the field voltage of
the synchronous machine in response to the control com-
mands from the regulator. It serves as an intermediary that
translates the regulator’s signals into field winding volt-
age adjustments. The Synchronous Machine is the plant
of this system that converts rotational mechanical energy
into electrical power. It responds to the field voltage ad-
justments made by the exciter and influences the voltage
and stability of the broader power system. The Power Sys-
tem represents the electrical grid of which the synchronous
machine is part. The primary goal of the excitation system
is to maintain the desired voltage levels at the generator
terminals.

The SCRX excitation model shown in Figure 3 presents
a detailed block diagram and standardized modeling ap-
proach that is generally adopted to represent how the con-
trol of the field voltage of the synchronous generators is
achieved (“IEEE Standard Definitions for Excitation Sys-
tems for Synchronous Machines” 2022). The integration
of this model into power system simulations allows for
extensive testing and validation, ensuring optimal perfor-
mance under various operational conditions.

Table 1 lists the parameters and the default values re-
quired by the SCRX controller, including time constants
(TAdTB, TB, TE), controller gain (K), and voltage lim-
its (EMin, EMax), as well as the power source selection
switch (CSwitch) and the field resistance ratio (RCdRFD).
These parameters are essential for configuring the con-
troller to operate within the desired specifications and to
ensure compatibility with the ICDMS.

Table 2 lists the input signals such as the reference volt-
age (VRef), measured voltage (Ec), stabilizer signal (Vs),
field current (IFD), terminal voltage (VT), and excitation
limits (VUEL and VOEL), which are used to dynamically
adjust the controller performance during simulation. Table
3 defines the output signal (EFD), representing the output
machine field voltage.

These tables illustrate the format typically used to de-
fine the models of excitation control systems. Note that
the ICDMS adopts this formating to specify the parameter,
input, and output specifications of all RCMs. This would
allow us to use the RCMs in any simulation environment
adhering to the ICDMS.

Table 1. SCRX Parameters.

Parameters Description Default

TAdTB Time Constant 0.1
TB Time Constant 10
K Controller Gain 100
TE Time Constant 0.05
EMin Min Field Voltage -10
EMax Max Field Voltage 10
CSwitch Power Source Select 1
RCdRFD Field resistance ratio 10

Table 2. SCRX Input Signals.

Vref Reference voltage
Ec Measured voltage
Vs Stabilizer signal
IFD Field Current
VT Terminal Votlage
VUEL Under Excitation Limit
VOEL Over Excitation Limit

4 Results
4.1 Testing Power Network Model
The power network model that incorporates the SCRX
model is constructed using the OpenIPSL and is shown in
Fig.4. This power system model provides a platform for
testing both RCM and standard OpenIPSL built-in SCRX9
example controllers.

The power network consists of a synchronous genera-
tor connected to an infinite bus through transmission lines,
buses, and including a load. The generator is controlled
by an SCRX excitation system, which regulates the field
voltage (EFD) to maintain the desired power output. A
short fault was applied between Bus2 and Bus3 starting
at 2 seconds and stopping at 2.15 seconds. This net-
work allows for comprehensive testing and validation of
the SCRX controller integrated as an RCM in DLL form,
following the ICDMS. By simulating a short fault (i.e.,
a large disturbance), the power network response can be

Figure 4. SCRX Controller within a Testing Power Network.

77DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

V_erro
1
1
1

+

imLeadLag

1+sT

1+sT
K

1

2

simpleLagL…

K

1 + Ts
Negative Cu…

negCurLogicswitch1

booleanCo…

false

product

D
iff

V1 +
1 -1

VoltageRef…

k=V_REF

DiffV

+
-1

1

VU
EL

VO
EL

XA
D

IF
D

EFD

EFD0

VOTHSG

ECOMP

Figure 5. SCRX Controller in OpenIPSL.

Table 3. SCRX Output Signal.

EFD Output Signal Voltage

used to evaluate the performance of the RCM in handling
dynamic events.

4.2 Original SCRX Controller Simulation Re-
sult

Figure 6. SCRX9 Simulation Example in OpenIPSL.

OpenIPSL contains a model of the SCRX excitation
control system, which is shown in Figure 5. In this model,
the SCRX is implemented with traditional lead-lag and
phase-lag compensators, similar to what is specified in
(“IEEE Standard Definitions for Excitation Systems for
Synchronous Machines” 2022) and shown in Figure 2.
The default parameters in Table 1 are used in this model to
compare with the model implemented using the external
DLL library. Meanwhile, the grid network is built with
OpenIPSL and the generator is controlled by the SCRX
RCM, as shown in Figure 6.

Simulating the model in Figure 6 yields the results
shown in Figure 7, where two subplots: 1. Generator Volt-
age (p.u.); 2. SCRX Field Voltage (EFD, Volts). Before
the fault occurs, the generator voltage is stable at the ref-
erence value of 1.0 p.u., and the field voltage (EFD) is
maintained in steady state by the SCRX. When the fault

Figure 7. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

occurs at 2.0 seconds, there is a significant drop in the
generator voltage to approximately 0.4 p.u. The SCRX
controller responds by sharply increasing the field voltage
to counteract the voltage dip and stabilize the generator.
The peak field voltage reaches around 10 Volts (EMAX)
shortly after the fault initiation. Once the fault is cleared
at 2.15 seconds, the generator voltage initially overshoots
about 0.2 p.u. before settling back to the reference value.
The SCRX controller adjusts the field voltage accordingly,
first reducing it to correct the overshoot and then gradu-
ally stabilizing it around the required level to maintain the
generator voltage at 1.0 p.u. The performance metrics ob-
served in this simulation can be used as a reference for
further testing and comparison with the RCM.

4.3 External Object SCRX Controller Simula-
tion Result

Next, we compare the implementation of the ICDMS us-
ing the ‘real code’ implementation of the SCRX model.

Figure 8 shows the simulation diagram with an exci-
tation controller of the generator replaced with the ‘real-
code’ implementation. The original SCRX controller has
6 inputs. However, 4 of them remain zero during the sim-
ulation. Thus, for simplicity of the block, only two feed-
back ports are preserved, and the input voltage set point is

78 10.3384/ECP20772 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Figure 8. SCRX Controller With Real-Code Implementation.

Figure 9. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

always set to 1 p.u.
The comparison results shown in Figure 9 indicate that

the real code SCRX controller, implemented as a DLL
following the ICDMS , performs similarly to the original
Modelica-based model from OpenIPSL. This successful
integration and matching performance validate the RCM
compatibility and robustness within the Modelica simula-
tion environment. Although the comparison of simulation
performance (e.g., time required to simulate) was part of
our experimental analysis, we observed significant vari-
ability in simulation times between different runs. This
variability led us to conclude that the operating system’s
task scheduling had a substantial impact on the simulation
time. As a result, we were unable to provide a consistent
and meaningful comparison of simulation times between
the two approaches.

5 Conclusions and Future Work
By achieving consistent behavior across different imple-
mentations, this study confirms that the IEEE/CIGRE
DLL Modeling Standard (IDMS) can be implemented in
Modelica to support RCMs. These models can be seam-
lessly integrated with Modelica models of power system
components, as shown using the OpenIPSL library, and

tested in simulation scenarios. This offers the possibility
of performing power system simulations without the need
for domain-specific tools, which is valuable for practition-
ers and researchers who need to develop models that com-
ply with the ICDMS. These results support the broader use
of RCMs in power system simulations with Modelica, en-
hancing the flexibility and reliability of power system sim-
ulations and control systems for industrial applications.

The implementation has been tested using the Dymola
software. Future work involves releasing the developed
code to implement the ICDMS, integrating the examples
in this paper into the OpenIPSL library, and conducting
tests with OpenModelica.

Although the prototype implementation approach used
herein requires one to create treat each RCM individually
and, therefore, providing interfacing functions and a Mod-
elica model for each RCM, this process can be automated
by developing generic Modelica functions that extract and
pass information to a generic DLL. This will be explored
in future work.

In addition, future work includes the development of
unit testing to assess the performance of the integrated
DLLs and determine if additional error handling functions
would be required to protect against unexpected DLL nu-
merical errors or other unwanted simulation behavior.

Finally, the authors will explore the potential wrapping
of RCMs with FMI and compare the benefits and draw-
backs with the approach proposed herein.

Acknowledgements
This paper is in part, based upon work supported by the
U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced Man-
ufacturing Office, Award Number DE-EE0009139.

References
Bogodorova, T. et al. (2013). “A modelica power system library

for phasor time-domain simulation”. In: IEEE PES ISGT
Europe 2013, pp. 1–5. DOI: 10 . 1109 / ISGTEurope . 2013 .
6695422.

de Castro, Marcelo et al. (2023). “Version [OpenIPSL 2.0.0]
- [iTesla Power Systems Library (iPSL): A Modelica li-
brary for phasor time-domain simulations]”. In: SoftwareX
21, p. 101277. ISSN: 2352-7110. DOI: https : / / doi . org / 10 .
1016/j.softx.2022.101277. URL: https://www.sciencedirect.
com/science/article/pii/S2352711022001959.

IEEE (2007). “IEEE Standard Definitions for Excitation Sys-
tems for Synchronous Machines”. In: IEEE Std 421.1-2007
(Revision of IEEE Std 421.1-1986), pp. 1–33. DOI: 10.1109/
IEEESTD.2007.385319.

“IEEE Standard Definitions for Excitation Systems for Syn-
chronous Machines” (2022). In: IEEE Std 421.1-2021 (Re-
vision of IEEE Std 421.1-2007), pp. 1–45. DOI: 10 . 1109 /
IEEESTD.2022.9737077.

Junghanns, Andreas et al. (2021-09-27). “The Functional Mock-
up Interface 3.0 - New Features Enabling New Applications”.
In: 14th Modelica Conference 2021. Linköping University

79DOI 10.3384/ECP20772 OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

Electronic Press. DOI: 10 . 3384 / ecp2118117. URL: http : / /
dx.doi.org/10.3384/ecp2118117.

Laera, Giuseppe et al. (2022-10). “Guidelines and Use Cases
for Power Systems Dynamic Modeling and Model Verifica-
tion using Modelica and OpenIPSL”. In: Proceedings of the
American Modelica Conference 2022. Linköping University
Electronic Press. DOI: 10.3384/ECP21186146.

Lenord, Oliver et al. (2021-09-27). “eFMI: An open standard
for physical models in embedded software”. In: 14th Model-
ica Conference 2021. Linköping University Electronic Press.
DOI: 10.3384/ecp2118157. URL: http://dx.doi.org/10.3384/
ecp2118157.

Ramasubramanian, Deepak et al. (2024). “Techniques and
Methods for Validation of Inverter-Based Resource Unit
and Plant Simulation Models Across Multiple Simulation
Domains: An Engineering Judgment-Based Approach”. In:
IEEE Power and Energy Magazine 22.2, pp. 55–65. DOI: 10.
1109/MPE.2023.3343679.

Rogersten, Robert, Luigi Vanfretti, and Wei Li (2015). “To-
wards consistent model exchange and simulation of VSC-
HVdc controls for EMT studies”. In: 2015 IEEE Power &
Energy Society General Meeting, pp. 1–5. DOI: 10 . 1109 /
PESGM.2015.7285986.

Schaub, Alexander, Matthias Hellerer, and Tim Bodenmüller
(2012-09). “Simulation of Artificial Intelligence Agents us-
ing Modelica and the DLR Visualization Library”. In: 9th In-
ternational Modelica Conference. Linköping University Elec-
tronic Press. DOI: 10.3384/ecp12076339. URL: http://dx.doi.
org/10.3384/ecp12076339.

Vanfretti, Luigi, Tetiana Bogodorova, and Maxime Baudette
(2014-03-10). “A Modelica Power System Component Li-
brary for Model Validation and Parameter Identification”. In:
10th International Modelica Conference. Linköping Univer-
sity Electronic Press. DOI: 10 . 3384 / ecp140961195. URL:
http://dx.doi.org/10.3384/ecp140961195.

Vanfretti, Luigi, Wei Li, et al. (2013-01). “Unambiguous power
system dynamic modeling and simulation using modelica
tools”. In: pp. 1–5. DOI: 10.1109/PESMG.2013.6672476.

Zhang, Mengjia et al. (2015-10). “Modelica Implementation
and Software-to-Software Validation of Power System Com-
ponent Models Commonly used by Nordic TSOs for Dy-
namic Simulations”. In: 56th Conference on Simulation and
Modelling (SIMS 56). Linköping University Electronic Press.
DOI: 10.3384/ecp15119105. URL: http://dx.doi.org/10.3384/
ecp15119105.

