
109OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207 109

Steady-state Optimization of Modelica
Models and Functional Mockup Units

with Pyomo

Jesse Gohl1 Hubertus Tummescheit1 Robin Andersson1
Matthew Stuber 2
1Modeon Inc, USA,

 2Dept. of Chemical & Biomolecular Engineering, University of
Connecticut

jesse.gohl@modelon.com

Abstract
This paper describes two ways on how to interface
Functional Mockup Units (FMUs) and Modelica models
through the Pyomo’s foreign function interface with
Pyomo. Pyomo is a Python-based, open-source
optimization modeling language with a diverse set of
optimization capabilities. Modelica has arguably much
better modeling capabilities than Pyomo, but Pyomo
integrates excellent optimization solvers, such as Ipopt
(Wächter et al. 2006), and provides a good optimization
infrastructure. The Interface has been developed in the
context of a NAWI, (National Alliance Water Innovation)
Hub project in collaboration with the University of
Connecticut and Sandia National Labs. The optimization
has been set up and tested within Modelon’s Modelica
platform Modelon Impact. An unpublished, detailed
multi-effect desalination plant developed by Prof. Matt
Stuber in the context of (Stuber et al., 2015) has been used
to demonstrate the capabilities, as well as simple test
models, and design models from Modelon’s commercial
Libraries.
Keywords: Modelica, Functional Mockup Interface,
FMI, Steady-state Optimization, Design Optimization

1 Introduction
There is a growing list of options to perform optimization
studies involving Modelica models. A number of
simulation tools support optimization natively within their
simulation environment (OpenModelica, Ansys Twin
Builder®, System Modeler, the Modelica Optimization
Library, etc.). The models can also be exported as
Functional Mockup Units (FMU) and imported to
specialized optimization tools (modeFrontier®,
Optimus®, etc.). A couple of dynamic optimization
(Bryson 1999) methods (OpenModelica and JModelica)
rely on CasADi (Andersson 2011; Bachmann 2012; Ruge
2014). The tools transfer the Modelica model to CasADi
for automatic differentiation and optimization. Originally
this was done via an XML file format for both tools
(Magnusson 2015), but the Optimica Compiler Toolkit
(OCT) has evolved from JModelica to support more
comprehensive coverage of the Modelica language,

transferring large parts of the language into a native
CasADi problem (Modelon 2024). This is done
automatically but both methods rely on sufficiently
restricted models to avoid unsupported constructs by
CasADi. The Optimica Compiler Toolkit also includes
support for derivative free optimization using the Nelder-
Mead simplex method (Nelder and Mead 1965; Fletcher
1987) for static optimization. In addition, OpenModelica
and OCT support the Optimica® language for the
description of the optimization problem. This language is
an extension to the Modelica language. An alternative to
the above methods that is explored in this paper, is to
connect the FMU to a solver through the Pyomo Python
toolbox for optimization and solution through its
connection to IPOPT.

The Functional Mockup Interface (FMI, Modelica
Association 2024) is a standardized, widely accepted API
implemented by more than 200 simulation tools for
executable simulation models. However, it has been
designed for transient simulations, not steady-state
(design-oriented) simulation models. It can be used to
compute stationary points for transient system models, but
the API lacks functions to compute sensitivities with
respect to decision variables in an optimization problem
symbolically. It is possible, but less accurate and
performant to approximate the derivates by finite
differences. Modelon Impact offers to convert Modelica
model parameters to inputs when translated into an FMU.
This allows using the symbolic derivatives with respect to
inputs in the standard FMI-interface in the solution
process. While this is helpful, and allows to optimize
arbitrary Modelica-models, it is not sufficient to robustly
optimize large and highly non-linear problems.

This paper will present two different interfaces between
Modelica models and Pyomo’s optimization algorithms:

 An interface based on generic FMUs, enhanced with
Modelon Impact’s capability to convert parameters
to inputs for improved accuracy of Jacobian
computations.

 Modelon Impact’s internal interface for solving large
non-linear systems for steady-state design problems.

110 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Modelon’s interface is similar to FMI but adds the
ability to couple a Modelica model to an external
steady-state solver. This is in spirit like a model
exchange FMU.

The first interface allows to couple FMUs for any FMI-
compliant tool to Pyomo, the second interface is more
robust, able to solve larger models, but is only available
for Modelica models in Modelon Impact.

2 Requirements for efficient
gradient-based optimization

A typical constrained static optimization problem can be
written as follows:

Minimize 𝑓𝑓(𝑥𝑥)
Subject to 𝑔𝑔𝑗𝑗(𝑥𝑥) ≤ 0, 𝑗𝑗 = 1, … , 𝑝𝑝

ℎ𝑖𝑖(𝑥𝑥) = 0, 𝑖𝑖 = 1, … , 𝑚𝑚

(1)

where 𝑔𝑔𝑗𝑗 , ℎ𝑖𝑖: R𝑛𝑛 → R are inequality and equality
constraints respectively, and 𝑓𝑓(𝑥𝑥) is the objective
function. In the context of models coming from Modelica,
usually all equality constraints come from the model
equations, and the objective function and inequality
constraints must be handled outside of the standard
Modelica language. For this prototype interface, we have
chosen to not use the Optimica Modelica extension
proposed by (Åkesson et. al., 2011). A graphical Modelica
user environment such as Modelon Impact can allow those
to be entered in the definition of the optimization
experiment.

With the optimization of a model in Modelica, there are
two fundamentally different ways of solving a steady-state
optimization problem: 1) the nonlinear solver is the same
that is used for steady-state initialization in a Modelica
simulator, and the optimization solver is “wrapped”
around that, i.e. nested solvers, or 2) the optimization
solver handles everything, and treats the model equations
as equality constraints (ℎ𝑖𝑖(𝑥𝑥)), i.e. a single solver. With
generic FMUs, a nested solver is the only option. With
Modelon Impact’s steady-state interface, the second
option is possible, and has demonstrably been the faster
and more robust option in our testing.

It should be noted that the dimension m of ℎ𝑖𝑖(𝑥𝑥) can be
large, several thousand equations, which can lead to
excessive solution times. However, so called tearing of
equation systems (Baharev et al., 2016) can dramatically
reduce the dimension, is generally used by Modelica tools,
and is also used by us in this interface to reduce the
dimension of the 𝒉𝒉(𝒙𝒙) vector equations that are exposed

to the solver. Also note that, even after the dimensionality
reduction through tearing, the resulting subset of the
equations is still large enough to justify the use of sparse
solver interfaces.

There are further important numerical requirements for
efficiency and robustness, some of which are on the
model-side of the interface, and some on the optimization
solver side of the interface. Pyomo offers methods to
compute first and second derivatives for constraints and
objective function. On the model side, these can be
approximated numerically, or computed analytically. For
standard, transient FMUs, they must be approximated
numerically. Modelon’s dedicated steady-state, FMU-like
interface allows to provide even analytic Jacobians to the
Pyomo external function interface. Scaling of variables is
also important for robustness and can be achieved by
making use of the Modelica and FMI feature of nominal
values for variables. Note that scaling is much more
important than in the simulation case.

3 The Pyomo/PyNumero External
Function Interface

The core of both interfaces of this work, mentioned in the
introduction, extends from the
ExternalGreyBoxModel class of PyNumero
(Rodriguez et al. 2024). This class allows users to use
external models with Pyomo. The class translates the
external model, usually written in Python code, into a
Pyomo model by wrapping a set of standard methods,
necessary to define an optimization problem. Examples
of these methods are evaluate_outputs,
evaluate_equality_constraints,
evaluate_jacobian_outputs, and
evaluate_jacobian_equality_constraints.
The second derivatives can also be defined using the
evaluate_hessian_outputs and
evaluate_hessian_equality_constraints
methods. The new classes from this effort, wrap
(evaluate) the FMI interface methods from a PyFMI FMU
object within these PyNumero methods.

The main class constructor of this work accepts a PyFMI
FMU object or a steady state FMUProblem1 object from
Modelon’s steady-state interface class. The methods
provided by these objects are evaluated within the
PyNumero methods during the solution of the
optimization or static problem. The constructor also
accepts lists of relevant variables for inputs, outputs, and
constraints, as well as modifiers to FMU parameters and
some additional options specific to this interface. The
input, output, and constraint lists identify the relevant

as “normal”

111OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

FMU variables for the optimization or steady state
problem.

4 The Interfaces
In general, FMUs define a mathematical representation of
an engineering problem. Frequently, this is defined as an
experiment that simulates a transient, progression in time,
as a differential-algebraic equation (DAE) system. The
GenericFMU class from the new Python package
simulates an FMU from the initial time to the final time to
supply the values needed by an optimization solver. This
includes the outputs, constraint residuals, and their
derivatives. Because many FMUs support these methods,
this allows the new interface to support the widest range
of FMUs, regardless of the generation tool.

Static problems do not include a dependence on time
because time and derivatives with respect to time do not
appear in the DAE system. This means that the
mathematical representation of the problem is reduced to
a set of nonlinear equations with one or more solutions
(hopefully!) that needs to be solved by a nonlinear
programming (NLP) solver. Modelon’s steady state
problem interface is an efficient translation of these types
of problems to pass to an NLP solver. Evaluating the
outputs and constraints does not require stepping forward
in time and is the simplest and most efficient case because,
since there are no dynamic states (no time derivatives), the
outputs only depend on the inputs in continuous-time
mode (as defined by the FMI specification). This means
the solver can update the inputs and the outputs can be
evaluated without additional method calls. This is also the
most efficient case for the evaluation of derivatives and
can take advantage of the directional derivatives defined
by the FMU. This applies when the inputs to the
optimization problem are also the inputs to the FMU
(v𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 of section 2.1.9 of the FMI specification version
2.0.4). The methods of the StaticFMU class avoid full
simulations to compute the values needed by the
optimization solver.

The static interface also supports other cases that include
FMUs with event indicators, optimization inputs that are
not also FMU inputs (usually this means causality =
parameter), and co-simulation FMUs. The static interface
checks for these cases and defines the appropriate
evaluation methods depending on the situation. For the
case of FMUs with event indicators an event handling
loop is activated if an event is detected by the indicators.
The allowed modes for modifying parameter values are
more restricted. For example, normal parameters (e.g.
causality = parameter and variability = fixed), can only be
modified before exiting initialization mode. Therefore
this version of the interface package resets the FMU, sets
the updated parameter values, then initializes the FMU to

ensure consistency. Co-simulation type FMUs use a
similar strategy of setting values and initializing.

5 Test Models and Results
PyNumero includes an example of a problem based on a
continuously stirred reactor as described in section 7.4.4
of Bynum et al., (2021). The problem is to find the
incoming flow rate of an inlet stream with a single species
to a chamber with competing reactions, that maximizes
the concentration of a specific species in the outlet stream.

Figure 1. Continuously stirred reactor diagram

The reactions within the vessel are governed by the rates
𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 through the following sequences.

 𝐴𝐴
𝑘𝑘1→𝐵𝐵

𝑘𝑘2→𝐶𝐶 (2)

 2𝐴𝐴
𝑘𝑘3→𝐷𝐷 (3)

This can be represented by the following model that
describes the rates of change of the outlet concentrations
𝐶𝐶𝐴𝐴, 𝐶𝐶𝐵𝐵, 𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐷𝐷.

 �̇�𝐶𝐴𝐴 =
𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴𝑓𝑓 −

𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴 − 𝑘𝑘1𝐶𝐶𝐴𝐴 − 2𝑘𝑘3𝐶𝐶𝐴𝐴2 (4)

 �̇�𝐶𝐵𝐵 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐵𝐵 + 𝑘𝑘1𝐶𝐶𝐴𝐴 − 𝑘𝑘2𝐶𝐶𝐵𝐵 (5)

 �̇�𝐶𝐶𝐶 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐶𝐶 + 𝑘𝑘2𝐶𝐶𝐵𝐵 (6)

 �̇�𝐶𝐷𝐷 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐷𝐷 + 𝑘𝑘3𝐶𝐶𝐴𝐴2 (7)

 𝑞𝑞
𝑉𝑉 = 𝑠𝑠𝑠𝑠 (8)

At steady state, the rates of change of concentrations are
zero and the inlet and outlet flow rates are equal. This is
equivalent to a statics problem that does not involve time.

 �̇�𝐶𝑋𝑋 → 0 (9)
 𝑞𝑞𝑘𝑘 → 𝑞𝑞𝑖𝑖 (10)

Notice the steady state problem involves a quadratic term
for 𝐶𝐶𝐴𝐴. Depending on the tool, this can require iteration
to solve numerically. The example in PyNumero encodes
this problem in Python code to demonstrate the external
interface to a Pyomo model. The
ExternalGreyBoxModel of this example appears as in

112 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

the following image that shows the method definitions
from the base class:

Figure 2. PyNumero reactor model example Python class
definition

The finalize_block_construction method is the
location for specifying the Pyomo variable attributes like
bounds and starting values. Notice the variable bounds
are specified separately from the constraints. In this
example a lower bound of zero is defined for all the
concentrations. Evaluation of the residuals occurs in the
_model function, defined in the function
reactor_outlet_concentrations. This is where
equations (4) – (8) are defined in the Python model. As
the problem is written, solution of this system requires an
iterative approach to drive the four residual values toward
zero. This relies on fsolve from scipy.optimize to
minimize the residuals. Whenever the optimization
solver needs the values of the outputs (or to estimate the
Jacobian as described next), the external NLP solver,
fsolve, must be called to find the values of ca, cb, cc, and
cd that result in sufficiently small residual values. This
structure can also be used with the FMU based approach
if the FMU requires iteration to resolve nonlinear systems
of equations. Alternatively, the variables and residual
values can be exposed to the optimization solver and the
residuals handled as equality constraints (with equality
zero). This is possible with the steady-state FMU
interface package and is usually considered more efficient
and robust.

Figure 3. PyNumero reactor model output evaluation function

The Jacobian is provided by the
evaluate_jacobian_outputs method of the reactor
class. The matrix is returned in the sparse coordinate
format as an instance of a coo_matrix class from the
scipy.sparse package. The PyNumero example estimates
the matrix using finite differences, but it could also have
been analytically computed from the model equations.

The Pyomo code to define the optimization problem to
maximize the concentration of species B appears as in the
following:

Figure 4. PyNumero reactor model optimization problem
statement in Pyomo code

Notice that an instance of a Pyomo ConcreteModel class,
m, is passed to an instance of the SolverFactory class,
solver. This will be the same when using the new
FMU/Pyomo interface package. Also notice that the
values of k1, k2, k3, and caf are handled as equality
constraints. Only sv is free to iterate during optimization.
Pyomo hands this problem to cyipopt to solve the problem
and produces the following print out of the results:

Figure 5. PyNumero reactor model solution results log

This shows that the solver converged to a solution of 1.34
with 1072 as the maximum concentration of species B.
Alternatively, the problem can be written in another
language, from which an FMU can be generated. For
example, in Modelon Impact the reactor model definition
could be written in Modelica as:

113OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Figure 6. Static continuously stirred reactor model in Modelica

Notice that the variables include attributes like min, max,
start, nominal. These can be included in the FMU’s
variable attributes and the new FMU/Pyomo interface
package will use these to automatically define the
required Pyomo attributes. The interface also allows the
attributes to be provided in the problem statement for
cases when the FMU does not include these.

It is also worth noting that an added benefit to encoding
this model in Modelica is that the Modelica translator can
“tear” (Baharev et al., 2016) the system of equations to
minimize the size of equation blocks. In this case the
block is torn to a size 1 system around variable ca.

With this model the solution space of can be explored by
plotting the solution of cb as a sweep of values of sv.
Notice the location and maximum of this curve correlates
to the solution from Ipopt shown in Figure 5.

Figure 7. Sweep of outlet concentration, cb, (vertical axis)
versus inlet flow rate, sv (horizontal axis)

A similar optimization problem can now be defined using
the new FMU/Pyomo interface package. The package
includes helper functions static_pyomo_model and
generic_pyomo_model that return an instance of the
PyNumero ExternalGreyBoxBlock, “block”, as an
element of an instance of a Pyomo ConcreteModel. The
block contains an external_model that is an instance of
one of either of the new FMU/Pyomo classes, StaticFMU
or GenericFMU, as described in section 3. The methods
in these classes are optimized for the type of FMU that is

being used. An example of this is shown in the following
code where m is the instance of a Pyomo ConcreteModel
class that includes an instance of the StaticFMU class.

Figure 8. Optimization problem statement using the
CSTR_static FMU.

By default the FMU’s inputs and outputs will be used for
the problem inputs and outputs, or they can be specified
directly for FMUs without explicit I/O variables, as in the
above code that specified sv and cb as the inputs and
outputs respectively. Notice that the code that defines the
optimization problem, i.e. the objective, solver, and its
settings on lines 64 – 69 in the above code, is the same as
lines 38 – 43 shown in Figure 4. Calling the pprint
method of the Pyomo ConcreteModel instance, m prints
the following information to the screen. This
demonstrates that the found solution matches the solution
shown in Figure 5.

Figure 9. Solution log for the CSTR system using the static
FMU/Pyomo interface

At this point it is important to note a difference in solver
statistics between the two cases. In the original
PyNumero example, Ipopt reports 13 iterations required
to solve the problem. With the FMU based approach the
solution required 17 iterations. The exact cause for this
difference has not yet been determined but some
differences can be noted. One difference with the
previous example is the initialization. The original
PyNumero example initializes the problem with sv = 5
and ca and cb both equal to 1 whereas the above FMU
based example initialized at sv = 1 and ca and cb equal
to 0. This can be changed in the problem statement by
adding the following lines.

114 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Figure 10. Applying consistent initial conditions to the problem
statement

This reduces the number of iterations to 16 but still not to
13. This result is unexpected since the FMU based
approach has both reduced the number of iteration
variables and provides an analytic Jacobian. Resolution
of this discrepancy would likely require low-level review
of the verbose Ipopt log.

The above FMU based approach relied on the steady-state
interface of the new FMU/Pyomo interface as described
in the Introduction section. This allows the Ipopt solver
to resolve the nonlinear block for the concentration of
species A as described above. An alternative approach
relies on the generic FMU/Pyomo interface described in
the Introduction section. This approach supports any
FMU, not just FMUs generated by Modelon Impact’s
steady-state interface. This is demonstrated with a generic
FMU based on the model shown in Figure 6 and uses the
generic_pyomo_model method of the FMU/Pyomo
interface. Notice that the ca variable is no longer an input
but is now an internal variable that will be resolved by the
methods within the FMU.

Figure 11. Comparable problem statement for the CSTR system
using the generic FMU/Pyomo interface.

Because generic FMUs can have time varying equations,
the simulate method of the PyFMI FMU object is used to
evaluate the variables. For model exchange FMUs this
will attach an external DAE (differential algebraic
equation) solver to integrate forward in time from zero to
some user defined final time. For co-simulation FMUs,
the DAE solver is internal so the simulate method requests
the solver step forward from zero to the final time. The
values returned to the optimization solver (e.g. Ipopt) are
the values at the end of the simulation, even if steady-state
conditions have not been reached. This also means that
the Jacobian must be computed numerically.

Passing this problem to the solver results in a failed
solution because the maximum number of iterations is
reached. Adding a constraint on the upper bound of the
iteration variable, sv, helps resolve this issue.

Figure 12. Defining the upper bound on the iteration variable to
resolve failed solutions.

With an upper limit on the iteration variable, the solution
now converges to the same solution as before but requires
more than 2000 iterations.

Notice the iteration variable, sv, is on the order of 1.0
while the output concentration variable, cb, is on the order
of 1000. This can significantly affect the accuracy of the
Jacobian, especially when it is computed through the
finite difference. Instead of applying a bound on the
iteration variable, we can define better nominal values of
the variables. The FMU/Pyomo interface will then scale
the inputs, outputs, and Jacobian elements based on these
nominal values.

Figure 13. Defining a nominal attribute for the output variable
of the CSTR

In this case the solver converges to the solution much
faster, although still not as fast as the case when an
analytic Jacobian is used.

The last example using the CSTR model demonstrates the
same problem but with a transient model. In this example
the species concentrations are states of the differential
equation system that evolve in time.

Figure 14. Modelica definition of the CSTR system that
includes transient effects.

115OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Simulating this for 1 second demonstrates these
trajectories.

Figure 15. Species concentrations (vertical axis) transient
response of the CSTR system versus time (horizontal axis)

Notice that the generic_pyomo_model function is used
to define the problem statement. We also allow the
simulation to proceed longer, to ensure that steady state
conditions have been reached. Alternatively, we could
have elaborated on the Modelica model to terminate the
simulation after acceptable steady-state conditions have
been reached. The problem statement remains the same
as the other cases and the results are also comparable to
the static cases.

Figure 16. Transient CSTR optimization problem statement

Now that we have demonstrated the use of the
FMU/Pyomo interface package with the CSTR model, we
can use this for larger models. The results are shown for
two different models. The first is a model from
Modelon’s Jet Propulsion Library that simulates a steady-
state operating gas turbine engine. The sizing of the
engine is designed to meet the requirements for an
example aircraft under the conditions of a rolling-take-off
(RTO), top-of-climb (TOC), and cruise (CRZ) conditions.
These requirements are constraints within the model and
simultaneous evaluation of these three cases relies on
three instances of the engine component within a single
simulation model. This is based on the multi-point
methodology defined by Kyprianidis et al. (2014). The
optimization problem is to minimize the specific fuel
consumption under cruising conditions.

Figure 1. The Steady-state gas-turbine design model used for

testing.

Sweeping some of the variables of interest and plotting the
specific fuel consumption for the cruising case shows the
local minimum (the solution that the solver will search
for) occurs between 0.94 and 0.96 of the swept variable.

Figure 17. Specific fuel consumption (vertical axis) versus
swept by-pass ratio constraint on the velocity ratio tuning
variable (horizontal axis)

Defining the optimization problem is the same as for the
CSTR system but with specifics for the FMU and its
variables. The variables to tune are the cold-to-hot air
velocity ratio, the overall pressure ratio of the engine, and
the specific thrust. The nominal values for these (used for
the normalization) are 1, 50, and 100 respectively.

116 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

Figure 18. Gas turbine specific fuel consumption minimization
problem statement

The total problem involves 112 variables. Most of the
iteration variables are the constraints needed to solve the
design problem that requires the engine to meet the
specific performance requirements. The solver converges
to the solution within about 60 iterations.

The last model described in this paper defines an open-
cycle parallel double-effect absorption heat pump
(DEAHP) coupled to a multi-effect distillation (MED)
system for brine desalination. In this system, the DEAHP
acts as a steam recompression unit that improves the
coupled system’s overall efficiency proportionally to the
coefficient of performance of heating (COPh).

The optimization problem is to maximize the COPh of the
DEAHP by varying the strong and weak mass fraction
concentrations of the absorption fluid Xstrong and
Xweak, respectively.

Figure 2. The Steady-state design model for a double effect

absorption heat pump from (Stuber et al., 2015)

Using the new FMU/Pyomo interface package to define
an optimization problem to solve with Ipopt results in
convergence to a solution of 0.43 and 0.25 for Xstrong
and Xweak, respectively with a COPh of 2.66. In this test,
the starting values for Xstrong and Xweak were 0.588
and 0.549, respectively.

Sweeping the concentrations in simulation and observing
the COPh can be used to verify the solution. Notice there

is a local maximum in Xstrong and a maximum at the
lower boundary of Xweak. This is consistent with the
solution found by Ipopt.

Figure 19. Example sweep of the strong and weak
concentrations (horizontal axes) and the resulting coefficient of
performance (vertical axes) that demonstrates the optimization
problem’s solution.

Table 1 lists some statistics related to the different models
described in this paper. The key for the rows is shown in
Table 2.

Table 1. Statistics per model.
CSTR
Python

CSTR
FMU

Gas
Turbine

DEAHP

4 4 2382 621

4 1 109 30
1 1 3 2
13 16 60 24

Table 2. Row key for Table 1

1 Model implementation
2 Variable count
3 Equality constraint count
4 Optimization (tuner) variable count
5 Optimization iteration count

6 Conclusions
The Pyomo interface package has been used to solve both
small and large optimization problems. There are two
additional findings from this work. The first is the
sensitivity of success to converge to a solution, on the

117OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024DOI 10.3384/ECP207109

Jacobian. As described in the Test Models and Results
section, small changes in the method used to estimate or
compute the Jacobian had a significant effect on the
ability of the solver to find a solution. This was
demonstrated with a small example problem but is
especially true as the models become larger.

Another significant finding was the importance of
normalizing the variables. Even small models can benefit
from this. Using the nominal attributes to normalize
variables balances the sensitivity of individual variables
so they do not dominate the convergence criteria. The
current implementation uses the nominal attributes of the
FMU variables automatically to normalize both the
outputs and the Jacobian (using nominal attributes of both
inputs and outputs).

Finally, models that can produce failed simulations or
solutions can reduce the robustness of the solver. The
current implementation returns a Numpy NaN value to the
optimization solver in these cases. A possible
improvement to this is proposed in the next section.

7 Future Work
Future developments for this work include:

• Native support for parameter tuning (including
calibration) with respect to experimental data

• Support for dynamic optimization
• Sensitivity analysis to help the user identify tuner

variables
• Improved support for failed solutions
• Testing and support for additional problem types

and solvers (in addition to Ipopt that was used for
this current work)

In addition to the above list of improvements to the Pyomo
Interface Package, there is one item related to FMU
creation. The Pyomo Interface Package natively supports
FMUs generated with Modelon’s steady-state interface
for solving NLP problems. A proposed extension, similar
to the steady-state interface, would be automatic
conversion of mathematical operators with restricted
domains into a more optimization friendly format. As
described in Wächter 2009, mathematical functions with
restricted domains can usually be converted into
inequality constraints. It should be possible for Modelica
translators to make this conversion automatically. This
would make it easy for model developers to write the
equations in a familiar format for normal simulation but
export the FMU targeted for optimization when needed,
similar to exporting an FMU for steady state evaluation.

Disclaimer

The views expressed herein do not necessarily represent
the views of the U.S. Department of Energy or the United
States Government.

Acknowledgements
This material is based upon work supported by the
National Alliance for Water Innovation (NAWI), funded
by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy (EERE), Industrial
Efficiency and Decarbonization Office, under Funding
Opportunity Announcement DE-FOA-0001905.

A special thanks to Professor George Bollas from the
University of Connecticut for also supporting this work.

References
Åkesson, Johan and K-E Årzén, Magnus Gäfvert, Tove

Bergdahl, Hubertus Tummescheit (2011). “Modeling and
optimization with Optimica and JModelica. org—Languages
and tools for solving large-scale dynamic optimization
problems”, Computers & Chemical Engineering, Volume 34,
Issue 11, pp. 1747-1849.

Andersson, Joel and Johan Åkesson, Francesco Casella, Moritz
Diehl (2011). "Integration of CasADi and JModelica.org". In:
Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical University; Dresden; Germany,
pp. 218-231. DOI: 10.3384/ecp11063218.

Baharev, Ali and Hermann Schichl, Arnold Neumaier (2016).
“Tearing systems of nonlinear equations I. A survey.”

 URL: https://api.semanticscholar.org/CorpusID:51987111
Bachmann, Bernhard and Lennart Ochel, Vitalij Ruge, Mahder

Gebremedhin, Peter Fritzson, Vaheed Nezhadali, Lars
Eriksson, and Martin Sivertsson (2012). “Parallel multiple-
shooting and collocation Optimization with OpenModelica”.
In: Proceedings of the 9th International Modelica Conference.
Linköping University Electronic Press, September 2012, pp.
659-668. DOI:10.3384/ecp12076659.

Bryson, Arthur E. Jr. (1999), Dynamic Optimization, Addison
Wesley Longman, Inc. ISBN: 0-201-59790-X.

Bynum, Michael L. and Gabriel A. Hackebeil, William E. Hart,
Carl D. Laird, Bethany L. Nicholson, John D. Siirola, Jean-
Paul Watson, David L. Woodruff (2021). “Pyomo –
Optimization Modeling in Python” 3rd Edition, 2021, ISSN
1931-6828.

Fletcher, R (1987). "Practical Methods of Optimization", 2nd ed.
John Wiley and Sons. ISBN: 0-471-49463-1.

Kyprianidis, Konstantinos G. and Andrew M. Rolt, Tomas
Grönstedt (2014). “Multi-Disciplinary Analysis of a Geared
Fan Intercooled Core Aero-Engine”, Journal of Engineering
for Gas Turbines and Power, January 2014

Magnusson, Fredrick and Johan Åkesson (2015). “Dynamic
Optimization in JModelica.org”. In: Processes 2015, 3, pp.
471-496; DOI:10.3390/pr3020471.

Modelica Association (2024), FMI website, https://fmi-
standard.org.

Modelon Impact Help Center (2024), website URL:
https://help.modelon.com/latest/reference/oct/#dynamic-
optimization-of-daes-using-direct-collocation-with-casadi.

118 PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA 10.3384/ECP207109 DOI

OpenModelica (2024) website URL:
https://openmodelica.org/doc/OpenModelicaUsersGuide/late
st/optimization.html.

Rodriguez, Jose Santiago and Michael Bynum, Carl Laird,
Bethany Nicholson, Robby Parker, John Siirola (2024).
“PyNumero is a package for developing parallel algorithms
for nonlinear programs”,
https://pyomo.readthedocs.io/en/stable/contributed_package
s/pynumero/index.html

Stuber, Matthew D. and Christopher Sullivan, Spencer A. Kirk,
Jennifer A. Farrand, Philip V. Schillaci, Brian D. Fojtasek,
Aaron H. Mandell (2015). “Pilot demonstration of
concentrated solar-powered desalination of subsurface
agricultural drainage water and other brackish groundwater
sources” Desalination, Volume 355, 2015, Pages 186-196,
https://doi.org/10.1016/j.desal.2014.10.037.

Ruge, Vitalij and Willi Braun, Bernhard Bachmann, Andrea
Walther, and Kshitij Kulshreshtha (2014). "Efficient
implementation of collocation methods for optimization
using OpenModelica and adol-c". In: Proceedings of the 10th
International Modelica Conference. Modelica Association
and Linköping University Electronic Press, March 2014, pp.
1017-1025. DOI:10.3384/ecp140961017.

Wächter, Andreas and L. T. Biegler (2006). “On the
Implementation of a Primal-Dual Interior Point Filter Line
Search Algorithm for Large-Scale Nonlinear Programming”,
Mathematical Programming, 106(1), pp. 25-57, preprint at
http://www.optimization-
online.org/DB_HTML/2004/03/836.html

Wächter, Andreas (2009). “Short Tutorial: Getting Started With
Ipopt in 90 Minutes”, In Combinatorial Scientific Computing.
Dagstuhl Seminar Proceedings, Volume 9061, pp. 1-17,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009),
https://doi.org/10.4230/DagSemProc.09061.16

