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Abstract 
This paper describes two ways on how to interface 
Functional Mockup Units (FMUs) and Modelica models 
through the Pyomo’s foreign function interface with 
Pyomo. Pyomo is a Python-based, open-source 
optimization modeling language with a diverse set of 
optimization capabilities. Modelica has arguably much 
better modeling capabilities than Pyomo, but Pyomo 
integrates excellent optimization solvers, such as Ipopt 
(Wächter et al. 2006), and provides a good optimization 
infrastructure. The Interface has been developed in the 
context of a NAWI, (National Alliance Water Innovation) 
Hub project in collaboration with the University of 
Connecticut and Sandia National Labs. The optimization 
has been set up and tested within Modelon’s Modelica 
platform Modelon Impact. An unpublished, detailed 
multi-effect desalination plant developed by Prof. Matt 
Stuber in the context of (Stuber et al., 2015) has been used 
to demonstrate the capabilities, as well as simple test 
models, and design models from Modelon’s commercial 
Libraries. 
Keywords: Modelica, Functional Mockup Interface, 
FMI, Steady-state Optimization, Design Optimization 

1 Introduction 
There is a growing list of options to perform optimization 
studies involving Modelica models. A number of 
simulation tools support optimization natively within their 
simulation environment (OpenModelica, Ansys Twin 
Builder®, System Modeler, the Modelica Optimization 
Library, etc.). The models can also be exported as 
Functional Mockup Units (FMU) and imported to 
specialized optimization tools (modeFrontier®, 
Optimus®, etc.). A couple of dynamic optimization 
(Bryson 1999) methods (OpenModelica and JModelica) 
rely on CasADi (Andersson 2011; Bachmann 2012; Ruge 
2014).  The tools transfer the Modelica model to CasADi 
for automatic differentiation and optimization. Originally 
this was done via an XML file format for both tools 
(Magnusson 2015), but the Optimica Compiler Toolkit 
(OCT) has evolved from JModelica to support more 
comprehensive coverage of the Modelica language, 

transferring large parts of the language into a native 
CasADi problem (Modelon 2024). This is done 
automatically but both methods rely on sufficiently 
restricted models to avoid unsupported constructs by 
CasADi.  The Optimica Compiler Toolkit also includes 
support for derivative free optimization using the Nelder-
Mead simplex method (Nelder and Mead 1965; Fletcher 
1987) for static optimization.  In addition, OpenModelica 
and OCT support the Optimica® language for the 
description of the optimization problem. This language is 
an extension to the Modelica language. An alternative to 
the above methods that is explored in this paper, is to 
connect the FMU to a solver through the Pyomo Python 
toolbox for optimization and solution through its 
connection to IPOPT. 

The Functional Mockup Interface (FMI, Modelica 
Association 2024) is a standardized, widely accepted API 
implemented by more than 200 simulation tools for 
executable simulation models. However, it has been 
designed for transient simulations, not steady-state 
(design-oriented) simulation models. It can be used to 
compute stationary points for transient system models, but 
the API lacks functions to compute sensitivities with 
respect to decision variables in an optimization problem 
symbolically. It is possible, but less accurate and 
performant to approximate the derivates by finite 
differences. Modelon Impact offers to convert Modelica 
model parameters to inputs when translated into an FMU. 
This allows using the symbolic derivatives with respect to 
inputs in the standard FMI-interface in the solution 
process. While this is helpful, and allows to optimize 
arbitrary Modelica-models, it is not sufficient to robustly 
optimize large and highly non-linear problems.   
 
This paper will present two different interfaces between 
Modelica models and Pyomo’s optimization algorithms:  

 An interface based on generic FMUs, enhanced with 
Modelon Impact’s capability to convert parameters 
to inputs for improved accuracy of Jacobian 
computations. 

 Modelon Impact’s internal interface for solving large 
non-linear systems for steady-state design problems. 
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Modelon’s interface is similar to FMI but adds the 
ability to couple a Modelica model to an external 
steady-state solver. This is in spirit like a model 
exchange FMU.  

The first interface allows to couple FMUs for any FMI-
compliant tool to Pyomo, the second interface is more 
robust, able to solve larger models, but is only available 
for Modelica models in Modelon Impact.  

2 Requirements for efficient 
gradient-based optimization 

A typical constrained static optimization problem can be 
written as follows:  

Minimize 𝑓𝑓(𝑥𝑥) 
Subject to 𝑔𝑔𝑗𝑗(𝑥𝑥) ≤ 0, 𝑗𝑗 = 1, … , 𝑝𝑝 

ℎ𝑖𝑖(𝑥𝑥) = 0, 𝑖𝑖 = 1, … , 𝑚𝑚 
 

(1) 

where 𝑔𝑔𝑗𝑗 , ℎ𝑖𝑖: R𝑛𝑛  →  R  are inequality and equality 
constraints respectively, and 𝑓𝑓(𝑥𝑥)  is the objective 
function. In the context of models coming from Modelica, 
usually all equality constraints come from the model 
equations, and the objective function and inequality 
constraints must be handled outside of the standard 
Modelica language. For this prototype interface, we have 
chosen to not use the Optimica Modelica extension 
proposed by (Åkesson et. al., 2011). A graphical Modelica 
user environment such as Modelon Impact can allow those 
to be entered in the definition of the optimization 
experiment. 

With the optimization of a model in Modelica, there are 
two fundamentally different ways of solving a steady-state  
optimization problem: 1) the nonlinear solver is the same 
that is used for steady-state initialization in a Modelica 
simulator, and the optimization solver is “wrapped” 
around that, i.e. nested solvers, or 2) the optimization 
solver handles everything, and treats the model equations 
as equality constraints (ℎ𝑖𝑖(𝑥𝑥)), i.e. a single solver. With 
generic FMUs, a nested solver is the only option. With 
Modelon Impact’s steady-state interface, the second 
option is possible, and has demonstrably been the faster 
and more robust option in our testing.  

It should be noted that the dimension m of ℎ𝑖𝑖(𝑥𝑥) can be 
large, several thousand equations, which can lead to 
excessive solution times. However, so called tearing of 
equation systems (Baharev et al., 2016) can dramatically 
reduce the dimension, is generally used by Modelica tools, 
and is also used by us in this interface to reduce the 
dimension of the 𝒉𝒉(𝒙𝒙) vector equations that are exposed 

to the solver. Also note that, even after the dimensionality 
reduction through tearing, the resulting subset of the 
equations is still large enough to justify the use of sparse 
solver interfaces. 

There are further important numerical requirements for 
efficiency and robustness, some of which are on the 
model-side of the interface, and some on the optimization 
solver side of the interface. Pyomo offers methods to 
compute first and second derivatives for constraints and 
objective function. On the model side, these can be 
approximated numerically, or computed analytically. For 
standard, transient FMUs, they must be approximated 
numerically. Modelon’s dedicated steady-state, FMU-like 
interface allows to provide even analytic Jacobians to the 
Pyomo external function interface. Scaling of variables is 
also important for robustness and can be achieved by 
making use of the Modelica and FMI feature of nominal 
values for variables. Note that scaling is much more 
important than in the simulation case.  

3 The Pyomo/PyNumero External 
Function Interface 

The core of both interfaces of this work, mentioned in the 
introduction, extends from the  
ExternalGreyBoxModel class of PyNumero 
(Rodriguez et al. 2024).  This class allows users to use 
external models with Pyomo.  The class translates the 
external model, usually written in Python code, into a 
Pyomo model by wrapping a set of standard methods, 
necessary to define an optimization problem.  Examples 
of these methods are evaluate_outputs, 
evaluate_equality_constraints, 
evaluate_jacobian_outputs, and 
evaluate_jacobian_equality_constraints.  
The second derivatives can also be defined using the 
evaluate_hessian_outputs and 
evaluate_hessian_equality_constraints 
methods.  The new classes from this effort, wrap 
(evaluate) the FMI interface methods from a PyFMI FMU 
object within these  PyNumero methods.   

The main class constructor of this work accepts a PyFMI 
FMU object or a steady state FMUProblem1 object from 
Modelon’s steady-state interface class.  The methods 
provided by these objects are evaluated within the 
PyNumero methods during the solution of the 
optimization or static problem.  The constructor also 
accepts lists of relevant variables for inputs, outputs, and 
constraints, as well as modifiers to FMU parameters and 
some additional options specific to this interface.  The 
input, output, and constraint lists identify the relevant 

as “normal” 
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FMU variables for the optimization or steady state 
problem. 

4 The Interfaces 
In general, FMUs define a mathematical representation of 
an engineering problem.  Frequently, this is defined as an 
experiment that simulates a transient, progression in time, 
as a differential-algebraic equation (DAE) system.  The 
GenericFMU class from the new Python package 
simulates an FMU from the initial time to the final time to 
supply the values needed by an optimization solver.  This 
includes the outputs, constraint residuals, and their 
derivatives.  Because many FMUs support these methods, 
this allows the new interface to support the widest range 
of FMUs, regardless of the generation tool. 

Static problems do not include a dependence on time 
because time and derivatives with respect to time do not 
appear in the DAE system.  This means that the 
mathematical representation of the problem is reduced to 
a set of nonlinear equations with one or more solutions 
(hopefully!) that needs to be solved by a nonlinear 
programming (NLP) solver.  Modelon’s steady state 
problem interface is an efficient translation of these types 
of problems to pass to an NLP solver.  Evaluating the 
outputs and constraints does not require stepping forward 
in time and is the simplest and most efficient case because, 
since there are no dynamic states (no time derivatives), the 
outputs only depend on the inputs in continuous-time 
mode (as defined by the FMI specification).  This means 
the solver can update the inputs and the outputs can be 
evaluated without additional method calls.  This is also the 
most efficient case for the evaluation of derivatives and 
can take advantage of the directional derivatives defined 
by the FMU.  This applies when the inputs to the 
optimization problem are also the inputs to the FMU 
(v𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 of section 2.1.9 of the FMI specification version 
2.0.4).  The methods of the StaticFMU class avoid full 
simulations to compute the values needed by the 
optimization solver. 

The static interface also supports other cases that include 
FMUs with event indicators, optimization inputs that are 
not also FMU inputs (usually this means causality = 
parameter), and co-simulation FMUs.  The static interface 
checks for these cases and defines the appropriate 
evaluation methods depending on the situation.  For the 
case of FMUs with event indicators an event handling 
loop is activated if an event is detected by the indicators.  
The allowed modes for modifying parameter values are 
more restricted.  For example, normal parameters (e.g. 
causality = parameter and variability = fixed), can only be 
modified before exiting initialization mode.  Therefore 
this version of the interface package resets the FMU, sets 
the updated parameter values, then initializes the FMU to 

ensure consistency.  Co-simulation type FMUs use a 
similar strategy of setting values and initializing.  

5 Test Models and Results 
PyNumero includes an example of a problem based on a 
continuously stirred reactor as described in section 7.4.4 
of Bynum et al., (2021).  The problem is to find the 
incoming flow rate of an inlet stream with a single species 
to a chamber with competing reactions, that maximizes 
the concentration of a specific species in the outlet stream.  
  

 
Figure 1. Continuously stirred reactor diagram 

The reactions within the vessel are governed by the rates 
𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 through the following sequences. 
 

 𝐴𝐴
𝑘𝑘1→𝐵𝐵

𝑘𝑘2→𝐶𝐶 (2) 

 2𝐴𝐴
𝑘𝑘3→𝐷𝐷 (3) 

 
This can be represented by the following model that 
describes the rates of change of the outlet concentrations 
𝐶𝐶𝐴𝐴, 𝐶𝐶𝐵𝐵, 𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐷𝐷. 
 

 �̇�𝐶𝐴𝐴 =
𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴𝑓𝑓 −

𝑞𝑞
𝑉𝑉 𝐶𝐶𝐴𝐴 − 𝑘𝑘1𝐶𝐶𝐴𝐴 − 2𝑘𝑘3𝐶𝐶𝐴𝐴2 (4) 

 �̇�𝐶𝐵𝐵 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐵𝐵 + 𝑘𝑘1𝐶𝐶𝐴𝐴 − 𝑘𝑘2𝐶𝐶𝐵𝐵 (5) 

 �̇�𝐶𝐶𝐶 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐶𝐶 + 𝑘𝑘2𝐶𝐶𝐵𝐵 (6) 

 �̇�𝐶𝐷𝐷 = − 𝑞𝑞
𝑉𝑉 𝐶𝐶𝐷𝐷 + 𝑘𝑘3𝐶𝐶𝐴𝐴2 (7) 

 𝑞𝑞
𝑉𝑉 = 𝑠𝑠𝑠𝑠 (8) 

 
At steady state, the rates of change of concentrations are 
zero and the inlet and outlet flow rates are equal.  This is 
equivalent to a statics problem that does not involve time. 
 

 �̇�𝐶𝑋𝑋 → 0 (9) 
 𝑞𝑞𝑘𝑘 → 𝑞𝑞𝑖𝑖 (10) 

 
Notice the steady state problem involves a quadratic term 
for 𝐶𝐶𝐴𝐴.  Depending on the tool, this can require iteration 
to solve numerically.  The example in PyNumero encodes 
this problem in Python code to demonstrate the external 
interface to a Pyomo model.  The 
ExternalGreyBoxModel of this example appears as in 
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the following image that shows the method definitions 
from the base class: 
 

 
Figure 2. PyNumero reactor model example Python class 
definition 

The finalize_block_construction method is the 
location for specifying the Pyomo variable attributes like 
bounds and starting values.  Notice the variable bounds 
are specified separately from the constraints.  In this 
example a lower bound of zero is defined for all the 
concentrations.  Evaluation of the residuals occurs in the 
_model function, defined in the function  
reactor_outlet_concentrations.  This is where 
equations (4) – (8) are defined in the Python model.  As 
the problem is written, solution of this system requires an 
iterative approach to drive the four residual values toward 
zero.  This relies on fsolve from scipy.optimize to 
minimize the residuals.   Whenever the optimization 
solver needs the values of the outputs (or to estimate the 
Jacobian as described next), the external NLP solver, 
fsolve, must be called to find the values of ca, cb, cc, and 
cd that result in sufficiently small residual values.  This 
structure can also be used with the FMU based approach 
if the FMU requires iteration to resolve nonlinear systems 
of equations.  Alternatively, the variables and residual 
values can be exposed to the optimization solver and the 
residuals handled as equality constraints (with equality 
zero).  This is possible with the steady-state FMU 
interface package and is usually considered more efficient 
and robust. 
 

 
Figure 3. PyNumero reactor model output evaluation function 

The Jacobian is provided by the 
evaluate_jacobian_outputs method of the reactor 
class.  The matrix is returned in the sparse coordinate 
format as an instance of a coo_matrix class from the 
scipy.sparse package.  The PyNumero example estimates 
the matrix using finite differences, but it could also have 
been analytically computed from the model equations. 
 
The Pyomo code to define the optimization problem to 
maximize the concentration of species B appears as in the 
following: 
 

 
Figure 4. PyNumero reactor model optimization problem 
statement in Pyomo code 

Notice that an instance of a Pyomo ConcreteModel class, 
m, is passed to an instance of the SolverFactory class, 
solver.  This will be the same when using the new 
FMU/Pyomo interface package.  Also notice that the 
values of k1, k2, k3, and caf are handled as equality 
constraints.  Only sv is free to iterate during optimization.  
Pyomo hands this problem to cyipopt to solve the problem 
and produces the following print out of the results: 
 

 
Figure 5. PyNumero reactor model solution results log 

This shows that the solver converged to a solution of 1.34 
with 1072 as the maximum concentration of species B.  
Alternatively, the problem can be written in another 
language, from which an FMU can be generated.  For 
example, in Modelon Impact the reactor model definition 
could be written in Modelica as: 
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Figure 6. Static continuously stirred reactor model in Modelica 

Notice that the variables include attributes like min, max, 
start, nominal.  These can be included in the FMU’s 
variable attributes and the new FMU/Pyomo interface 
package will use these to automatically define the 
required Pyomo attributes.  The interface also allows the 
attributes to be provided in the problem statement for 
cases when the FMU does not include these. 
 
It is also worth noting that an added benefit to encoding 
this model in Modelica is that the Modelica translator can 
“tear” (Baharev et al., 2016) the system of equations to 
minimize the size of equation blocks.  In this case the 
block is torn to a size 1 system around variable ca. 
 
With this model the solution space of can be explored by 
plotting the solution of cb as a sweep of values of sv.  
Notice the location and maximum of this curve correlates 
to the solution from Ipopt shown in Figure 5. 
 

 
Figure 7. Sweep of outlet concentration, cb, (vertical axis) 
versus inlet flow rate, sv (horizontal axis) 

A similar optimization problem can now be defined using 
the new FMU/Pyomo interface package.  The package 
includes helper functions static_pyomo_model and 
generic_pyomo_model that return an instance of the 
PyNumero ExternalGreyBoxBlock, “block”, as an 
element of an instance of a Pyomo ConcreteModel.  The 
block contains an external_model that is an instance of 
one of either of the new FMU/Pyomo classes, StaticFMU 
or GenericFMU, as described in section 3.  The methods 
in these classes are optimized for the type of FMU that is 

being used.  An example of this is shown in the following 
code where m is the instance of a Pyomo ConcreteModel 
class that includes an instance of the StaticFMU class.   
 

 
Figure 8. Optimization problem statement using the 
CSTR_static FMU. 

By default the FMU’s inputs and outputs will be used for 
the problem inputs and outputs, or they can be specified 
directly for FMUs without explicit I/O variables, as in the 
above code that specified sv and cb as the inputs and 
outputs respectively.  Notice that the code that defines the 
optimization problem, i.e. the objective, solver, and its 
settings on lines 64 – 69 in the above code, is the same as 
lines 38 – 43 shown in Figure 4.  Calling the pprint 
method of the Pyomo ConcreteModel instance, m prints 
the following information to the screen.  This 
demonstrates that the found solution matches the solution 
shown in Figure 5. 
 

 
Figure 9. Solution log for the CSTR system using the static 
FMU/Pyomo interface 

At this point it is important to note a difference in solver 
statistics between the two cases.  In the original 
PyNumero example, Ipopt reports 13 iterations required 
to solve the problem.  With the FMU based approach the 
solution required 17 iterations.  The exact cause for this 
difference has not yet been determined but some 
differences can be noted.   One difference with the 
previous example is the initialization.  The original 
PyNumero example initializes the problem with sv = 5 
and ca and cb both equal to 1 whereas the above FMU 
based example initialized at sv = 1 and ca and cb equal 
to 0.  This can be changed in the problem statement by 
adding the following lines. 
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Figure 10. Applying consistent initial conditions to the problem 
statement 

This reduces the number of iterations to 16 but still not to 
13.  This result is unexpected since the FMU based 
approach has both reduced the number of iteration 
variables and provides an analytic Jacobian.  Resolution 
of this discrepancy would likely require low-level review 
of the verbose Ipopt log. 
 
The above FMU based approach relied on the steady-state 
interface of the new FMU/Pyomo interface as described 
in the Introduction section.  This allows the Ipopt solver 
to resolve the nonlinear block for the concentration of 
species A as described above.  An alternative approach 
relies on the generic FMU/Pyomo interface described in 
the Introduction section.  This approach supports any 
FMU, not just FMUs generated by Modelon Impact’s 
steady-state interface.  This is demonstrated with a generic 
FMU based on the model shown in Figure 6 and uses the 
generic_pyomo_model method of the FMU/Pyomo 
interface.  Notice that the ca variable is no longer an input 
but is now an internal variable that will be resolved by the 
methods within the FMU.    
 

 
Figure 11. Comparable problem statement for the CSTR system 
using the generic FMU/Pyomo interface. 

Because generic FMUs can have time varying equations, 
the simulate method of the PyFMI FMU object is used to 
evaluate the variables.  For model exchange FMUs this 
will attach an external DAE (differential algebraic 
equation) solver to integrate forward in time from zero to 
some user defined final time.  For co-simulation FMUs, 
the DAE solver is internal so the simulate method requests 
the solver step forward from zero to the final time.  The 
values returned to the optimization solver (e.g. Ipopt) are 
the values at the end of the simulation, even if steady-state 
conditions have not been reached.  This also means that 
the Jacobian must be computed numerically. 
 

Passing this problem to the solver results in a failed 
solution because the maximum number of iterations is 
reached.  Adding a constraint on the upper bound of the 
iteration variable, sv, helps resolve this issue.  
 

 
Figure 12. Defining the upper bound on the iteration variable to 
resolve failed solutions. 

With an upper limit on the iteration variable, the solution 
now converges to the same solution as before but requires 
more than 2000 iterations. 
 
Notice the iteration variable, sv, is on the order of 1.0 
while the output concentration variable, cb, is on the order 
of 1000.  This can significantly affect the accuracy of the 
Jacobian, especially when it is computed through the 
finite difference.  Instead of applying a bound on the 
iteration variable, we can define better nominal values of 
the variables.  The FMU/Pyomo interface will then scale 
the inputs, outputs, and Jacobian elements based on these 
nominal values. 
 

 
Figure 13. Defining a nominal attribute for the output variable 
of the CSTR 

In this case the solver converges to the solution much 
faster, although still not as fast as the case when an 
analytic Jacobian is used.   
 
The last example using the CSTR model demonstrates the 
same problem but with a transient model.  In this example 
the species concentrations are states of the differential 
equation system that evolve in time. 
 

 
Figure 14. Modelica definition of the CSTR system that 
includes transient effects. 
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Simulating this for 1 second demonstrates these 
trajectories. 
 

 
Figure 15. Species concentrations (vertical axis) transient 
response of the CSTR system versus time (horizontal axis) 

Notice that the generic_pyomo_model function is used 
to define the problem statement.  We also allow the 
simulation to proceed longer, to ensure that steady state 
conditions have been reached.    Alternatively, we could 
have elaborated on the Modelica model to terminate the 
simulation after acceptable steady-state conditions have 
been reached.  The problem statement remains the same 
as the other cases and the results are also comparable to 
the static cases. 
 

 
Figure 16. Transient CSTR optimization problem statement 

Now that we have demonstrated the use of the 
FMU/Pyomo interface package with the CSTR model, we 
can use this for larger models.  The results are shown for 
two different models.  The first is a model from 
Modelon’s Jet Propulsion Library that simulates a steady-
state operating gas turbine engine.  The sizing of the 
engine is designed to meet the requirements for an 
example aircraft under the conditions of a rolling-take-off 
(RTO), top-of-climb (TOC), and cruise (CRZ) conditions.   
These requirements are constraints within the model and 
simultaneous evaluation of these three cases relies on 
three instances of the engine component within a single 
simulation model.  This is based on the multi-point 
methodology defined by Kyprianidis et al. (2014). The 
optimization problem is to minimize the specific fuel 
consumption under cruising conditions.   
 

 
Figure 1. The Steady-state gas-turbine design model used for 

testing. 
 

Sweeping some of the variables of interest and plotting the 
specific fuel consumption for the cruising case shows the 
local minimum (the solution that the solver will search 
for) occurs between 0.94 and 0.96 of the swept variable. 
 

 
Figure 17. Specific fuel consumption (vertical axis) versus 
swept  by-pass ratio constraint on the velocity ratio tuning 
variable (horizontal axis) 

Defining the optimization problem is the same as for the 
CSTR system but with specifics for the FMU and its 
variables.  The variables to tune are the cold-to-hot air 
velocity ratio, the overall pressure ratio of the engine, and 
the specific thrust.  The nominal values for these (used for 
the normalization) are 1, 50, and 100 respectively. 
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Figure 18. Gas turbine specific fuel consumption minimization 
problem statement 

The total problem involves 112 variables.  Most of the 
iteration variables are the constraints needed to solve the 
design problem that requires the engine to meet the 
specific performance requirements.  The solver converges 
to the solution within about 60 iterations. 
 
The last model described in this paper defines an open-
cycle parallel double-effect absorption heat pump 
(DEAHP) coupled to a multi-effect distillation (MED) 
system for brine desalination. In this system, the DEAHP 
acts as a steam recompression unit that improves the 
coupled system’s overall efficiency proportionally to the 
coefficient of performance of heating (COPh). 
 
The optimization problem is to maximize the COPh of the 
DEAHP by varying the strong and weak mass fraction 
concentrations of the absorption fluid Xstrong and 
Xweak, respectively. 

 
Figure 2. The Steady-state design model for a double effect 

absorption heat pump from (Stuber et al., 2015) 
 
Using the new FMU/Pyomo interface package to define 
an optimization problem to solve with Ipopt results in 
convergence to a solution of 0.43 and 0.25 for Xstrong 
and Xweak, respectively with a COPh of 2.66.  In this test, 
the starting values for Xstrong and Xweak were 0.588 
and 0.549, respectively. 
 
Sweeping the concentrations in simulation and observing 
the COPh can be used to verify the solution.  Notice there 

is a local maximum in Xstrong and a maximum at the 
lower boundary of Xweak.  This is consistent with the 
solution found by Ipopt. 
 

 

 
Figure 19. Example sweep of the strong and weak 
concentrations (horizontal axes) and the resulting coefficient of 
performance (vertical axes) that demonstrates the optimization 
problem’s solution. 

Table 1 lists some statistics related to the different models 
described in this paper.  The key for the rows is shown in 
Table 2. 

Table 1. Statistics per model. 
CSTR 
Python 

CSTR 
FMU 

Gas 
Turbine 

DEAHP 

4 4 2382 621 

4 1 109 30 
1 1 3 2 
13 16 60 24 

 
Table 2. Row key for Table 1 

1 Model implementation 
2 Variable count 
3 Equality constraint count 
4 Optimization (tuner) variable count 
5 Optimization iteration count 

 
 
6 Conclusions 
The Pyomo interface package has been used to solve both 
small and large optimization problems. There are two 
additional findings from this work.  The first is the 
sensitivity of success to converge to a solution, on the 
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Jacobian.  As described in the Test Models and Results 
section, small changes in the method used to estimate or 
compute the Jacobian had a significant effect on the 
ability of the solver to find a solution.  This was 
demonstrated with a small example problem but is 
especially true as the models become larger. 
 
Another significant finding was the importance of 
normalizing the variables.  Even small models can benefit 
from this.  Using the nominal attributes to normalize 
variables balances the sensitivity of individual variables 
so they do not dominate the convergence criteria.  The 
current implementation uses the nominal attributes of the 
FMU variables automatically to normalize both the 
outputs and the Jacobian (using nominal attributes of both 
inputs and outputs). 
 
Finally, models that can produce failed simulations or 
solutions can reduce the robustness of the solver.  The 
current implementation returns a Numpy NaN value to the 
optimization solver in these cases.  A possible 
improvement to this is proposed in the next section.  
 
7 Future Work 
Future developments for this work include: 

• Native support for parameter tuning (including 
calibration) with respect to experimental data 

• Support for dynamic optimization 
• Sensitivity analysis to help the user identify tuner 

variables  
• Improved support for failed solutions 
• Testing and support for additional problem types 

and solvers (in addition to Ipopt that was used for 
this current work) 

 
In addition to the above list of improvements to the Pyomo 
Interface Package, there is one item related to FMU 
creation.  The Pyomo Interface Package natively supports 
FMUs generated with Modelon’s steady-state interface 
for solving NLP problems.  A proposed extension, similar 
to the steady-state interface, would be automatic 
conversion of mathematical operators with restricted 
domains into a more optimization friendly format.  As 
described in Wächter 2009, mathematical functions with 
restricted domains can usually be converted into 
inequality constraints.  It should be possible for Modelica 
translators to make this conversion automatically.   This 
would make it easy for model developers to write the 
equations in a familiar format for normal  simulation but 
export the FMU targeted for optimization when needed, 
similar to exporting an FMU for steady state evaluation. 
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