
Modia and Julia for Grey Box Modeling

Frederic Bruder1 Lars Mikelsons1

1 Chair of Mechatronics, Augsburg University, Germany, {frederic.bruder,lars.mikelsons}@uni-a.de

Abstract
During the process of modelling an existing dynamic
physical system, it may be hard to capture some of
the phenomena exactly on the basis of only textbook-
equations. With measurement data from the real sys-
tem, approximators like artificial neural networks can help
improve the models. However, simulation and machine
learning are usually done in different software applica-
tions. A unified environment for modeling, simulation and
optimization would be highly valuable. We here present
a framework within the Julia programming language that
encompasses tools for acausal modeling, automatic differ-
entiation rsp. sensitivity analysis involving solvers for dif-
ferential equations. We use it to build and evaluate an eas-
ily interpretable model based on both physics and data.
Keywords: Grey Box Modeling, Hybrid Modeling, Scien-
tific Machine Learning, Modia, Julia

1 Introduction
1.1 Usefulness of Acausal Modeling
Equation-based acausal modeling like in Modelica has
considerable benefits for the model author when compared
to signal-based modeling.

It allows them to structure model equations and vari-
ables hierarchically, which greatly promotes later reuse of
the components. It lets the author focus on model topol-
ogy rather than signal flow and its direction within the
model. Connect equations instead of assignments permit
signal flow in both directions so that the compiler can de-
cide what the direction will be.

Well-established Modelica Compilers automatically
improve the numerical behaviour of the models, e.g. by
reducing the size of nonlinear systems with the help of
tearing or by reducing the index of Differential-Algebraic-
Equations (DAE).

In short: acausal modeling is highly useful because it
eases the job for authors of white box (i.e. mechanistic
physics-based) models.

1.2 Grey Box Modeling
In the case of GBM (‘Grey Box Modeling’ or ‘... Model’),
the author combines approximators like ANN (artificial
neural networks) with trusted white box model equations.
The goal of this technique is to transfer physical knowl-
edge into a model that can be improved with the help of
machine learning. Others referred to this field as ‘Scien-
tific Machine Learning’ (Rackauckas, Ma, et al. 2020),

‘Hybrid Physics Guided Machine Learning’ (Rai and Sahu
2020) or simply ‘Hybrid Modeling’ (Willard et al. 2020).
There are different motivations to do this:

• Known white box models may fail to describe the
dynamics of an existing system appropriately. In this
case the insertion of ANN into a model may help
to reduce model error w.r.t. ground truth data col-
lected the real physical system. Imagine a situation
in which you first model a physical system. Take, for
example, a simple model to predict the temperature
in a lake as in (Karpatne et al. 2018). Although you
stuck to well-known mechanistic equations, you see
that the prediction error is too high. Due to the na-
ture of the errors, you suspect a systematic error, not
a stochastic one. To improve your model, you have a
few options: You could try and improve your model
by altering the equations you used. You would have
to think about your model assumptions and whether
or not they hold. This may, after possibly a lot of
work, provide you with new physical insights. If you
are more interested in fast results or if your system
is just too complicated to fully grasp, you may con-
sider using a machine learning-assisted approach that
your initial model as a starting point and optimizes
the ‘flexible’ parts to improve the predictions.

• White box models may require more computa-
tional resources than their target platform offers.
Performance-critical parts may then be exchanged by
ANN in order to create more efficient surrogate mod-
els. Thus, this technique enables model authors to
trade model accuracy for better performance. An ex-
ample of this application can be found in (Ma et al.
2021).

There are some complications with well-established Mod-
elica compilers when it comes to GBM:

• Small modifications of existing Modelica models
may require substantial refactoring. For example,
you may have to declare a few new (abstract) com-
ponents if you just want to replace a single equation
in a model.

• It may be hard for a user to interpret or edit the struc-
ture of causalized models. This is problematic when
it is not yet clear where exactly the ANN shall be in-
serted into the model. ANN that are defined as math-
ematical functions typically have an ‘input layer’ that

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

87

is nonlinearly transformed to an ‘output layer’. Said
transformation may be arbitrarily complex. During
the causalization process of the model equations, sig-
nal flow may be ‘reversed’ w.r.t. the intended direc-
tion so that the ANN is bound to end up in a root
finding loop. This might lead to subpar numerical
performance. To prevent this situation, the model au-
thor may wish to decide where exactly the ANN is
included after the causalization process. It is, how-
ever, not very convenient to deal with C-Code output
from a Modelica compiler.

• Another issue is the ANN training process. ANN
are typically optimized w.r.t. their training/hyper pa-
rameters in languages that promote fast prototyping
(e.g. Python, Julia, R, ...) with the help of tools like
automatic differentiation. The latter kind of tools of-
ten requires that the function to be differentiated be
formulated in the same language as the prototyping
language.

It would be much more convenient to have modeling, sim-
ulation, automatic differentiation / sensitivity analysis and
optimization algorithms in a single unified environment
suited for rapid prototyping.

1.3 Julia
Julia (Bezanson et al. 2012) is one of such languages that
promote fast prototyping. Julia has become popular in the
scientific community because of the high level of perfor-
mance it can reach without the need to use precompiled
libraries created in a different language. The latter work-
flow is common e.g. in Python. On top of that, an ecosys-
tem of packages useful for scientific calculations has gath-
ered around it. Moreover, Julia offers metaprogramming
capabilities that make it possible to create DSL (domain-
specific languages).

1.4 Modia / TinyModia for GBM
Modia (Elmqvist and Otter 2017) is such a DSL that can
be used within Julia. Its authors describe it as a testbed for
new features for the Modelica language that ‘shall be both
simpler and more powerful than Modelica 3.3‘.

Modia offers features highly valuable to GBM since it
solves some of the issues listed in 1.2. In our present re-
search, we are, however, using TinyModia (Elmqvist and
Otter 2021) v.0.7.2 that had some features not yet present
Modia.

• Models are represented as hierarchical
NamedTuples. They can be modified with a
mechanism called ‘merging’, their Array fields can
even be manipulated directly. So, after a model has
been declared, it can be modified equation-wise.
This allows for a very convenient GBM workflow:
you can declare a base model and then derive differ-
ent versions of grey box models where different sets
of equations are modified.

Whereas in Modelica, one would typically have to
define new (replaceable) component Models with a
different set of equations and then derive simulation
Models as a combination of those new components.

• During model ‘instantiation’, a Julia method
(getDerivatives!) that calculates the state
derivatives of the model is generated with the help
of metaprogramming. Due to the open nature of
TinyModia, the AST (abstract syntax tree) that, when
evaluated, defines this new method, can be altered as
well.

Modelica Compilers, on the other hand, do not ex-
pose the AST of the simulation code to Julia. While
they output source code of the simulation model,
working with this representation would be less con-
venient: one would have to modify the output C-
Code manually, without Julia’s metaprogramming
functionality.

• With a modifiable method getDerivatives!,
the model author can take advantage of packages
other than TinyModia to simulate the model. With
this workflow, it even becomes possible to perform
AD through solvers using the scientific packages
available for Julia.

1.5 Structure of this Paper
This paper is structured as follows. In section 2, we de-
scribe a planar slip-based vehicle model which we mod-
ified to fit to our tests. Using this model as an example,
we elaborate how models can be turned into GBM by re-
placing a set of model equation terms by trainable neural
networks. In section 3, we proceed by detailling the time
horizon-based training scheme that we used to train said
neural networks. We then describe how we designed our
tests with the modified and optimized vehicle model in
section 4 and discuss the results. After that in 5, we de-
scribe the framework of tools we used to set up a GBM.
In addition, we describe possible features for TinyModi-
a/Modia that would have made our workflow a lot eas-
ier. Next, we name some of our future research perspec-
tives involving the mentioned tool set and the Grey Box
methodology. We then finish with a conclusion.

The main contribution of this paper is the detailed
framework of tools that we use for Grey Box Modelling.
We describe how to set up a model and enhance it with
artificial neural networks. We sketch a training loop that
is capable of optimizing such grey box models. We make
suggestions for new features that would have made this
process a lot more straight-forward.

2 GBM of a Single Track Vehicle
2.1 Original Model and our Modifications
We applied the ideas explained above to an NLSTM (non-
linear single track model). It makes use a well-known

Modia and Julia for Grey Box Modeling

88 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

slip-based tire model as in (Pacejka 2005). The original
model without suspension dynamics from (Velenis, Fraz-
zoli, and Tsiotras 2009), on which our model is based,
focusses on stability of cornering maneuvers, whereas we
needed a more general purpose model. So we chose an
alternative set of dynamic states uuu for our NLSTM:

uuu =
[
ẋ ẏ ψ ψ̇ x y ωF ωR

]T (1)

x and y denote the location of the center of mass of the
vehicle. ψ measures the yaw angle / heading direction of
the vehicle, ωF and ωR describe the rotational velocity of
the front and rear wheel. Furthermore, we modified the
original slip-based friction model to be less numerically
stiff. For this, each occurrence of the term on the RHS
(right-hand side) of

hard_pole(x) = |x|−1 (2)

was replaced by the RHS of

smooth_pole(x) =
{

|x|−1 if |x|> xi
− 1

2 |xi|−3x2 + 3
2 |xi|−1 else

}
(3)

with xi = 10−3. smooth_pole(x), as the name suggests,
is a symmetric continuously differentiable function that
replaces the actual ‘pole region’ of hard_pole(x) for
x ∈ [−xi,xi] by an inverted parabola tangent to the original
function. This modification effectively prevents divisions
by zero.

To have velocity-dependent friction in the model, a lin-
ear air drag force fff drag was applied to the center or mass
of the vehicle:

fff drag(xxx) = w ·
[
ẋ ẏ

]T (4)

Air drag parameter w was set to 30 Ns/m.
Apart from these three modifications, our RM (refer-

ence model) and the original model share the same equa-
tions and parameters. Note however, that xi was set arbi-
trarily. In a real application, it may be helpful to set this
parameter, introduced to enhance numerical performance,
based on collected data.

The model inputs are the same as those of the original
model:

iii(t) =
[
δ (t) TF(t) TR(t)

]T (5)

where δ is the steering angle, TF and TR are the engine
torques acting on the front rsp. the rear wheel.

2.2 Replaced Equations
In the original model, normal forces acting between the
ground and the wheels are denoted by fRz (rear wheel) and
fFz (front wheel). Based on the original model equations,
the following equations hold:

fRz =
mgA

A−hµRx + lR
(6)

fFz = mg− fRz (7)
A = h(µFxcos(δ)−µFysin(δ))+ lF (8)

m,g,h, lR and lF are fixed model parameters. A is a conve-
nience variable introduced for readability. The remaining
symbols in Table 1 are model variables which can change
during simulation.

Table 1. remaining model variables in Equations 8 to 7

Symbol(s) Meaning

δ steering angle
µFx,µFy friction quantities (front wheel)
µRx friction quantity (rear wheel)

Equations 8 to 7 can be restructured as:[
fRz
fFz

]
= fff Xz(h,µFx,δ ,µFy, lF ,m,g,µRx, lR) = fff Xz(vvv)

(9)

vvv is a convenience vector holding all the function argu-
ments. Like this, fff Xz calculates both fRz and fFz from
arguments vvv.

In order to turn the original model into a flexible GBM,
function fff Xz is replaced by an ANN named f̂ff Xz(θθθ ,vvv).
It depends on θθθ , a set of training parameters and vvv. It
was built from fully connected layers as depicted in Ta-
ble 2. This ANN was defined with the help of Flux.jl

Table 2. layers of ANN f̂ff Xz

layer # inputs # outputs activation

input 9 10 Relu
hidden 10 10 Relu
output 10 2 Identity

(Michael Innes et al. 2018) and is initialized using random
numbers drawn from a glorot_uniform distribution.

Note that the ANN takes as many inputs as the pair of
equations it replaces. This would not be neccessary, one
could exclude the fixed parameters and make the input
space 4-dimensional instead of 9-dimensional. The input
space is kept as large as that of fff Xz so that the knowledge
about which model variables change and which do not is
not required.

3 Model Training
3.1 Loss Function
The method into which the ANN was inserted specifies
the RHS of an ODE (ordinary differential equation). So,
getDerivatives! calculates ˙̂uuu(ûuu(t),θθθ , t).

In order to train the parameters of the ANN, a loss func-
tion l(θθθ) needs to be formulated. For this test, we chose
an MSE-based (mean squared error) function:

lMSE(θθθ ,C,S) =
1

|C| · |S| ∑
c∈C

∑
s∈S

(ûs(θθθ , t = c)−us(t = c))2

(10)

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

89

lMSE compares a single solution ûuu(θθθ , t) of the ODE to a
ground-truth solution uuu(t).

Normally, when ground-truth data is collected using
sensors from real physical systems, uuu(t) is only known
at specific points in time. We call these checkpoints and C
denotes the set of checkpoints relevant to lMSE .

S, on the other hand, is a set of states relevant to lMSE .
Typically, ground truth measurements cannot capture all
of the dynamic states that would be neccessary to fully
specify the state of an arbitrary model of the real system.
Our system state in Equation 1 has 8 entries. If you can
only measure, say, the planar position of the vehicle, S
would hold only 2 elements. us(t) rsp. ûs(t) denote the
trajectories of single elements of the system states in time.

3.2 Training Procedure
When we first tried to minimize lMSE with the full set of
available checkpoints, we would end up with with very
bad local minima. The solution trajectory to the model
ODE would look like an underfitting approximator: in-
stead of following the checkpoint trajectory closely, it
would resemble a smoothed cutting-corners version of the
checkpoint trajectory. This is due to the formulation of
our loss function: it compares the model ODE trajectory
against all of the measurements at the checkpoint times
at the same time and may reach local minima with the
last few checkpoints, whereas earlier checkpoints are far
missed.

However, this is not what we wanted. If early model
predictions are very far off, we do not care about whether
the model later succeeds in hitting checkpoints again. We
would rather expect later checkpoints to be missed even
further. Unless we are dealing with systems that evolve to
a stable equilibrium.

To overcome this issue, a growing horizon training
scheme has been implemented. It adds an outer loop to
our training loop: we start with horizon C0 = [t0, t1, ..., tinit]
and apply our inner training loop to optimize θθθ . The inner
loop then keeps iterating until we hit a breaking condition
involving distance metric dmax:

dmax(θθθ ,Cn,S) = max
c∈Cn,s∈S

|ûs(θθθ , t = c)−us(t = c)| (11)

If dmax falls below threshold dt , we save our last train-
ing parameter set θθθ

0∗, grow the training horizon to C1 =
[t0, t1, ..., tinit , tinit+1] and then further optimize θθθ

0∗ over
that new horizon. We repeat this process until our in-
ner loop has optimized θθθ over the final horizon C f inal =
C|C|−init−1. This training scheme heavily improved the
quality of our model predictions on the training set.

One may wonder why we constructed dmax, an arbitrary
distance metric, to be compared against a threshold in-
stead of governing lMSE instead. Both metrics evaluate
to 0 for a perfect θθθ . However, dmax < dt is a very intu-
itive condition: none of the trajectories of the states in S
may deviate further than dt off the recorded time series
data at the checkpoint times. If lMSE was compared to a

fixed threshold instead, the condition would become more
and more permissive towards single outliers the larger the
horizon grows.

4 Evaluation
4.1 Generation of Training Data
For lack of a real vehicle on which to collect data, we
made use of the original vehicle model to generate training
data for our GBM. Our data generation is limited to open-
loop DLC (double lane changes) that the vehicle performs
after its initial state has been set to a straight slip-free state:

uuu0 = 30 · [1,0,0,0,0,0,r−1
F ,r−1

R]T (12)

Figure 1 and Table 3 illustrate how model input δ (t) is
varied over time. During all DLC maneuvers, model

Figure 1. δ (t) during a DLC maneuver

Table 3. DLC parameters

Parameter Meaning

δmax maximum absolute steering angle
T turn time
S lane switch time
O time on the oncoming lane

inputs TR and TF are kept constant over time. TR is fixed
at 0, whereas the value of TF is a maneuver parameter.

Thus, a single DLC maneuver of ours is parametrized
using a set of five parameters:

pppDLC = [δmax,T,S,O,TF] (13)

4.2 Results
In the following, the training dataset was limited to
only one trajectory that was produced with the DLC
parametrization shown in Equation 14.

ppptrain
DLC = ppp1

DLC = [
π

8
rad,1s,1s,2s,1000Nm] (14)

The final training horizon was set to an equidistant grid:

Modia and Julia for Grey Box Modeling

90 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

Figure 2. DLC on the training maneuver parametrized by ppptrain
DLC

C f inal =
10
32

s · [1,2, ...,32] (15)

Cinit , on the other hand, held only the first three entries of
C f inal . S, the set of compared system states, was set to

S := {x,y} (16)

so that the optimization algorithm could only optimize the
ANN parameters on the basis of vehicle location data. It
was not provided information about the vehicle yaw angle
ψ . The fact that the normal load forces are very influential
effects within the model and that two (scalar) functions are
trained at once on only one trajectory makes this training
task particularly hard.

Figure 2 displays how the GBM (after training) and the
RM behave during the single training maneuver. The total
simulation time was set to 15s. The top subplot of Figure 2
shows how both RM and GBM moved on the x-y plane.
Note that the axes are not scaled equally. Both models
start in the origin of the coordinate system (as specified in
Equation 12). The crosses mark where both models were
located at t = 10s, i.e. the last time at which states in S
were compared to train the ANN. It can be seen how the
GBM follows the track of the RM closely at first. Larger

differences occur mostly after the 10s-mark. This is due
to the imperfect prediction of ψ , which can be seen in the
bottom plot. After the completion of the DLC, a notice-
able difference remains between the predicted ψ of the
GBM and that of the RM.

Figure 3. DLC on the training maneuver parametrized by ppp2
DLC

A first validation maneuver is specified in Equation 17.
This scenario differs from the training scenario by the time
spent on the oncoming lane. It is now three times as long.

ppp2
DLC = [

π

8
rad,1s,1s,6s,1000Nm] (17)

The results can be seen in Figure 3. This time, the largest
deviations can be seen after the vehicle returns to the ini-
tial lane. Once again, the final ψ of the RM and the GBM
are different so that over time, the tracks will keep drifting
further apart.

Another interesting maneuver is defined in Equation 18.

ppp3
DLC = [

π

8
rad,5s,1s,2s,1000Nm] (18)

Compared to ppp1
DLC, it only differs by the turning time,

which here is 5 times as long. This parametrization no

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

91

longer looks like a DLC maneuver, but it still demon-
strates how the tracks shown in Figure 4 drift apart over
time.

Figure 4. DLC on the training maneuver parametrized by ppp3
DLC

The results are heavily different for the last maneuver
considered here in Equation 19.

ppp4
DLC = [

π

16
rad,1s,1s,2s,1000Nm] (19)

The trajectories can be seen in Figure 5. Deviations
quickly build up even before changing lanes for the sec-
ond time.

4.3 Discussion
Comparing (projections of) trajectories in state space in
an objective manner is non-trivial. For this reason, we
will resort to arguing qualitatively. Maneuver ppp1

DLC, ppp2
DLC

and ppp3
DLC have in common that the tracks of both the RM

and the GBM share strong similarities. Deviations be-
come clearly visible as simulation time runs, but the be-
haviour seems to be comparable. Furthermore, the corre-
sponding trajectories of ψ are encouraging since they look
even more similar, although the GBM was never explicitly
trained to fit its predictions along that axis of state space.

Figure 5. DLC on the training maneuver parametrized by ppp4
DLC

Not so in the case of ppp4
DLC, however. The GBM misses

the track of the RM by far. This mismatch is further dis-
played by the corresponding trajectories of ψ .

The reason for the different results is probably the na-
ture of the differences between the maneuver parameters.
The first three maneuver parameter sets only differ in tim-
ing parameters (T,S,O), not signal level parameters (δ).
The ANN is evaluated many times during a single maneu-
ver simulation. Friction quantities µFx, µFy and µRx are
not directly influenced by the parameter sets and can vary
during the simulations. This is not the case for δ . It is
directly passed through to the input layer of the ANN. For
this reason, during the last maneuver, the ANN was pre-
sented with inputs that it just could not have seen through-
out the single training maneuver.

Although differences between GBM predictions and the
data are visible, it was shown that GBM has the potential
to enhance/complete white box models with very sparse
data. Facilities to enhance models in this manner should
become features of acausal modeling tools like Modi-
a/TinyModia.

Modia and Julia for Grey Box Modeling

92 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

4.4 Remarks
lMSE evaluates how well the GBM follows the track of the
RM. Even if it reports a very low loss, can we ever expect
our ANN to calculate ‘the correct’ normal forces? Or can
a potentially large space of functions lead to low losses?

In order to answer this question for our trained model,
we compared fff Xz and f̂ff Xz over the GBM trajectory simu-
lated from maneuver ppp2

DLC. The results are shown in Fig-
ure 6. Note that this step cannot usually be done in prac-
tice if the underlying system equations are unknown.

As we can see, fff Xz and f̂ff Xz do not behave as similarly
as we would like them to. Due to Equation 7, the compo-
nents of fff Xz always add up to a constant value: the reac-
tion force that neutralises the gravitational force acting on
the vehicle CoM. When we replaced the set of equations
by the ANN, we explicitly neglected this invariance. And
as we can see, our optimization technique did not recover
said invariance from the single training trajectory.

5 Framework of Tools
5.1 GBM
The model that was described in 2.1 has been declared
with the help of TinyModia. The model inputs are passed
to the vehicle model using a separate ‘Driver’ model that
sets the inputs.

The actual replacement of Equations 8 to 7 was done
by modifying the AST of the model directly before the
model instantiation process mentioned in subsection 1.4:
fff Xz was replaced by f̂ff Xz. During said process, the
getDerivatives! method was written to a file and
later modified by hand as detailed in the next subsection.
With the second feature in 5.3, this process would have
been easy to automate as well.

5.2 Training Procedure
As a part of a gradient descent based optimization of
lMSE(θθθ), gradients/sensitivities of ûuu(t) w.r.t. θθθ are re-
quired. For this task, we relied on Zygote.jl (Mike
Innes et al. 2019) and DifferentialEquations.jl
(Rackauckas and Nie 2017).
DifferentialEquations’s solve was used

with solver Tsit5() and default options to simulate the
GBM in order to yield ûuu(t). To differentiate ûuu(t) at spe-
cific points w.r.t. θθθ , Zygote needs information on how to
calculate sensitivities of ODE solutions. This gap is filled
using package DiffEqSensitivity.jl. In the stan-
dard setting, which we used, an approach based on adjoint
sensitivities is used.
DifferentialEquations’s solve requires the

user to specify an array of parameters with respect to
which the ODE solution can then be differentiated.

At the time of writing this, this detail may be inconve-
nient to users. It is the reason why the results returned
from TinyModia’s simulate! calls can not be differen-
tiated w.r.t. model parameters.

We worked around this issue by further modifying
the getDerivatives! function mentioned in subsec-
tion 5.1. We made θθθ a function parameter as well and then
called DifferentialEquations’s solve ourselves
to enable differentiation.

5.3 Requested Features in Modia/TinyModia
To streamline the GBM workflow, we would like to see
the following features in Modia/TinyModia:

• Compatibility of simulate! with Zygote.jl
The need for a lot of work currently necces-
sary in order to generate GBM would be re-
moved if Modia/TinyModia simulation results could
be differentiated with respect to model param-
eters. Since simulate! internally uses
DifferentialEquations’s solve that gener-
ally offers this functionality, we believe that the main
work to be done here resides in the creation of a seri-
alized version of all model parameters (i.e. in a single
Array passed to solve).

• The ability to obtain the AST of
getDerivatives! conveniently after in-
stantiation
It should not be neccessary to print the code of
getDerivatives! to file from a debug log.
Instead, the AST should be returned as an expression
if the user requests this. This feature would be very
handy for the more experimental case in which the
user does not know beforehand where to best place
ANN.

• The ability to mark equations for later replace-
ment by ANN-enhanced equations
We modified assignments manually with ANN in the
generated simulation code.
Normally, users of software intended for acausal
modeling and subsequent simulation do not interact
with intermediate representations of the model equa-
tions or the generated simulation code. They may
have a slight idea of which of the model components
in their model is "faulty" and leads to errors observed
when simulation results are compared to real-world
measurements. Take air drag as an example. Drag
is a complex phenomenon and it is unlikely that a
model as simple as ours in Equation 4 is sufficient to
make good predictions in a real-world scenario with
very low and high vehicle velocities. We are certain
about which are the "faulty" model equations but we
would not know how to improve them without exten-
sive knowledge about aerodynamics.

However in order to insert ANN into those "faulty"
equations like we did in this paper, a user would have
to modify the simulation code by hand like we did.
They may have trouble finding the exact lines of code
produced from their "faulty" component equations.

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

93

Figure 6. Comparison of the normal forces. The RM internally uses fff Xz to calculate normal forces fRz and fFz, the GBM uses f̂ff Xz.

Even then they are restricted to the causalization cre-
ated by the model transformation algorithm. After
all, the user might want to include new variables in
those equations.

We would like to have a feature that lets the user
mark equations they are uncertain about with a tag
and possibly additional desired involved model vari-
ables during the modeling process. The causalization
algorithm would then work as usual and determine a
sequence of calculation and possibly algebraic loops
whilst keeping track of the user-provided equation
tags. The user would then be informed about where
and how their equations are used in the final calcu-
lation graph. Whether they are part of an algebraic
loop, what their (or the corresponding loop’s) inputs
are and which model variable they were matched to.

With this information, the user can create an ANN
with the right input/output size. The user would be
very free to design what happens in the ANN: It
could just be a densely connected layers with appro-
priate activation functions. Or it could take the orig-
inal "faulty" equation as a basis and just add such a
network so that the latter only has to learn a differ-

ence.

After the user has provided an ANN for each of
the marked equations, a code generating algorithm
would produce the actual simulation code for the
model. This then leaves the user with an ANN-
infused model that can be trained on an arbitrary data
set.

6 Future Research
We are planning to experiment with different training
schemes that operate on a set of trajectories instead of just
a single training maneuvers.

Moreover, it may be beneficial to alter the way we build
time horizons over which we compare trajectories. Instead
of growing a single horizon to full length, one could slice
a single trajectory into several segments and calculate gra-
dients in parallel.

Another issue that needs to be addressed is the normal-
isation/transformation of the inputs that reach the ANN
parts of the model. Some neural network architectures/ac-
tivation functions were designed assuming that inputs to
the input layer follow specific distributions. We did not

Modia and Julia for Grey Box Modeling

94 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118187

account for this yet because it is an inherent property of
our model structure. Before we simulate our model, we
do not yet know what the inputs to the ANN will be. After
all, they depend on the solution to the ODE. It should be
possible to construct an algorithm that adapts a prescaler
to keep inputs over training trajectories inside specific
bounds. Future research will have to show whether this
is feasible or whether this situation can be solved differ-
ently e.g. by making use of different activation functions.

For our loss function, we relied on a very simple MSE-
based formulation. Other (differentiable) metrics such as
soft dynamic time warping (Cuturi and Blondel 2017) ex-
ist in order to compare time series data. We will evalu-
ate whether these alternative metrics are beneficial to our
training results.

Furthermore, we will examine whether invertible neural
networks as in (Ardizzone et al. 2019) can help overcome
the issue of ANN ending up in inefficient root-finding
loops.

7 Conclusion
We demonstrated that GBM can be trained with very
sparse data to yield remarkable results. Furthermore, we
detailed how to achieve this with free software and made
suggestions for features that would make this process a lot
simpler for the user.

References
Ardizzone, Lynton et al. (2019). Analyzing Inverse Prob-

lems with Invertible Neural Networks. arXiv: 1808 . 04730
[cs.LG].

Bezanson, Jeff et al. (2012). “Julia: A fast dynamic language for
technical computing”. In: arXiv preprint arXiv:1209.5145.

Cuturi, Marco and Mathieu Blondel (2017). “Soft-dtw: a differ-
entiable loss function for time-series”. In: International Con-
ference on Machine Learning. PMLR, pp. 894–903.

Elmqvist, Hilding and Martin Otter (2017). “Innovations for fu-
ture Modelica”. In: Proceedings of 12th International Model-
ica Conference. Linköping University Electronic Press.

Elmqvist, Hilding and Martin Otter (2021). TinyModia.
https://github.com/ModiaSim/TinyModia.jl. Accessed: 2021-
05-07.

Innes, Michael et al. (2018). “Fashionable Modelling with
Flux”. In: CoRR abs/1811.01457. arXiv: 1811.01457. URL:
https://arxiv.org/abs/1811.01457.

Innes, Mike et al. (2019). “A differentiable programming sys-
tem to bridge machine learning and scientific computing”. In:
arXiv preprint arXiv:1907.07587.

Karpatne, Anuj et al. (2018). Physics-guided Neural Networks
(PGNN): An Application in Lake Temperature Modeling.
arXiv: 1710.11431 [cs.LG].

Ma, Yingbo et al. (2021). ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Model-
ing. arXiv: 2103.05244 [cs.MS].

Pacejka, Hans (2005). Tire and vehicle dynamics. Elsevier.
Rackauckas, Christopher, Yingbo Ma, et al. (2020). Univer-

sal Differential Equations for Scientific Machine Learning.
arXiv: 2001.04385 [cs.LG].

Rackauckas, Christopher and Qing Nie (2017).
“Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia”. In:
Journal of Open Research Software 5.1.

Rai, R. and C. K. Sahu (2020). “Driven by Data or De-
rived Through Physics? A Review of Hybrid Physics Guided
Machine Learning Techniques With Cyber-Physical System
(CPS) Focus”. In: IEEE Access 8, pp. 71050–71073.

Velenis, Efstathios, Emilio Frazzoli, and Panagiotis Tsiotras
(2009). “On steady-state cornering equilibria for wheeled ve-
hicles with drift”. In: Proceedings of the 48h IEEE Confer-
ence on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference. IEEE, pp. 3545–3550.

Willard, Jared et al. (2020). Integrating Physics-Based Model-
ing with Machine Learning: A Survey. arXiv: 2003 . 04919
[physics.comp-ph].

Session 1B: Julia

DOI
10.3384/ecp2118187

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

95

