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Abstract
Simulation becomes more and more important in the de-
velopment of complex systems. Modeled systems often
are comprised of mechanical, electrical as well as soft-
ware systems. It is often not possible to evaluate the per-
formance of a system without considering some higher
level logic anymore. Scripting languages, such as Lua,
are usually well suited to implement these logic elements.
This paper shows the integration of the Lua interpreter into
Modelica, and gives examples how the library can be used
to help with the simulation of industrial robots or in the
development of a planetary exploration rover in the MMX
Mission.
Keywords: Modelica, Lua, script language, robotics, finite
state machine

1 Introduction
When simulating complex systems, it is often necessary
to model not only the mechanics, electronics and control
system correctly, but also the higher-level logic that gov-
erns the general behavior. However, this high-level logic
is generally difficult to implement with native Modelica
methods. Although it is possible to build a control logic
based on multiple inputs and outputs, e.g. by using state
machines, it is error-prone and not very flexible. The re-
quirement to balance all equations and unknowns can be
difficult and tedious if the different control states or modes
have distinct structures. If a model is to be used to test
and develop this high-level logic, the limitations of native
Modelica methods are even more pronounced. The devel-
oper with in-depth Modelica knowledge may not be re-
sponsible for developing and testing the high-level logic.
One common method to solve this problem is the FMI
standard (Blockwitz et al. 2012). With this approach the
system model is built in Modelica and then imported into
a different tool that is better suited to handle high-level
logic. The Modelica Lua library presented in this paper
was developed to combine Modelica’s strengths in phys-
ical modeling with the flexibility of a script-based inter-
preter to solve the problem stated before without the need
of an additional tool.

The concept of this library is an extension and general-
ization of the Lua interpreter presented and developed for
the DLR Robots library (Bellmann, Seefried, and Thiele
2020). Lua was chosen due to its lightweight, well main-
tained interpreter, its simple and easy to learn syntax and

already established application in other fields, such as
game development. With Lua being a commonly used
language, many tools and third party libraries are already
available to use.

1.1 Design Goal
The goal for this library was to provide an application
independent Lua interpreter with a lightweight interface.
The integration into existing Modelica models should be
as easy as possible. All basic Modelica data types, Real,
Integer, Boolean and String, should be supported as in-
put and output of Lua. In order to meet the requirements
of most applications, different modes of operation shall be
supported, both a loop-like repetition of the Lua script and
a single and serial execution of the script. To allow mul-
tiple instances or different systems controlled by Lua in
a single Modelica model, it is desired to allow multiple,
independent instances of the Lua interpreter in the same
Modelica model. It should also be possible to write Lua in
Modelica directly as a string or to load a script from disk.
It should be possible to use the full Lua functions and also
to enable third-party Lua libraries. Finally, the Lua library
should be platform-independent.

2 Structure of the library
From the previously stated goals a simple structure of the
library has been developed. The following section will
explain the general setup, both interfaces to the Modelica
and Lua side of the library as well as some further consid-
erations.

2.1 Implementation
Similar to the implementation of the Lua interpreter in the
DLR Robots library, each Lua interpreter instance runs
in a separate thread independent of the main Modelica
thread. The data exchange between the interpreter and
Modelica takes place via a data core which can be ac-
cessed by Modelica as well as Lua. Extending from the
implementation in the DLR Robots library, where no fur-
ther synchronization between Lua and Modelica was pos-
sible, the new Lua library offers various options. Simi-
lar to the original implementation, both programs can run
completely independently of each other, with the timing
on both sides being handled manually by custom signals
transmitted through the data core. To enable the timed
execution of certain instructions, waiting functions based
either on simulation-time or CPU-time are now provided.
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Alternatively, the Lua code can be synchronized to spe-
cific time events. This can be further configured so that
Lua waits for Modelica, Modelica for Lua, or both. If syn-
chronization is activated, the data is only read and written
to the data core at this time to ensure data coherence.

2.2 Modelica Interface
The Modelica library, shown in Figure 1, was kept as sim-
ple as possible. The communication, script selection and
synchronization is handled by the main Lua block, inputs
and outputs are handled by their type specific blocks. To
reduce the total number of required blocks all interfaces
except strings are treated as vectors.

Figure 1. Structure of the Modelica Lua library as shown in
Dymola.

To define the hierarchy and enable multiple interpreter
instances an inner outer construct was chosen. Each in-
stance of a Lua block holds one independent interpreter, thus
the set and get blocks have their interpreter assigned based on
the model structure in Modelica. The main Lua block contains
all parameters defining the created instance. These parameters
can be divided into three categories, script, timing and synchro-
nization. The script category, defines what script to load or
if selected, the string containing the entire script, as well as a
unique name identifying the interpreter instance. Additionally,
further search directories for locating scripts or libraries can be
defined. The timing category defines the sampling time for com-
munication, as well as the start time for the script. The different
synchronization modes are configured here as well, if synchro-
nization is enabled, the communication time step is used as the
synchronization time step. In contrast, each get or set block is
only parameterized by its name and dimension. If the dimension
of a value in the data core does not match the requested size, the
returned data will be truncated or padded with zeros.

One critical feature for a flexible usage of this library is a
robust initialization setup. To ensure that the representation in
the data core is always consistent with the model state in Mod-
elica, the initialization of both get and set blocks is handled in

Modelica. For the set functions the initial value of the input is
simply communicated in an initial equation to the data core. For
the get blocks either an explicit start value can be defined or the
start value can be implicitly defined by the Modelica models and
equations connected to its output.

2.3 Lua Interpreter
The Lua interpreter itself is based on the official sources pro-
vided by the Lua community1. By encapsulating both the Lua
stack and an additional data broker into an external object, each
instance of the Lua block has separate interpreters. Due to the
separation of the Modelica and Lua thread an intermediate data
core is required. On both sides bindings to the data core have
been implemented to enable thread safe access. The correspond-
ing Modelica blocks were shown above. Lua bindings are pro-
vided in an additional Lua library modelica.lua, see Table
1, its functions correspond to the Modelica get and set blocks
as well as additional Modelica interfaces. Get methods in Lua
have an optional dim parameter. If dim is defined and larger
than zero, the returned data will have this dimension and will be
truncated or padded with zeros to match the desired size whereas
if it is not defined or zero, the returned value has the dimension
currently present in the data core.

2.4 Synchronization
The functions sync, wait and wait_until provide means
to synchronize the execution of the Lua code to Modelica. Two
approaches are available. First, a program is executed sequen-
tially and uses the wait and wait_until to perform actions
at predefined times. Both functions block until the required time
has passed:

local t = 0
t = Modelica.time() -- t = 0.0
Modelica.wait_until(10)
t = Modelica.time() -- t = 10.0
Modelica.wait(2)
t = Modelica.time() -- t = 12.0

The wait function can either use simulation or CPU time, with
simulation time as a default. Whereas the wait_until is al-
ways linked to simulation time. Alternatively, the code in Lua
can be structured in loop, where every cycle is synchronized to
a sampled clock in Modelica by using sync:

local t = 0
while(Modelica.sync())
do
-- this loop is executed with
-- the sample time defined in Modelica
t = Modelica.time()
-- t = current simulation time

end

The sync function blocks the Lua thread until the next pulse of
the clock in Modelica, its rate is defined in the parameters of the
Lua block. If the execution of the Lua code takes longer than
the defined sample rate, it is possible to block the execution in
the Modelica thread until the sync function is reached again.

2.5 Lua Libraries
One of the key features of Lua is the ability to use additional
libraries. This enables not only the usage of the extensive Lua

1https://www.lua.org/
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Table 1. Modelica interface functions provide in Lua.

Function Description

sync() synchronizes Lua to Modelica
dt() returns the current Lua time step, only works if sync is used
time() returns the current simulation time in seconds
setReal(name,u) writes a real value or vector u to the data core
setInteger(name,u) writes an integer value or vector u to the data core
setBoolean(name,u) writes a boolean value or vector u to the data core
setString(name,u) writes a single string u to the data core
getReal(name,dim) reads a real value or vector from the data core, dim is optional
getInteger(name,dim) returns an integer value or vector from the data core, dim is optional
getBoolean(name,dim) returns a boolean value or vector from the data core, dim is optional
getString(name) returns a single string from the data core
wait(duration, cpu_time) blocks for a specific duration, either in simulation or cpu time, if

cpu_time is not set it defaults to false
wait_until(time) blocks until the simulation time is reached
print(msg) prints a message with the ModelicaFormatMessage function, usually

to the log file resulting from model execution
terminate(msg) terminates the simulation, equivalent to terminate in Modelica

standard library which already supports basic file system sup-
port, basic math functions, and string manipulations but also
useful features like 3D vector math (Bjorn 2021) or finite state
machines (Conroy 2021). These libraries can be easily added to
the Lua script via the Lua require functionality, which is sim-
ilar to the C/C++ include. This require functionality is also
used to include the Modelica add-on to each loaded Lua script.

2.6 Logging
During the execution of a Lua script, the user can print out mes-
sages over the logging interface. Several output channels can be
used:

• Log messages to a file:

Logger.createFileOutput(title,
filename,append)

• The system console is used for logging:

Logger.createConsoleOutput(title)

• The Modelica message command is used to log to the
Modelica tool:

Logger.createModelicaLogOutput(title)

• A logging window is created to log messages in. (MS Win-
dows only):

Logger.createLogWindow(title,x,y,w,h)

After the initialization, the Logger.log command can be used
to log information in one of the output channels. The channel to
be used is defined by the parameter string title:

Logger.createLogWindow('Lua script log'
,100,100,300,150);

Logger.log('Lua script log', 'Some text
for the console')

It is also possible to add a timestamp at the beginning of the
text or, in case of the log window define different colors via the
severity flag (See Figure 2) or filter the shown messages (errors
only, errors and warnings, all) by setting the verbosity of the log
channel.

Figure 2. Logging window with log messages of varying sever-
ity and timestamps.

3 Examples

3.1 Library Examples

To provide an overview and show the functionalities some of
the library’s simple examples models will be shown here. The
examples in this section would be rather easy to replicate in pure
Modelica but are designed to highlight some of the core features.

The first example, shown in Figure 3, uses a synchronized
Lua script to count the number of times an input value u

exceeds a threshold of 0.5 and output it as y. Once the
counter exceeds five, it is reset to zero. The initial value
of the counter is set in Modelica. The used Lua code:
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Figure 3. Diagram layer of a simple Lua example. Parameters of the Lua, input and output blocks are shown in more details.

local hysteresis = true
local threshold = 0.5
while(Modelica.sync())
do
local u = Modelica.getReal('u')
local y = Modelica.getInteger('y')
if u > threshold and hysteresis then
y = y + 1
hysteresis = false

elseif u < threshold then
hysteresis = true

end
if y > 5 then
y = 0
end
Modelica.setInteger('y',y)

end

reads out the initial values of the counter an then goes into
a while loop that is synchronized to Modelica with the sync
function. A simple if elseif block increments the counter
ywhen the input u exceeds the threshold. The resulting behavior
is shown in Figure 4.

A second example uses the publicly available finite state ma-
chine implementation by (Conroy 2021). In this example a state
machine switches between its states Green, Yellow, Red and
Black based on thresholds of a single input signal. When the
state Red is entered the counter nAlerts is incremented by
one, once this counter exceeds 20 the final state Black is ac-
tivated. The behavior of the output variable result can be
defined for each state individually. In case of the state Red,
result variable will hold the time since the state became ac-
tive. A variable state is used to communicate the active state
encoded into an integer to Modelica. The Modelica model,
shown in Figure 5 is rather simple and just provides the neces-
sary inputs and outputs. The Lua code first defines the structure
of the state machine based on its state transitions by defining the
event name as well as the start and end of the transition. Op-

0 2 4 6 8 10

Time [s]

0

2

4
u

y

Figure 4. Input u and output y of the simple Lua example.

tionally onEnter, onExit and run functions can be defined
for each sate. This structure and the function definition for the
Red state, as well as the Lua code triggering the events is shown
here:

-- import state machine library
local machine = require('statemachine')
local nAlerts = 0
local tRed = 0 -- time when red becomes

active
-- state machine definition
local fsm = machine.create({
initial = 'Green',
events = { -- event definitions
{ name = 'warn',

from = 'Green',
to = 'Yellow' },

{ name = 'alarm',
from = 'Yellow',
to = 'Red' },

{ name = 'calm',
from = 'Red',
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Figure 5. Input value and outputs result, nAlerts and
state of the simple state machine Lua example

to = 'Yellow' },
{ name = 'clear',
from = {'Yellow','Red' },
to = 'Green' },

{ name = 'panic',
from = 'Red',
to = 'Black'},

},

callbacks = { -- callback definitions

-- define function when Red becomes
active

onenterRed= function()
Modelica.print('Entering Red')
nAlerts = nAlerts + 1
Modelica.setInteger('nAlerts',nAlerts)
Modelica.setInteger('state',3)
tRed = Modelica.time()

end,

-- define function when Red becomes
inactive

onleaveRed = function()
Modelica.print('Leaving Red')

end,

-- define function while Red is active
runRed = function()
result = Modelica.time() - tRed

end,

-- callback definitions for other states
skipped

}})
-- state machine fully defined
-- main loop, executed in sync with

Modelica
while(Modelica.sync())
do
local value = Modelica.getReal('value')
-- trigger events
if nAlerts > 20 then
fsm:panic()

elseif value > 0.9 then
fsm:alarm()

elseif value > 0.5 then
fsm:warn()

elseif value < 0.0 then

fsm:clear()
elseif value < 0.5 then
fsm:calm()

end
fsm:run() -- executes run of active

state
Modelica.setReal('result',result)

end

In this case the state transitions are triggered by different
thresholds of the input value. The fsm:run() call exe-
cutes the run function associated with the active state. Since
the Modelica.print() function is called in every states’
onenter and onleave functions, the state-machine behavior
can be observed in the log generated by Modelica:

Lua[Example] @0.085: Leaving Green
Lua[Example] @0.09: Entering Yellow
Lua[Example] @0.18: Leaving Yellow
Lua[Example] @0.185: Entering Red
Lua[Example] @0.42: Leaving Red
Lua[Example] @0.425: Entering Yellow
...

Lua[Example] @20.18: Leaving Yellow
Lua[Example] @20.185: Entering Red
Lua[Example] @20.185: Leaving Red
Lua[Example] @20.19: Entering Black

Alternatively the previously described logger could be used in a
similar manner.

3.2 DLR Robots Library
The DLR Robots Modelica library was the first one to use Lua to
control the movements of a simulated robot (Bellmann, Seefried,
and Thiele 2020). However, in the version presented then, the
library was an integral part of the robot controller C code and
could not be used for other purposes. With the separation of
the Lua interpreter code in a stand-alone Modelica library, the
Robots library had to be adapted to utilize this new generalized
approach. The basic principle for controlling the robot stays the
same:

A movement command, e.g. a point-to-point (PTP) request,
sets a status flag (Robot Command State) and the desired tar-
get position in the virtual robot controller, the Modelica model
simulates the movement, while the Lua script waits until the ex-
ecution of the command is finished (Figure 6).

The major difference now is that the data is no longer stored
in a special robot controller code but in the data storage of the
ModelicaLua interpreter external object. Furthermore, the com-
mands for the robot are no longer hard-coded functions defined
in the compiled C interpreter but now defined in a small Lua
script using the commands from Table 1. For example, the com-
mand to move a robot on a Cartesian path from its current posi-
tion to the position (x,y,z,A,B,C) is defined like this:

Robots.ptpCartesianSpace =
function(x,y,z,A,B,C)
Modelica.setReal('brl_pos_ref',

{x,y,z,A,B,C})
Modelica.setInteger(

'brl_robotCommandState',
Robots.PTPCARTESIAN)

Robots.waitForRobot()
end
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Figure 6. Principle of how the execution of movement com-
mands is performed, from (Bellmann, Seefried, and Thiele
2020).

This allows the user to easily integrate new commands in the
robot controller script language, or modify the existing one. Fig-
ure 7, from (Reiser 2021), shows a simulation visualization of
two Mitsubishi RV7-FL robots, performing an assembly task.
In this use-case, two Lua interpreters run in parallel, each pro-
viding a single robot with the movement commands to perform
its task. Additionally, Lua script commands are used to operate
the robot tools, e.g. controlling the gripper.

3.3 MMX Rover Development
A second example for the usage of the Lua library is in the devel-
opment of the MMX rover (Ulamec et al. 2019; Bertrand et al.
2019; Buse et al. 2021). This rover, jointly developed by CNES
and DLR, will fly with JAXA’s MMX mission to the Martian
moon Phobos. There, it will be dropped onto the surface and
will come to rest in a random orientation. Once it has come to
rest, it has to unfold its legs in the correct order, to reorient itself
on its belly and stand up. This sequence, called up-righting by
the development team, must work reliably in a variety of situa-
tions. A simple example of the rover up-righting itself from its
back to the belly is shown in Figure 8.

The algorithm for controlling the up-righting sequence must
be developed and tested. Implementing this complex, nested
state machine with the Modelica state machine would be com-
plicated and would also require recompiling the model after each
change. With the Modelica Lua library, it is possible to test dif-
ferent variations of the algorithm quickly. Since the script is
loaded from disk, the same compiled model of the rover system

Figure 7. Two robots performing an assembly task programmed
by Lua scripts, see (Reiser 2021)

Figure 8. Visualization of the MMX up-righting sequence,
shown from top left, to bottom right

can be used to launch a multitude of instances with different,
random initial conditions to analyze the algorithm’s robustness.
Mechanical components of the rover as well as its interaction
with the environment are modeled with the DLR Rover Simula-
tion Toolkit (Hellerer, Barthelmes, and Buse 2017).

The Lua code used in this application performs multiple
tasks. First, the control functions specific to the rover itself
are abstracted in a separate Lua library. This enables a very di-
rect and comprehensive approach to program the rover actions.
Based on this, the high level logic of the rover is modeled as a
state machine using the same approach as in the example above.
The state machine controlling the rover has 36 unique states and
46 transitions in total. The StandUp state is used as an exam-
ple here. This state becomes active once the rover successfully
reoriented itself onto its belly and is now ready to stand up. This
corresponds to the transition from bottom-right to bottom-left in
the Figure 8. When the state becomes active, the onStandUp
function is called once, with the interface of the rover abstracted
into Rover a predefined angle and velocity is commanded:

onStandUp = function()
Rover:setTargetLegVelocity(

Rover.standupVelocity)
Rover:setTargetLegAngles(

Rover.legStandingAngles)
end

While the StandUp state is active, the runStandUp function
is called periodically, here a timer and the rover interface are
used to wait 15 seconds once the legs have reached the com-
manded target:
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runStandUp = function()
if not Rover:legsAtTarget() then
timer:reset()

elseif timer:elapsed() > 15 then
uprighting:Standing()

end
end

Once this condition is met, the next transition in the state ma-
chine is triggered by uprighting:Standing().

Other than controlling the rover itself, the Lua code also reads
initial configuration parameters and logs internal states to disk.
With the results of both Modelica and the Lua scripts, a statisti-
cal analysis of the systems behavior is performed. For example,
causalities between specific situations in the mechanical system
and behavior of the control logic could be identified.

4 Conclusions
The presented Modelica Lua library allows easy and fast inte-
gration of high-level logic into Modelica. The simple interface
makes integration into existing models easy. The library devel-
oped from the initial implementation in the DLR Robots library
has been extended and generalized and has proven its useful-
ness especially in the development of the MMX up-righting al-
gorithm. By providing access to existing third-party libraries in
Lua, a language widely used in game development, a wide range
of powerful tools is now available to be used in Modelica. It is
planned to release this library with an open source license to
make it available to the public.
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