Evaluating a Tree Diff Algorithm for Use in Modelica Tools

Martin Sjolund!

'Department of Computer Science, Linkoping University, Sweden, martin.sjolund@liu. se

Abstract

Modelica tools change the formatting of the source code
when performing operations in the graphical user in-
terface. These unintended changes cause problems for
source code management since a code review would
mostly go through changes that do not change any seman-
tics. The intent of this work is to present a workflow where
edits from an interactive graphical user interface does not
contain these unintended changes when using the source
code management system.

A diff tool that can merge two Modelica files and pro-
duce a merged copy is presented and evaluated. The diff
algorithm works by comparing syntax subtrees of Model-
ica code and having some domain knowledge about which
subtrees belong together, speeding up the diff algorithm.
The result is a merged file by taking formatting of the first
file and the semantics from the second file. This works
very well for smaller changes (a single edit) and scales
with file size (making the user interface faster for smaller
files).

To test the algorithm on a larger set of changes, a con-
version script was applied to a set of libraries. The effect
of applying a conversion script is a set of automated edit
operations, which cause unintended changes in the format-
ting of the source code. The diff algorithm with applied to
these changes and the performance was analyzed.

The results are very promising especially for Model-
ica libraries that are split into multiple files rather than a
large single file. Having a single large file takes slightly
longer to process and produces additional unintended for-
matting changes compared to a library developed as a set
of smaller files.

Keywords: Modelica, diff, file comparison, conversion
script, interactive user interface

1 Introduction

An important problem to handle for any software develop-
ment is the management of source code. It is important to
be able to see what changes are introduced in every new
version of your software and one common way of show-
ing this is with a simple text diff. However, most text diff
tools are very limited in what they can do and introduc-
ing any new whitespace in a line will often flag the entire
line. If you introduce a line break or move part of a line
around, you can often forget about seeing what you actu-
ally changed in a diff. Most text diff algorithms will use
something similar to Myers (1986) algorithm, performing

the diff on lines of code since its O(ND) scaling performs
poorly on when words are used items instead of lines.
There are algorithms available to improve the performance
of Myers (1986), such as diff-match-patch (Google 2019),
but they have most of the same drawbacks as the original.

When working with source code management systems
such as git, there are best practices to make the history
easier to read. Some of the following best practices make
it easier for Myers (1986) algorithm to work since there
are fewer changes to consider:

* every developer must use the same width for inden-
tation (tabular characters and/or spaces).

* include no trailing whitespace at the ends of line.
* use text line endings (to avoid CR/LF issues).

* don’t commit generated files such as binaries.

* commit only related work together.

Tools that compare source code of languages do ex-
ist, for example Diff/TS (Hashimoto and Mori 2008) and
GumTree, but these need domain knowledge about the
language to perform a diff on and need to be tuned to
produce good results (Matsumoto, Higo, and Kusumoto
2019).

How this problem relates to the Modelica language
(Modelica Association 2021) is probably apparent to any-
one who has collaborated on a Modelica project. Mod-
elica tools are graphical user interfaces where you move
components around, change some value, or drag and drop
components. This means that the source code needs to be
added, removed, or updated. If these operations are per-
formed internally to the Modelica tools, the internal rep-
resentation needs to be unparsed in order to write these
changes to file!. This unparsing will be slightly different
in all Modelica tools, and some tools may be smart enough
to at least only update the part of the class that changed.
In this work, OpenModelica (Fritzson et al. 2020) and its
graphical user interface OMEdit will be used to evaluate
the work. OpenModelica will update the entire class and
it will move something around since the internal represen-
tation for example only allows comments in certain places
(compare Listings 1 and 2).

I'The edits could also be performed directly on a concrete syntax tree,
but this would require a full redesign of how Modelica code is handled
in Modelica tools and would be much harder to implement.

DOI
10.3384/ecp21181529

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

529

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

model M
MyModel m(
// ??? Works 1if we do this
x = 0,
// Disable heat port
y = false,
// Forces the model into mode 2
z = 200
)
end M;

Listing 1. Example listing with comment.

model M
MyModel m(x = 0, y = false,
// ??? Works 1if we do this
// Disable heat port
// Forces the model into mode 2
end M;

z = 200);

Listing 2. The example in Listing 1 unparsed by OpenModelica
moves the comment.

What this paper tries to answer is how to perform a diff
of unparsed Modelica code in a way that would produce
small text diffs in a source code management system.

In order to be able to evaluate the proposed solution, a
large enough test set is required. The Modelica Language
Specification 3.4 (Modelica Association 2017) standard-
ized the concept of conversion scripts. Using conversion
scripts it is possible to for example rename a component in
a class of a library and to automatically upgrade a model
using the old version of the library with the new names.
This potentially changes every single line of code in a li-
brary that is converted in this way. The Modelica Standard
Library version 4.0.0% has a conversion script from major
version 3 and there are many libraries still using one of
these versions of the standard library. The diff algorithm
can be evaluated by applying the conversion script to these
libraries since a large set of real-world edit operations will
be produced.

2 Method

The Modelica diff algorithm was created over several iter-
ations. The current implementation will be presented.

Then the Modelica diff algorithm will be evaluated
based on how it performs for common operations in the
OMEdit GUI. Both quality and performance will be con-
sidered. Operations in OMEdit are mostly single edits
followed by running the Modelica diff algorithm. This is
what the algorithm was designed for.

Recently, support for conversion scripts was added to
OpenModelica. This works by converting the internal rep-
resentation of a loaded library, but it is also possible to

2https://github.com/modelica/
ModelicaStandardLibrary

create a script to write the changes to file, and merge these
files with the original ones. Conversion scripts can po-
tentially change every line of code, so this will serve as a
stress test for the Modelica diff algorithm.

3 The diff algorithm

The basis of our Modelica diff algorithm is the classical
Myers (1986) text diff algorithm with some additional op-
timizations based on ideas by Butler (2009) and Google
(2019).

The ideas used from Butler (2009) and Google (2019)
stem from the fact that you can easily check if the two
compared sequences have a common prefix or suffix. My-
ers (1986) scales with the sum of the sizes of the two in-
puts, and if there are only changes local to a part of the file
trimming away a common prefix and/or suffix will signif-
icantly improve performance of the algorithm. However,
these optimizations do not improve performance if there
are changes all over the file. In our algorithm, these checks
also ignore whitespace (so unparsed text will be consid-
ered equal).’?

The implementation in OpenModelica is a generic im-
plementation because our diff algorithm is not based on
text (lexer tokens, etc).4 Instead of using a text diff,
the full algorithm is performing a diff on concrete syn-
tax trees. In order to start the diff algorithm, the inputs of
both files go through a lexer and a hand-written recursive-
descent parser which both preserve comments and whites-
pace. The output of the parser is a tree where nodes also
contain whitespace and comments belonging to this sub-
tree of the code. Where the Modelica grammar has nodes
that can be given a name (such as classes, elements, or
named modifications), this node is labelled by the parser.
Modelica models are not allowed to define the same name
twice in the same scope, making these labels unique.’
Tichy (1984) considers blocks of text as units and moved
them together instead of as in Myers (1986) where each
modified unit of text that is moved is considered one move.
However, as the algroithm presented below is a tree diff
algorithm it is more similar to for example Matsumoto,
Higo, and Kusumoto (2019) than Tichy (1984), as it works
on units already divided into blocks using domain knowl-
edge of Modelica and compares these instead of trying to
create blocks from text.

The tree diff implemented in OpenModelica® works re-
cursively for each node where the diff algorithm runs on
the sequence of nodes in each subtree that is not equal to

3Due to the internal representation and unparsing in OpenModelica,
parentheses are also considered whitespace. This is done to not have a
diff when the unparsing adds or removes unnecessary parentheses.

4https://github.com/OpenModelica/
OpenModelica/blob/master/OMCompiler/Compiler/
Util/DiffAlgorithm.mo

3The labels are only unique for valid Modelica models. The quality
of the diff is decreased when performed on invalid models.

Shttps://github.com/OpenModelica/
OpenModelica/blob/master/OMCompiler/Compiler/
Parsers/SimpleModelicaParser.mo

530

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181529

Session 7A: Modelica Language

the corresponding subtree in the other sequence. When
there is only 1 change in the entire sequence, most of the
file will be kept the same without any possibility of adding
whitespace in the wrong place. However, the algorithm is
no longer scaling as O(ND) since we may potentially per-
form this operation at each depth of the tree.

The tree diff algorithm has additional optimizations
performed on the result returned by the generic diff al-
gorithm:

1. Move operations are detected by looking only for
nodes with the same label in order to improve per-
formance. If there is a node deleted and added with
identical contents, the merged result contains the text
of sequence A in the position that it was moved to in
sequence B. This is also performed for comments,
trying to not move them.

2. Changes to whitespace are ignored unless they are
needed to separate two tokens in the merged text.

3. Indentation is preserved to match the previous line in
the original.

4. Nodes that are not equal to some node in the other
sequence are compared to each other (this is a recur-
sive algorithm). If the labels match, those nodes are
compared to each other. If there is only one node re-
maining, it may have been renamed and is compared.
The algorithm does not consider multiple renamed
nodes at the same time and will fallback to resetting
the formatting of the nodes in this case.

4 Evaluation

The diff algorithm has been extensively tested and im-
proved since it was introduced in OpenModelica back in
2015. The first version used Myers (1986) as token-based
diff, but this took several hours to perform a diff on 300
kB large files due to many whitespace changes’.

There are two aspects of the evaluation: quality and per-
formance. This section presents results for both of these
metrics. The computer used for the performance measure-
ments uses an AMD Ryzen 5900X CPU and has 32GB
RAM.

Listings 1 and 2 merge into the same content as List-
ing 1 in 633 ps. Some of the largest example models in
the standard library with a diagram where components can
be moved around are ComparisonPullInStroke and
BatchPlant_StandardWaterS.

For BatchPlant_StandardWater, one component
was moved in the OMEdit GUI as shown in Figure 1,
causing an update to a component and two connections.

"https://github.com/OpenModelica/
OpenModelica/commit/dc2d3ef0465e

8Sizes were calculated based on OpenModelica’s unparsing of
the example and not the size of the file it is stored in. Batch-
Plant_StandardWater is not the only class stored in the file
it is defined in.

V2 pipeBl. V4 2

volume2

Figure 1. The diagram for BatchPlant_StandardWater. Com-
ponent B2 is moved slightly down to the right in the example
described in the text.

For performance reasons, OMEdit performed all 3 updates
first and then called the Modelica diff algorithm, resulting
in Listing 3. This causes the connections to be indented
slightly incorrectly due to two adjacent nodes being up-
dated at the same time. Note that connections are slightly
more complicated to handle than components since they
do not have a name and the diff algorithm does not de-
tect that these were existing connections that were up-
dated. When OMEdit modifies the component, the visi-
ble and rotation modifiers are added because the compiler
does not keep track of which values are defaults and which
had explicit modifiers. This causes the formatting of those
annotation to be affected as well. The rest of the file re-
mains the same as before, which makes the diff readable.
The diff algorithm takes 0.55 s to run, which explains why
OMEdit tries to perform a few edits at the same time. To
illustrate that the updates look nicer, consider Listing 4
where only one connection was updated. The time it takes
is slightly lower than performing 3 diffs at the same time
(0.37 s), but not 3 times lower since the whole file needs
to be parsed and the common prefix/suffix optimization
saves some time here.

For ComparisonPullInStroke, a connection was
added to see how the Modelica diff algorithm handles
added connections. The new connection was added and
changed to red color and the updated diagram can be
seen in Figure 2. Listing 5 shows that the connection is
added at the correct indentation level, with the same for-
matting as OpenModelica’s default for added annotations.
The diff algorithm runs faster (0.08 s) than for the larger
BatchPlant_ StandardwWater file.

DOI
10.3384/ecp21181529

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

531

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

QR -292,8 +292,7 Q@
diameter=0.011,
height=0)},
stiffCharacteristicForEmptyPort=false)
- annotation (Placement (transformation (extent={{50,180},
- {90,220}}1)));
+ annotation (Placement (visible = true, transformation (extent = {{98,
— 124}, {138, 164}}, rotation = 0)));
Modelica.Fluid.Examples.AST_BatchPlant.BaseClasses.TankWithTopPorts B3 (
redeclare package Medium = BatchMedium,
height=0.5,
@@ —-546,10 +545,10 Q@@
points={{-130,220},{-120,220}, {-120,230}, {-90,230}, {-90,221}}, color={0,127,255}));
connect (volume8.port_3, V6.port_a) annotation (Line(
points={{150,220},{130,220}}, color={0,127,255}));

- connect (V6.port_b, B2.topPorts[l]) annotation (Line(
- points={{110,220},{100,220}, {100,230}, {70,230}, {70,221}}, color={0,127,255}));
- connect (B2.ports[1l], V9.port_a) annotation (Line(
- points={{70,179},{70,175},{70,175},{70,170}}, color={0,127,255}));
connect (V6.port_Db, B2.topPorts[l]) annotation(

Line (points = {{110, 220}, {118, 220}, {118, 165}}, color = {0, 127, 255}));
connect (B2.ports[1l], V9.port_a) annotation(
Line (points = {{118, 123}, {118, 174.5}, {70, 174.5}, {70, 170}}, color = {0, 127, 255}));
connect (V9.port_Db, pipeB2B3.port_a) annotation (Line(
points={{70,150},{70,144},{50,144}}, color={0,127,255}));
connect (pipeB2B3.port_b, B3.topPorts[2]) annotation (Line(

+ + + +

Listing 3. BatchPlant_StandardWater where component B2 was moved, the connections to it updated, and the Modelica
diff merged the changes. The text is a regular unified text diff of the files (since the whole file is 100 kB large).

@@ -547,7 +547,7 Q@@
connect (volume8.port_3, V6.port_a) annotation (Line(
points={{150,220},{130,220}}, color={0,127,255}));

connect (V6.port_b, B2.topPorts[l]) annotation (Line(
- points={{110,220}, {100,220}, {100,230}, {70,230},{70,221}}, color={0,127,255}));
+ points={{110,220}, {118, 220},{118, 165}}, color={0,127,255}));

connect (B2.ports[1l], V9.port_a) annotation (Line(
points={{70,179}, {70,175}, {70,175},{70,170}}, color={0,127,255}));
connect (V9.port_Db, pipeB2B3.port_a) annotation (Line(

Listing 4. BatchPlant_StandardWater where only one connection was updated and the Modelica diff merged the changes.
The text is a regular unified text diff of the files (since the whole file is 100 kB large). Note that there are fewer whitespace changes
than in Listing 3 (OMEdit also removed some lines when re-routing the connection).

@@ —-407,6 +407,8 Q@@
color={0,0,255}));
connect (simpleSolenoid.flange, simpleLoad.flange_a)
annotation (Line (points={{0,-50},{20,-50}}, color={0,127,0}));
+ connect (simplelLoad.flange_b, advancedLoad.flange_b) annotation(
+ Line (points = {{40, -50}, {66, -50}, {66, 30}, {40, 30}}, color = {170, 0, 0}));
annotation (experiment (StopTime=0.05, Tolerance=1e-007), Documentation (
info="<html>
<p>

Listing 5. ComparisonPullInStroke where a connection was added, its color changed, and the Modelica diff merged the
changes. The text is a regular unified text diff of the files (since the whole file is 30 kB large).

532 Proceedings of the 14" International Modelica Conference DOI
September 20-24, 2021, Linképing, Sweden 10.3384/ecp21181529

Session 7TA: Modelica Language

comparisonWithFEA

=E

advancedSolenoid
advancedLoad

m=0.01 kg
—>

+
D1nospaduenfe
=)

advancedGround

simpleSolenoid

¥

2o1nosaTdut

simpleLoad

2 -

m=0.01 kg
—

simpleGround

Figure 2. The diagram for ComparisonPullInStroke.
The connection in red color was added and the examples try
to merge the text before this connection with the text after the
update.

The diff algorithm was also tested on libraries that had
the MSL 4.0.0 conversion script applied to them.”. Not all
files will have been updated, and the diff algorithm failed
on a few files. Figures 3a and 3b show a curve fitting on
the sets of files where there was a diff and where there
was no diff detected after merging, comparing size to how
long the diff operation takes. For smaller files, the scal-
ing is linear (around 8x higher for files with a diff than
those without). As files grow larger, they seem to have
quadratic scaling. Note that the number of edits are not
known for these files. If you consider all files in the same
set (Figure 3c), the scaling is quadratic as the files where
the content changed will dominate the overall times.

The conversion script test has also been grouped by the
library that was converted and a summary can be seen
in Table 1. One library that has few modified files, runs
fast, and produces a very good diff'? is the BioChem li-
brary. This is because the BioChem library mostly uses its
own units based on the SI units from the standard library.
The Buildings library is a much larger library, with many
changed files. Since Buildings is split into over 3000 files,
it does not use much memory although it takes almost a
minute to complete. The quality of the diffs in Buildings

A copy of the text diff compared to the original is
available at https://gist.github.com/sjoelund/
b7574£72aaf052500b0835£14e4b25d95

10https://github.com/OpenModelica/BioChem/commit/5 1729962647

60

T T T
fit 8e-13*x2 + 6e-06%x
50 [B
+
- 40 A
©
[=4
S
@ 30 e
@ H
£
[20 -
10 + g
+
+ T _—
R//+ +
0 +A\L | 1 1 1 1 1
0 500000 1x10® 1.5x106 2x10® 2.5x10® 3x10® 3.5x10® 4x10®

File size [bytes]

(a) Files where the contents changed (so there is a diff). There
is a slight quadratic trend in the scaling.

0.7

T T
fit 7e-07*x
0.6 |- ~ =

0.5 [- s
0.4 - 4

03 -

Time [seconds]
\

0.2+ - .

0.1 - oy 4
THE

0 ! ! ! ! ! ! ! !
0 100000 200000 300000 400000 500000 600000 700000 800000 900000

File size [bytes]

(b) Files where the contents did not change (so there is no diff).

60 T T T T T T T
fit 1e-12*x2 + 5e-06*x
50 B
T
- 40 | B
o
f=4
o
3 30 i
3
- -
£
[20 -
+
—
10 + —
L - i
++
% +
0 I '»4& I Il Il Il Il Il
0 500000 1x10° 1.5x10® 2x10° 2.5x106 3x10° 3.5x106 4x10°6

File size [bytes]

(c) All files (both with and without diff).
Figure 3. Converted files larger than 4096 bytes plotted as time

it takes for the diff algorithm to handle problems of a given file
size.

DOI
10.3384/ecp21181529

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

533

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

goes from great (Listing 6) to reasonable (Listing 7) with
no very bad results. ScalableTestSuite and Physiomodel
both have a single very large file in the library (and some
smaller ones), which causes a lot of memory to be needed.
Despite the large file, ScalableTestSuite produces a very
nice diff whereas Physiomodel has whitespace changes in
alot of places. For the files where the diff algorithm failed,
OpenModelica’s unparsing of the internal form is used in-
stead. This changes too many lines to be able to tell what
semantic changes were actually performed.

5 Discussion

The method is limited to programmatically modified text.
If a regular text editor is used and the diff algorithm is used
to merge the changes, all the manual whitespace changes
are lost. This means it cannot be used as an enforced hook
in your source code management system since you would
never be able to fix broken whitespace.

Handling diffs in connections is difficult because the
connections do not have names. This means that subtrees
are only compared if a single connection was updated. In
practice, this does not seem to affect components in the
conversion script.

There is another limitation in that parenthesis are con-
sidered whitespace — the unparsing of OpenModelica
would need to be updated to preserve parenthesis where
added manually (and to not output parentheses in other
places either). This particular limitation sometimes causes
the merging to fail with catastrophic results. These merge
failures are detected by a sanity check that verifies that
the semantics before and after merging are the same. Re-
moving a parenthesis or moving parenthesis to the wrong
location is thus detected. Not all of the failures may be due
to this limitation of the diff algorithm — earlier versions of
the algorithm also failed because the parser did not handle
the full Modelica grammar.

The unparsing of text is also assumed to preserve for-
matting of real numbers. In OpenModelica, the parser
keeps the text instead of transforming the value into float-
ing point in order to produce something easier to per-
form the diff on. If another Modelica tool would read
1000000. 0 and output 1e6, the diff algorithm would as-
sume this is a desired change.

If a Modelica tool would reorder for example modifica-
tions in annotations, this would cause the merged code to
also move the modifications around (possibly with some
changes to indentation and whitespace).

The algorithm has difficulty with performance and un-
intended edits when there are many changes at the same
time. In order to improve performance and quality of
the diff, Modelica libraries should be split into multiple
files as this vastly improves responsiveness of the OMEdit
GUI when moving objects around. This effect is also
seen when applying conversion scripts to libraries where
libraries with a small number of files have a lower qual-
ity in the diffs produced by the diff algorithm. The diff

algorithm could easily be extended to run in parallel for
libraries split into multiple files, further improving perfor-
mance at the cost of memory usage. Splitting the library
into multiple files also has a positive impact on load per-
formance since it is trivial to parse multiple files in paral-
lel'!.

Continuously improving the diff algorithm has fixed a
lot of similar problems in the past, and with a bit more
finetuning for things like indentation the algorithm could
become even better.

The diff algorithm has not been evaluated on output
from other Modelica tools, but a reasonable way to do so
would be to run the diff algorithm on git commits in some
of these libraries.

6 Conclusion

The diff algorithm was intended to be used in an interac-
tive GUI with single changes between each modification
and it works well for this use-case. When the diff algo-
rithm is used on larger changes such as applying a con-
version script, the quality of the diffs goes down and it
works much better when the library is divided into many
smaller files. The good news is that even when the inden-
tation is changed, it is usually feasible to manually correct
these since there are only local changes (git diff will
not show you irrelevant edits). The time spent on making
sure there are only small changes saves time for the code
reviewer. Compared to existing tools that change format-
ting of the whole file even when not making any change,
it is a big step in the right direction.

Given the existing diff algorithm, the recommendation
for development of Modelica libraries would be to split the
library into more files since you get a faster response from
the user interface for each edit as well as fewer unintended
changes. This workflow is something that should work
well in most cases.

After fixing the remaining bugs and tuning the diff al-
gorithm, it should be able to run the conversion script on
all the tested libraries.

Detecting which connections belong together could be
resolved by making the unparsing include additional infor-
mation to both files that is then removed from the merged
file. This might allow tools to perform more edits at the
same time and still preserve formatting within each con-
nection. Alternatives include looking for the names of the
ports that are connected (but this might break if a connec-
tion is moved between ports), or perhaps by having named
connections in the Modelica specification.

Changes that improve the quality of diffs after applying
the conversion script would also improve the tool when
running on files modified by other Modelica tools (for ex-
ample if pull requests in Github need to be cleaned up to
see what changes are actually proposed).

L oading files in parallel was implemented in OpenModelica back in
2014 and typical speedup is 5x for 8 threads with the garbage collection
as bottleneck. Loading a single large file vs. multiple files in a single
thread has no impact on performance in our experience.

534

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

DOI
10.3384/ecp21181529

Session 7A: Modelica Language

Table 1. The performance of running the conversion script. The exact libraries converted are either the latest release or from a
master branch on Github (this has little relevance on the results, but only 1 copy of each library was used). Shown is the total file
sizes of all files in the library, the largest file size (to see if libraries not split into smaller files are more problematic to handle), how
many files were modified, how many the diff algorithm failed on, and how many files there were in the library. The time it takes
to run the conversion script and the total time to run the Modelica diff algorithm on all files in the library as well as the maximum
heap size for these phases are also provided. If the maximum heap size for the diff algorithm is the same as for the conversion
script, it means that the memory reclaimed by the garbage collector was enough to run the diff algorithm.

Library Size Maxsize Diffs Fail Files Conversion Diff
AdvancedNoise 340kB 39kB 12 0 107 02s 24MB 0.7s 24MB
AixLib 12,585kB 89kB 972 3 2,731 5.0s 490MB 36.4s 491 MB
BioChem 564kB 231kB 3 0 134 0.6s 58MB 1.1s 107MB
BuildSysPro 7,110kB 79kB 871 12 1,948 3.2s 234MB 22.5s 235MB
BuildingSystems 7,574kB 132kB 676 2 2,089 32s 315MB 22.7s 316 MB
Buildings 13,947kB 472kB 1,117 0 3,341 5.8s 474MB 394s 475MB
ConPNlib 50kB 6kB 1 0 37 0.1s 18MB 0.2s 18MB
ElectricalEnergyStorage 330kB 330kB 1 1 1 02s 33MB 1.2s 156 MB
ExternalMemoryLib 28kB 28kB 1 0 1 0.1s 25MB 0.1s 25MB
FCSys 1,121kB 292kB 7 0 16 09s 58MB 2.8s 123MB
FastBuildings 181kB 4kB 8 0 131 02s 24MB 0.7s 24MB
HanserModelica 372kB 14kB 58 0 137 02s 33MB 2.0s 33MB
HelmbholtzMedia 477kB 73kB 24 0 242 0.5s 33MB 14s 44MB
IBPSA 4,901kB 67kB 494 0 1,382 24s 186MB 13.8s 186 MB
IdealizedContact 625kB 625kB 1 0 1 02s 44MB 6.6s 188MB
IndustrialControlSystems 717kB 19kB 11 0 241 03s 44MB 1.5s 44MB
KeyWordIO 58kB 7kB 7 0 38 0.1s 24MB 0.2s 24MB
LibRAS 255kB 14kB 36 2 80 0.2s 33MB 1.1s 33MB
MEV 75kB 75kB 1 1 1 01s 18MB 0.2s 44MB
ModelicaByExample 292kB 6kB 54 0 355 0.7s 33MB 1.7s 33MB
Modelica_DeviceDrivers 634kB 67kB 30 0 192 0.7s 44MB 2.0s 58 MB
Modelica_Noise 290kB 23kB 12 0 101 0.2s 24MB 0.6s 24MB
Modelica_Synchronous 827kB 246kB 7 0 9 04s 44MB 7.2s 107MB
NcDataReader2 12kB 2kB 1 0 12 0.1s 1I8MB 0.0s 18MB
ObjectStab 243kB 44kB 22 0 159 03s 33MB 009s 44MB
OpenHydraulics 530kB 26kB 30 0 162 0.2s 44MB 1.7s 44 MB
OpenIPSL 1,294kB 30kB 52 0 402 0.6s 90MB 39s 90MB
PNlib 816kB 76kB 5 0 224 03s 44MB 1.6s 59MB
PhotoVoltaics 271kB 21kB 35 0 118 02s 24MB 1.2s 33MB
PhotoVoltaics_TGM 100kB 7kB 20 0 20 0.1s 18MB 0.5s 18 MB
Physiolibrary 886kB 265kB 7 0 10 1.0s 44MB 4.7s 123MB
Physiomodel 3417kB 3,196kB 2 0 4 09s 186MB 44.8s 991 MB
PowerGrids 643kB 26kB 17 0 202 03s 44MB 1.6s 44MB
PowerSystems 1,973kB 109kB 5 0 104 1.6s 90MB 3.7s 123MB
ScalableTestSuite 6,186kB 3,869kB 14 0 22 0.8s 254MB 45.8s 1,002MB
SiemensPower 400kB 16kB 95 0 169 03s 33MB 1.0s 33MB
SolarTherm 1,161kB 62kB 264 2 534 12s 74MB 4.s 74MB
Spot 1,944kB 115kB 6 0 9 14s 90MB 3.9s 107MB
SystemDynamics 1,216kB 1,216kB 1 0 1 03s 74MB 3.5s 396 MB
ThermalSeparation 4,642kB 1,123kB 134 4 533 3.1s 138MB 14.7s 270MB
ThermoPower 2,502kB 930kB 8 1 10 1.2s 106MB 19.8s 350MB
ThermoSysPro 4,588kB 343kB 594 0 980 19s 186MB 24.1s 300MB
iPSL 3,068kB 852kB 41 0 534 0.7s 106MB 5.7s 122MB
DOI Proceedings of the 14*" International Modelica Conference 535

10.3384/ecp21181529 September 20-24, 2021, Linkdping, Sweden

Evaluating a Tree Diff Algorithm for Use in Modelica Tools

@@ -3,7 +3,7 @@
"Controller for single zone VAV system"
extends Modelica.Blocks.Icons.Block;

- parameter Modelica.SIunits.Temperature TSupChi_nominal
+ parameter Modelica.Units.SI.Temperature TSupChi_nominal
"Design value for chiller leaving water temperature";
parameter Real minAirFlo(
final min=0,
@@ -11,10 +11,10 Q@
final unit="1")
"Minimum airflow fraction of system"
annotation (Dialog (group="Setpoints"));
- parameter Modelica.SIunits.DimensionlessRatio minOAFra
+ parameter Modelica.Units.SI.DimensionlessRatio minOAFra
"Minimum outdoor air fraction of system"
annotation (Dialog (group="Setpoints"));
- parameter Modelica.SIunits.Temperature TSetSupAir
+ parameter Modelica.Units.SI.Temperature TSetSupAir
"Cooling supply air temperature setpoint”
annotation(Dialog (group="Setpoints"));
parameter Buildings.Controls.OBC.CDL.Types.SimpleController controllerTypeHea=

Listing 6. An example of a typical diff in Buildings, which looks good.

Q@ -5,16 +5,16 @@

Modelica.Blocks.Sources.Sine mixAirTem (
amplitude=7.5,
- freqHz=1/86400,

+f =1/86400,
offset=20 + 273.15) "Mixed air temperature"
annotation (Placement (transformation (extent={{-100,80},{-80,100}})));

Modelica.Blocks.Sources.Sine retAirTem (
amplitude=10,
- freqHz=1/86400,

+f =1/86400,
offset=21 + 273.15) "Return air temperature"
annotation (Placement (transformation (extent={{-100,-70},{-80,-50}})));

Modelica.Blocks.Sources.Sine outAirTem(
- freqHz=1/86400,
+ f =1/86400,
amplitude=6,
offset=18 + 273.15) "Measured outdoor air temperature"

annotation (Placement (transformation (extent={{-100,-40},{-80,-20}1})));
@@ -51,7 +51,7 Q@
annotation (Placement (transformation (extent={{-100,-10},{-80,10}})));

Modelica.Blocks.Sources.Sine supAirTem (
amplitude=7,
- freqHz=1/86400,

+f =1/86400,

offset=13 + 273.15) "Supply air temperature"

annotation (Placement (transformation (extent={{-100,-100},{-80,-80}})));
equation

Listing 7. An example of an uncommon diff in Buildings. The results are reasonable, with only local changes. However, the
indentation has been changed except where freqgHz was the first modification.

536 Proceedings of the 14" International Modelica Conference DOI
September 20-24, 2021, Linképing, Sweden 10.3384/ecp21181529

Session 7A: Modelica Language

Future work includes not considering parentheses
whitespace, which requires changing OpenModelica to
never add or remove parentheses in its internal represen-
tation. This change would resolve most issues where files
failed to merge. Implementing this change would make
the algorithm only work in tools that preserved parenthe-
ses in its unparsing, making the diff algorithm only work
well with OpenModelica.

Given this knowledge, it can be concluded that the
given approach will not work to merge any arbitrary
changes of Modelica code. However, the approach should
work well when it is integrated with a tool that preserves
as much of the original structure as possible (including
positions of parentheses, the exact string representation of
floating point numbers, as well as the order of modifica-
tions and connections).

There are alternative approaches that would make li-
brary development easier, such as Modelica tools mak-
ing edits directly in the concrete syntax tree. However,
this approach requires a much more targeted approach and
needs to be considered at an early stage of development.
Another approach would be to use the same version of
a Modelica tool for all edits of Modelica code, or a for-
matter that enforces consistent formatting before making
a commit to the source code management system. This
approach makes it harder to make manual changes to the
source code since the tool may automatically revert the
changes as they do not conform to its formatting rules.

Acknowledgments

This research was funded by Vinnova in the ITEA EMPH-
YSIS project (grant number 2017-05121). Support from
the Swedish Government has also been received through
the ELLIIT project and through SSF in the LARGEDYN
project (grant number [TM17-0154).

References

Butler, Nicholas (2009). Investigating Myers’ diff algorithm:
Part 1 of 2. URL: https://www.codeproject.com/Articles/
42279 /Investigating - Myers - diff - algorithm - Part - 1 - of - 2
(visited on 2021-04-21).

Fritzson, Peter et al. (2020). “The OpenModelica Integrated En-
vironment for Modeling, Simulation, and Model-Based De-
velopment”. In: Modeling, Identification and Control 41.4,
pp. 241-295. pOI: 10.4173/mic.2020.4.1.

Google (2019). Diff Match Patch. URL: https://code.google.
com/p/google-diff-match-patch/ (visited on 2021-04-21).
Hashimoto, Masatomo and Akira Mori (2008). “Diff/TS: A Tool
for Fine-Grained Structural Change Analysis”. In: 2008 15th
Working Conference on Reverse Engineering, pp. 279-288.

DOT: 10.1109/WCRE.2008.44.

Matsumoto, Junnosuke, Yoshiki Higo, and Shinji Kusumoto
(2019). “Beyond GumTree: A Hybrid Approach to Generate
Edit Scripts”. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR), pp. 550-554.
Dor: 10.1109/MSR.2019.00082.

Modelica Association (2017-04). Modelica — A Unified Object-
Oriented Language for Systems Modeling. Language Spec-
ification Version 3.4. Tech. rep. Linkoping: Modelica As-
sociation. URL: https :// www . modelica . org / documents /
ModelicaSpec34.pdf.

Modelica Association (2021-02). Modelica — A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linkoping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
html.

Myers, Eugene (1986). “An O(ND) difference algorithm and its
variations”. In: Algorithmica 1, pp. 251-266. Do1: 10.1007/
BF(01840446.

Tichy, Walter (1984-11). “The String-to-String Correction Prob-
lem with Block Moves”. In: ACM Trans. Comput. Syst. 2.4,
pp. 309-321. 1SSN: 0734-2071. porL: 10. 1145/357401 .
357404.

DOI
10.3384/ecp21181529

Proceedings of the 14*" International Modelica Conference
September 20-24, 2021, Linképing, Sweden

537

