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Abstract 
This paper describes the application of the system 

simulation platform Modelon Impact for techno-
economical assessment of energy projects towards 
carbon neutrality. The control co-design approach 
applied in the work allows for rapid assessment of 
various technology options without the need for 
deriving complex control laws for the considered assets. 
The approach is here applied on an industrial use case 
where the goal is to identify the technology options 
that minimize the total cost of ownership while 
achieving carbon neutrality.  
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1 Introduction 
   Organizations have made a goal of significantly 

reducing CO2 emissions to mitigate climate change. 
Not only governments and energy companies but also 
industries are now moving away from fossil fuels, 
investing in new technologies towards carbon 
neutrality. There are however many options, ranging 
from diverse renewable energy sources to carbon 
capture and utilization, hydrogen technologies and 
storage energy systems. The different alternatives vary 
significantly in terms of technical performance 
(efficiency, degradation, longevity) and in terms of 
economy (initial investment, operational cost, 
incentives). It is therefore not an easy task for the 
decision makers to efficiently explore the different 
paths and choose a cost-efficient implementation that 
meets the environmental targets (Venkatraman and 
Khaitan, 2015). 

  As shown in (Windahl et al, 2019) and (Fathima 
and Palanisamy, 2015), system simulation and 
optimization can efficiently help exploring and pruning 

the various options in a systematic way. The specificity 
of the approach proposed by the authors in (Velut et al, 
2020) is twofold. It relies on the open modeling 
language Modelica and makes it thereby possible to 
model and simulate potentially any hybrid energy 
system. Secondly, the models can be used to formulate 
and solved dynamic optimization problems avoiding 
the need to derive & implement complex controllers 
for all considered configurations. Instead, optimal 
control and design problems can be setup to quickly 
assess the limits of performance and the cost of various 
alternatives. 

The strategy has been applied in (Velut et al, 2020) 
for microgrid design and operation. In (Magnusson et 
al, 2021), the models have been further extended to 
include hydrogen components such as electrolyzer, fuel 
cell or hydrogen tanks. The current paper presents a 
major extension of the framework that is now able to 
assess the technical and economic feasibility of 
complex long term energy projects involving the 
production, conversion or supply of products like heat, 
electric power, hydrogen, synthetic methane or CO2. 
 
 

2 Framework 
 

2.1 Tools and methods 
Modelon Impact (Modelon, 2022) is used to model, 

simulate, and optimize the hybrid energy system in 
Modelica. Modelon Impact is a system modeling and 
simulation platform leveraging the benefits of web and 
open standard technologies. With openness at its core, 
Modelon Impact supports standards such as Modelica, 
FMI, Python and REST. The user-friendly browser 
interface provides modeling experts the tools they need 
to create, simulate, and experiment. The Modelon 
Impact API enables scripting of advanced analyses 
using Python through Jupyter notebooks. The 
optimization problem formulation has been written in 
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Optimica, a Modelica language extension (Åkesson, 
2008). The API of Modelon Impact gives access to the 
Optimica Compiler Toolkit and its dynamic 
optimization framework (Magnusson et al, 2015), 
which is used to solve the dynamic optimization 
problem using direct collocation. 

 

2.2 Physical modeling 
A sketch of the system to be modeled and optimized 

is shown in Figure 1. The sketch represents a Honda-
owned factory in the US that assembles cars. 

Figure 1 Overview of the system model 

 
The plant model has been built by connecting 

component models from the Microgrid package in 
Thermal Power Library (Modelon, 2022). The 
Modelica package contains optimization-friendly 
models targeting optimal design and control. The 
models are typically static, semi-empirical and 
described by efficiency curves. Dynamics is mainly 
present in the storage components.  
 
The plant consists of buildings, vehicle fleets, 
industrial equipment that can all be seen as some type 
of load: 
 

 Electric loads for buildings’ HVAC system, 
lighting, EV fleet, etc. 

 Hydrogen loads for fuel cell-based 
transportation and logistics systems (forklifts, 
trucks, railroad) 

 Thermal energy loads for heating and cooling 
in the buildings as well as industrial 
equipment such as burners 

 
The goal of this work has been to assess different 
carbon neutral and sustainable options to satisfy the 
various loads. The model shown in Figure 1 represents 
a possible configuration where hydrogen technologies 
have replaced fossil fuel ones: 

 Electrolyzer for onsite hydrogen production 
 Hydrogen tank (for either gas or liquid 

hydrogen) 
 Liquefaction plant 
 Stationary fuel cell for power back-up or peak 

shaving 
 Hydrogen dispenser 

 
Compared with the work presented in (Magnusson et 
al, 2021), additional models have been derived: 

 Heat pump, converting electric power to heat 
in buildings 

 Burners to produce heat from the combustion 
of methane 

 Carbon capture technologies to achieve carbon 
neutrality 
o A CCS block to capture the CO2 

produced in the combustion processes 
o A CCUS block for methane production 

from captured CO2 and hydrogen 
o If CC(U)S is not applied, CO2 is released 

to the ambient at a cost given by carbon 
taxes 

 
Electric power, hydrogen and other fuels can also be 
imported using 

 A power grid component acting as a voltage 
source 

 A discrete delivery hydrogen market 
component that implements a controllable 
supply at a fixed frequency and the amount for 
every delivery being a degree of freedom in 
the optimization. 

 A continuous fuel delivery, which can deliver 
methane (or other fuels) on demand, in case of 
pipeline delivery infrastructure. 

 
Finally, energy can be stored either in batteries or as 
hydrogen to shave the power peaks and cope with the 
variations in renewable power. The goal is to assess the 
most economical alternative. 
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2.3 Economy modeling 
 

2.3.1 Fixed and variable costs 

The main goal of the work has been to perform a 
techno-economic analysis of the future plant. Economy 
information has therefore been added to every 
component to keep track of both the capital and 
operational cost of all equipment.  

 
The considered time horizon for the optimization is the 
project lifetime 𝑇௣௥௢௝ , close to the components’ 
lifespan. 
 
The total cost of ownership of a component i has been 
divided into 2 parts: 

 the fixed total cost 𝑇𝐶𝑂௙௜௫,௜ , the sum of the 
capital cost and the fixed operational cost, i.e., 
due to maintenance 

 the operational cost  
 
If the fixed costs (capital cost and fixed operational 
cost) scale linearly with the assets size, the fixed cost 
can be computed using the following parameters:  

 Lifetime 𝐿௜ 
 The specific capital expenditure CapEx 𝐶௜, i.e. 

normalized by the rated output or size 𝑠௢௣௧,௜ 
 The fixed yearly operational expenditure 𝑜௙௜௫,௜ 

(e.g. fixed maintenance cost) also normalized 
by the rated output or size 𝑠௢௣௧,௜ 

 
The fixed total cost component for component i over 
the project lifetime is then 
 

𝑇𝐶𝑂௙௜௫,௜ = 𝑇௣௥௢௝ ∙ 𝑠௢௣௧,௜ ൬
𝐶௜

𝐿௜
+ 𝑜௙௜௫,௜൰ 

 
The variable OpEx based on the usage of a component 
is typically computed by integrating the resource cost 
(power, fuel cost…) 𝑜௩௔௥,௜over time. Since this system 
has centralized energy markets, the variable OpEx is 
typically calculated on the respective markets. The 
project total cost of ownership of the system can be 
finally computed as: 
 

𝑇𝐶𝑂௧௢௧ = ෍ ቈ𝑇௣௥௢௝𝑠௢௣௧,௜ ൬
𝐶௜

𝐿௜
+ 𝑜௙௜௫,௜൰

+ න 𝑜௩௔௥,௜𝑑𝑡
்೛ೝ೚ೕ

଴

቉ 

 
The summation over the components is automatically 
done by aggregating all the costs in a single “Economy 
Summary”, which makes it convenient and compact. 

Any system configuration change does not require any 
manual update in the overall cost computation. 
 
Although time-varying grid prices can be considered in 
the optimization, a fixed price was used to describe a 
virtual power purchase agreement.  
 

2.3.2 Long term aspects: degradation and money 
value 

  While the data profiles used in the optimization only 
cover one year, to account for seasonal variations, the 
project lifetime is several decades. When considering 
such long periods, degradation of components as well 
as changes to the value of money need to be considered 
as well. Since the computational cost of dynamic 
grows superlinearly with the time horizon, 
optimization over the entire time horizon is 
computationally tractable. Two simplifications have 
been considered to account for these factors: 
 

1. Year separation: By fixing the design and 
disregarding the storage between years, the 
TCO of each year can be calculated 
independently. By sampling the entire design 
space, the optimal design and control can be 
found. 

2. Mean year: Lump degradation and NPV 
factors across all years to create a "Mean" year 
that allows simultaneous optimal design and 
control. This reduces the time horizon of the 
project optimization to a single year. 

 
While the first approach is more accurate, it is still 
computationally expensive. It has been used to verify 
that the second approach yields satisfactory accuracy.  
  

2.3.3 Demand charges and peak shaving 

The objective of this model incorporates many 
aspects from previous projects that have been 
introduced and described in detail in (Velut et al, 2020)  
and (Magnusson et al, 2021).  Similar to previous 
models, a form of peak shaving was being 
implemented. In this case, the utilities contract applied 
a demand charge on the maximum of the power 
demand from the grid during the summer months from 
June to September.  The grid model has therefore been 
adapted to optimize the peak only during these months, 
so that both size and operation of relevant components 
results in an economically optimal peak shaving 
behavior. 
 
The demand charge is a constant per-kW charge 
applied to the electricity grid and is being handled by 
use of a slack variable.  
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3 Optimization problem 
As previously mentioned, the goal is to assess the 

technical and economic feasibility of the project of 
making the Honda-owned facility carbon neutral. For 
this purpose, some clean replacement technologies 
listed in Section 2.2 have been considered to meet the 
various needs in heat and power. Optimization will 
now be used to find the best options and size the 
equipment appropriately. 

 

3.1 Objective function 
The objective function is the total cost of ownership 

computed over the project lifetime 𝑇௣௥௢௝ as described 
in Section 2.3.1. 

 

3.2 Discretization 
The optimization problem is solved over a full 

calendar year. The sampling rate of the collocation 
algorithm is one hour (equal to the boundary 
conditions’ sampling rate), which means that every 
control trajectory is described by 8760 degrees of 
freedom. 

As the dynamics of the plant is relatively simple 
(integrators of the storage components), implicit Euler 
has been chosen in the collocation. 

 

3.3 Co-design - simultaneous control and 
process design 

The plant consists of many assets that interact with 
each other and some need to be controlled such as 
battery, electrolyzer, fuel cell. Instead of developing 
controllers for all these components, a control co-
design approach has been chosen, where the optimizer 
operates the controllable assets at the same time as it 
sizes all equipment. If the design is solved for a 
specific control strategy, it leads to sub-optimal design, 
i.e. a higher total cost of ownership. By solving 
simultaneously for the assets' operation and their size, 
it is possible to minimize the asset’s size and the 
overall cost. The strategy makes it also very convenient 
as no time is spent on deriving empirical controllers for 
all considered technologies and system configuration. 
 

3.4 Degrees of freedom 
The degrees of freedom in the co-design 

optimization problem are:  
1. Parameters that define the size of the equipment 

(design problem) 
2. Time trajectories for all control inputs of the 

controllable assets (control problem) 
 

The list of degrees of freedom can be found in the 
tables below. Note that the discrete deliveries of 
hydrogen hydrogenMarket.deliveries[i] have been 
implemented as a vector of deliveries, the period being 
fixed to a week. All control signals have been 
normalized to operate between 0 (no output) to 1 (rated 
output). 
 
With the chosen discretization level, the optimization 
problem contains 78905 degrees of freedom, 65 for the 
parameters and 78840 for the input trajectories (9 
inputs and 8760 hourly values). 
 

3.5 Constraints 
Apart from the equality constraint of fulfilling the 

plant model equations, several inequality constraints 
have been considered in the formulation.  
 
The first set concerns all degrees of freedom that need 
to lie within given bounds as shown in the previous 
section. Another set concerns the storage components 
(battery and tank) whose state of charge, eventually in 
terms of pressure or level, must be kept within 
reasonable limits. Export to the power grid was also 
prevented using an inequality constraint. 
 
The last operational constraint that has been 
implemented ensures that power can be supplied in 
case of a full blackout. No black-out scenario is 
considered in our optimization and therefore we need 
to design and operate the system in a way energy is 
always available to handle that event. Since several 
backup solutions exist in the system, even a mix of 
technologies is conceivable. In this system, the backup 
power can be provided by either battery or fuel cell, i.e. 
the sum of rated output power 𝑃௕௔௖௞௨௣  should be 
greater than the minimum requirement for emergency 
power 𝑃௕௔௖௞௨௣

଴  
 

𝑃௕௔௖௞௨௣ ≥ 𝑃௕௔௖௞௨௣
଴  

𝑃௕௔௖௞௨௣ = 𝛴𝑃௕௔௖௞௨௣௉௥௢௩௜ௗ௘௥
௜ = 𝑃௕௔௧௧ + 𝑃௙௖ 

 
This power needs to be available for a certain time 

𝑡௕௔௖௞௨௣
଴ :  

 
𝑡௕௔௖௞௨௣(𝑡) ≥ 𝑡௕௔௖௞௨௣

଴     ∀𝑡 

 
The back-up time is expressed in terms of the total 

energy stored in the back-up providers and the power 
level it needs to be provided at: 
 

𝑡௕௔௖௞௨௣(𝑡) =
Σ൫r୧ ∗ 𝐸௦௧௢௥௘

௜ (𝑡)൯

Pୠୟୡ୩୳୮
଴ > tୠୟୡ୩୳୮

଴  
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Where 𝑟௜ is a factor that accounts for the efficiency of 
the discharging process and the discharging power of 
the back-up assets. The constraint formulation has been 
generalized to allow for easy integration of alternative 
backup power solutions in case both battery and fuel 
cell turn out to be unfeasible. 
 

3.6 Initialization 
The solver for the nonlinear program needs 

reasonable initial guess of the solution for reliable 
convergence. This is typically generated by a dynamic 
simulation of the plant model where initial guesses for 
all degrees of freedom have been applied.  

 
While the initial component size was typically 
constrained by simple physical considerations 
(available area for photovoltaics, yearly total energy 
demand, etc), the control signals’ initial trajectories 
were derived using simple control laws. The battery 
charging and discharging rates were controlled by a PI 
controller driven by the renewable energy surplus. The 
electrolyzer was controlled using a PI controller to 
maintain a constant state of charge in the hydrogen 
tank. Concerning the other components, pre-defined 
trajectories were applied as initial guess. 

 
 

4 Results 
This optimization problem solves many tasks at the 

same time: 
 It selects technology options (discrete choices) 
 It sizes components (continuous choices) 
 It operates assets to achieve the minimal total 

cost of ownership (continuous choices) 
 It estimates the minimal total cost of ownership 

In this paper, we review the results of a single 
optimization run. It is required in the future to perform 
a sensitivity analysis to assess the robustness of the 

optimization results with respect to uncertainties in all 
forecasted data (prices, loads and weather).  
 

4.1 Technology selection 
In the plant configuration shown in Figure 1, all 

technology options to be assessed have been modeled. 
This means that there are redundancies in the way the 
loads can be met. If the optimization results in an asset 
of size zero, it means that the corresponding 
technology is neither technically nor economically 
viable. In some cases, the optimization finds it optimal 
to fulfill a need by investing in different technologies. 
Here are the technology options that have been 
investigated: 
 
1. Import versus on-site generation for hydrogen 

and power 
2. Fuel cell versus battery for backup-power and 

peak shaving 
3. CCS vs. CCUS vs. carbon tax to deal with the 

emissions from the combustion processes 
4. Conventional burner versus heat pump for paint 

drying 
 
In the following sections, the technologies selected for 
the first 2 items will be presented and discussed. 
 

4.1.1 Import versus onsite generation  

With the given price structure for energy and the 
given CapEx and OpEx for electrolyzer and 
photovoltaic power plant, both hydrogen and electricity 
can economically be produced on-site to a significant 
amount. However, due to the different pricing of 
electricity in winter and summer, both technologies 
have been selected by the optimization: 

1. While the CapEx cost for the electrolyzer and the 
required liquefier is rather high, and also the 
energy losses from well to wheel are considerable, 
electricity cost in this model is low enough to 
produce liquid hydrogen at a lower price than 

Table 1 Optimizable parameters of the system 

Parameter name Min 
Value  

Max 
Value 

Unit 

battery.capacity 0.01 2000 MWh 
CCS.m_flow_rat 1e-5 1e5 kg/s 
CCU.m_flow_rat 1e-5 1e5 kg/s 

electrolyzer.n_cell 0.01 350 MW 
fuelCell.n_cell 0.01 212 MW 

grid.P_peak 0  MW 
heatPump2.P_rat 1e-7 1e4 MW 

hydrogenMarket.deliveries[i] 1e-7 1e4 MW 
ngBurner2.P_rat 0.01 68.9 MW 

photovoltaics.scale 0.1 1e06 m3 
tank.V 40 3e5 MW 

transformer.P_max 0.01 2000 MWh 
 

Table 2 Optimizable control signals of the system 

Input name Lower 
bound 

Upper 
bound 

I_electrolyzer__opt 0 1 
I_fuelCell__opt 0 1 

P_battery_charge__opt 0 1 
P_battery_discharge__opt 0 1 

P_processHeat__opt 0 1 
m_flow_CCS__opt 0 1 
m_flow_CCU__opt 0 1 

ndot_H2_boiloff_vent 0  
pv_curtailment__opt 0 1 
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purchasing from an external supplier. In summer, 
the comparatively high peak demand charge 
means, that reducing the output of the electrolyzer 
is the most economical mode of operation. As a 
result, the optimizer determined that producing 
the hydrogen on-site and purchasing the hydrogen 
to almost equal parts is the most cost-effective 
option, see the Sankey diagram in Figure 2. 

2. Photovoltaics cannot provide electric energy at a 
lower cost than the utility company with the 
available pricing structure and the given 
insolation profile for the plant location. But 
during peak-hours in the summer, photovoltaics 
can significantly reduce the demand charge, and 
drives the electrolyzer for a longer time at its rated 
power, decreasing the overall cost for hydrogen. 

 

4.1.2 Fuel cell vs. battery 

In this model, the fuel cell and the battery can fulfill 
similar tasks: both can provide power and lower the 
demand charge during peak hours. Both options can 
also both provide emergency power in case of a 
blackout in the grid.  

 
The considered batteries are second-use and they come 
therefore with limited performance. Apart from a 
limitation on the usable SOC range, they cannot be 
fully discharged faster than 2 hours. 

 
The optimization results show that the fuel cell is the 
far better alternative for both use cases. We attribute 
this to two main root causes: 

1. While the price-per-kW of the battery is here 
lower than that of the fuel cell, the backup power 
time requirement 𝑡௕௔௖௞௨௣

଴  is much larger than 2h, 
meaning we will need to install several times as 
much power as 𝑃௕௔௖௞௨௣

଴  to achieve the required 
energy needs, which results in a battery that is 
more expensive than the fuel cell for this purpose. 

2. Furthermore, the constraint on 𝑡௕௔௖௞௨௣
଴  means, that 

the battery needs to have enough energy stored to 
provide 𝑃௕௔௖௞௨௣

଴  for 𝑡௕௔௖௞௨௣
଴  at all times. A battery 

that is just big enough to fulfill the requirements 
for backup power needs to be kept completely 
charged and cannot be used for other purposes 
like peak-shaving without violating the backup 
power requirement. 

 
While the fuel cell size is the significant parameter for 
the backup power, the time 𝑡௕௔௖௞௨௣(𝑡) this power can 
be provided is largely determined by the available 
hydrogen in the tank, meaning that the tank will need 
to always retain 𝑡௕௔௖௞௨௣

଴  worth of hydrogen in the tank. 
In our model, hydrogen is delivered at fixed time 
intervals and the delivered amount is variable and 
optimal. At each delivery, the tank is filled just enough 
to have a sufficient backup of hydrogen in the tank 
before a new delivery arrives. 
The investment cost (CapEx) for a fuel cell would be 
too high to justify its use as a peak-shaver. However, if 
the fuel cell doubles as emergency power provider, the 
operational cost make operation during peak hours 
economically viable. A detailed explanation of this 
behavior can be found in 4.3. 

Figure 2 Sankey diagram of the energy flows [GWh] in the optimized system 
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The resulting fuel cell is just sized big enough to be the 
single provider of backup power 𝑃௕௔௖௞௨௣

଴  Since the 
battery does not provide any backup power, the 
hydrogen tank’s level is directly proportional to the 
available emergency backup time 𝑡௕௔௖௞௨௣ (Figure 4) 
 

4.2 Components’ size 
In this system, a total of 11 parameters have been 

optimized, most of them are related to the rated output 
or physical size of these components. Additionally, 53 
weekly hydrogen deliveries have been computed 
(Figure 3). The results of the optimal sized components 
is shown in Table 3. 
The following is worth to be noted: 
 The resulting photovoltaics is not covering all the 

available area for the reasons previously exposed 
 The fuel cell is sized mainly to match the backup 

power requirements.  
 The battery capacity is minimal, reaching 

practical zero size 
 Carbon taxes are more economical than carbon 

capture technologies 
 

4.3 Optimal control 
Interesting findings can be done by visualizing the 

control trajectories.  
 
The state of charge of the tank is limited by the back-
up requirements and not by its bound parameter, see 
Figure 4. The back-up requirements have therefore a 
direct impact on the amount of the weekly hydrogen 
delivery and the tank size.  
 
The power from the photovoltaics is in principle never 
curtailed because the maximum output of the 

photovoltaic power plant is below the rated power 
input of the electrolyzer (Table 3), which means that 
the optimizer is always able to utilize the surplus 
energy either for the electricity load directly or for 
hydrogen production. 
 
Peak shaving in the summer was mainly expected to be 
performed by engaging storage. As shown in Figure 5, 
the optimizer found that it is more cost effective to act 
on the significant controllable load that is the 
electrolyzer. Hydrogen is imported to a higher degree 
in the summer month when this happens, see Figure 3.  
 

 

 

Figure 4 Backup reserve time  𝒕𝒃𝒂𝒄𝒌𝒖𝒑 and tank level 
(normalized)  

 
 

Table 3 Optimized parameters 

Parameter Name Optimal 
size 

Min Max Unit 

battery.capacity 0.01 0.01 2000 MWh 
cCS.m_flow_rat 1e-5 1e-5 1e5 kg/s 
cCU.m_flow_rat 1e-5 1e-5 1e5 kg/s 
electrolyzer.n_cell 22.6 0.01 350 MW 
fuelCell.n_cell 3.1 0.01 212 MW 
grid.P_peak 54.44 0  MW 
heatPump2.P_rat 10.87 1e-7 1e4 MW 
ngBurner2.P_rat 1e-7 1e-7 1e4 MW 
photovoltaics.scale 22.26 0.01 68.9 MW 
tank.V 1069 0.1 1e06 m3 

transformer.P_max 92.73 40 3e5 MW 
     

 

 
Figure 3 Optimal hydrogen deliveries over the course of a 
full year 
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The fuel cell is only used in 2 situations: 
1. It takes over from the electrolyzer in its peak 

shaving activity when the electrolyzer power is 
completely shut down, see Figure 6. As explained 
in 4.1.2, due to its high CapEx, the fuel cell is 
sized to fulfill the backup requirements. Making 
thus up only roughly 15% of the electrolyzer’s 
rated power demand, the impact on peak-shaving 
of the fuel cell is relatively small. 

2. Besides its operation as peak shaver, the fuel cell 
converts the otherwise unused boil-off hydrogen 
into electricity. When demand for hydrogen 
becomes lower, the fraction of boil-off gas (BOG) 
at the tank outlet increases. During the weekends, 
the hydrogen-load is provided entirely as BOG 
(Figure 6). At the same time, the electrolyzer 
generates additional hydrogen, which results in a 
steady increase in the amount off boil-off 
hydrogen until the demand recovers during 
working hours at the plant. 
Reliquefying the hydrogen (zero boil-off) may be 
a more cost-effective option in such cases but is 
currently not supported in this model. 

 

4.4 Performance 
The optimization problem considered in the paper is 

complex and large-scale. Modelon’s Thermal Power 
library, as well as the component models developed for 
this project, have been designed with dynamic 
optimization in mind. Thanks to a more efficient 
formulation and model improvements, it is now 
possible to solve the TCO optimization problem for a 
full year in a reasonable time. On an entry level PC (i3), 
initializing the problem takes about 5 minutes, with an 
additional 10 minutes to find a solution. Using 
parallelization, it is possible to run parameter sweeps in 
not more than 10 minutes.  
 

5 Conclusion 
In this paper, we have presented a framework that 

allows for the techno-economic assessment of complex 
hybrid energy projects. The benefit of the approach 
relies in the simultaneous design of the controls and the 
process, which lead to lower cost and a more 
systematic way of handling new configurations and 
technologies. The method has been applied on a car 
manufacturing plant to minimize the total cost of 
ownership of the transition towards carbon neutrality. 
The technique was able to estimate the overall cost and 
select the most viable technology options. Some results 
are unexpected and cannot be found by considering a 
part of the system in isolation, but rather require a 
holistic system model.  
 

 
Figure 5 Demand reduction during summer months 
and peak shaving over the course of one year 

 

 
Figure 6 Demand reduction and peak shaving (detail) 

 

 
Figure 7 Boil-off consumption and peak-shaving 
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Abbreviations 
 
  
EV Electric Vehicle 

HVAC Heating, Ventilation, Air-Conditioning 
TCO Total Cost of Ownership 

BOG Boil-off gas (hydrogen) 
CapEx Capital Expenditure 

OpEx Operational Expenditure 
FC Fuel cell 

PV Photovoltaic 
CCS Carbon Capture and Storage 
CCUS Carbon Capture, Utilization and Storage 

NPV Net Present Value 
FMI Functional Mock-up Interface 

 

References 
Fathima A. and Palanisamy K. “Optimization in microgrids 

with hybrid energy systems – A review”. Renewable and 
Sustainable Energy Reviews, 45, 431-446, 2015 

Magnusson F., Velut S., Åberg M. and Gao R. Optimal 
Design of Microgrids with Hydrogen Components Using 
Modelica. Proceedings of 1DCAE-MBD JSME 
symposium, December 2021, Tokyo, Japan  

Åkesson, Johan. Optimica-An Extension of Modelica 
Supporting Dynamic Optimization, Proceedings of the 6th 
International Modelica Conference, Bielefeld, Germany, 
2008 

Magnusson, Fredrik, and Åkesson, Johan. "Dynamic 
optimization in JModelica.org." Processes, vol. 3, no. 2, 
2015, pp. 471-496. 

Velut S., Andreasson J., et al. ”A Modelica-based solution 
for the simulation and optimization of microgrids”, 
Proceedings of Asian Modelica Conference 2020, Tokyo, 
Japan, October 08-09, 2020 

 Windahl, Johan, et al. “Platform for Microgrid Design and 
Operation.” Proceedings of the 13th International 
Modelica Conference, Regensburg, Germany, March 4–6, 
2019, Linköping University Electronic Press, 1 Feb. 2019. 
Crossref, doi:10.3384/ecp19157405. 

“Thermal Power Library: Modelica Library Built by 
Modelon.” Modelon, 
https://www.modelon.com/library/thermal-power-library/. 
Accessed on August 17, 2022. 

 “Modelon Impact: Turn simulation results into business 
decisions with confidence.” Modelon, 
https://modelon.com/modelon-impact/. Accessed on 
August 17, 2022. 

• Ramakrishnan Venkatraman and Siddharta Kumar Khaitan. 
A Survey of Techniques for Designing and Managing 
Microgrids. IEEE Power & Energy Society General 
Meeting, 2015 

Session A: Thermal and power system (1)

DOI
10.3384/ecp19325

Proceedings of Asian Modelica Conference 2022
November 24-25, 2022, Tokyo, Japan

33


