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Abstract
Numerical calculations based on models are nowadays
standard tools in all engineering disciplines. The tools,
which faciliate the modeling, generally include all tasks in
an engineering workflow. These tasks range from simple
model descriptions to advanced visualization of results.

While the incorporation of all tasks in one tool fits
neatly into a single-person scheme, it makes teamwork
with shared tasks very hard. In particular, every mem-
ber of the team has to use the exact same software, and
every sub-task has to be available in the tool. This re-
quirement, in turn, makes a joint development of advanced
methods unnecessarily complicated. Especially the nu-
merical analysis of problem tailored methods requires a
detailed knowledge of all model ingredients.

The basis for joint workflows and teamwork are in-
terfaces and common data formats. In this publication,
we present a data format for geometrically and physically
coupled systems. The data formats structure bases on the
standardized format JSON, whereas the content is derived
from a mathematical model. Finally, for presentational
purposes, we present an instance of a simplified model.
Keywords: model language, software interfaces, partial
differential equations

1 Introduction
Over the recent decades, numerical simulations have
proven to be an indispensable tool for understanding sci-
entific and industrial processes.

Part of the success story of numerical methods are the
thorough numerical analysis and the increasing trust of the
users. The users of numerical software are a very hetero-
geneous group. On the one end of the spectrum we find
users who only concentrate on the results and runtime of
the method. The quality of a solution is then assessed by

∗This work was supported by the DFG grants 174223256 – TRR
96 and 460135501 - NFDI 29/1 “MaRDI – Mathematische Forschungs-
dateninitiative”.

comparison to experience, expectation and measurements.
Deviations from the expectations are usually attributed to
the model. On the opposite end we have those who have
a deeper understanding of the method, and select numer-
ical methods based on the properties of the model. This
subgroup also considers numerical errors in addition to
the model errors. In contrast to both, the numerical ana-
lysts consider the method itself as a research subject. They
know the details and properties of the methods, and relate
the efficiency of the method to the properties of the model.
To them, the model error is not of interest, but serves as
tolerance.

A development team for a new technical device, to-
gether with its digital twin, has to incorporate all the above
user types. We aim to provide a workflow that suites all
their needs and allows for maximum flexibility in the dis-
tribution of tasks among them, i. e. benefits teamwork in
the best possible way. As an example we investigate the
development of a thermo-elastic model of a machine.

The workflow was applied to a thermal model in
Sauerzapf et al., 2020 and Vettermann et al., 2021 and
a thermo-mechanical model in Naumann, Herzog, 2021
using the proposed data formats. Here, we concentrate
on the interface and the key ideas. In particular, we con-
sider the data format as an approach to extend Modelica R©

with functionality for coupled partial differential equa-
tions (PDEs).

The development of new machines requires, often prior
to construction, a deep understanding of the resulting ma-
chine’s behavior under load and other influences from the
environment. Particularly the interaction between the ma-
chine components, and their influence on quantities of in-
terests (QOI), require a thorough analysis. Nowadays, this
analysis is generally carried out numerically with the help
of a digital twin of the machine.

Computer aided design (CAD) representations of the
machine form the basis for the numerical analysis. These
CAD models represent the geometry of the machine. De-
pending on the specific question, the geometry can be cho-
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sen more or less detailed.
The physical model extends the geometric model with

the physical effects of interest. A physical model contains
a variety of sub-models, where each sub-model describes
a particular effect up to the required accuracy. For ex-
ample, (thermal) loads inside a machine describe the heat
input per volume, or the description of the interaction with
the environment are sub-models. These examples belong
to one physics, but different geometric parts. Nowadays
multi physics models, which link several physics, are stan-
dard. Our use case, the thermo-elastic model of a ma-
chine tool, comprises the evolution of the heat distribution
and the corresponding mechanical expansion. Therefore,
a data format for the description of the physical system
must be able to distinguish sub-models of the different
physics.

We describe the overall physics using coupled systems
of PDEs. The physical model, thus, consists of equations
of different types. Among these types, there are systems
of PDEs to describe the overall physics, like the evolu-
tion of the temperature field, algebraic equations for sim-
ple sources and ordinary differential equations (ODEs) to
describe more complex sources. For the heat equation,
these sources correspond to thermal loads inside and at
the boundary. In the mechanical model, the sources cor-
respond to forces acting inside a volume or at a boundary.
In the thermo-elastic model, each physical type can exist.

To the authors knowledge, there are not many data for-
mats to describe a system of geometrically and physically
coupled PDEs. The authors are aware of

• extensions to support PDEs in Modelica R©, see Li,
Zhang, Zheng, 2008; Saldamli et al., 2005. So far,
these extension to Modelica R© only support very sim-
ple geometries, and, as a consequence, very simple
(spatial) discretization methods.

• toolboxes in symbolic software Portela, Charafi,
2002. These toolboxes are tightly bound to the soft-
ware, which we want to avoid.

• two similar approaches to describe finite element
(FE) analysis using XML Michopoulos et al., 2001;
Pinheiro, Moita, 2004. Their goal is to exchange
a full set of FE analysis data, including results and
solver data. Our aim is to separate the solver and tool
specific configurations from the problem description.
Sadly, the website femml.sourceforge.net
had the last update in May 2002.

• a masters thesis Hvalstad-Nilsen, 2019, in which a
YAML-based file format was developed. Similar to
Michopoulos et al., 2001, the student describes a full
FE analysis.

Due to this lack of tool-agnostic data formats, or libraries,
for PDEs we developed a new format.

The numerical solution of the PDEs requires discretiza-
tion in space and time. We follow the method-of-lines ap-

proach, which first performs a spatial-semidiscretization,
leading to a system of ODEs.

For simplicity, we will present the structures and ex-
plain their relationships using the heat equation, and note
the extensions for the mechanical behavior, where appro-
priate.

The thermal loads induce the majority of the thermal
behaviour of the machine. Therefore, they must be con-
sidered properly in the thermal PDE model. At the same
time, these loads determine the overall time scales. Promi-
nent examples are rapidly varying loads and the coupling
heat fluxes for relatively moving machine components. In
particular the treatment of the temperature dependency of
the coupling fluxes are of special interest when discretiz-
ing the PDE.

We propose the separation into a problem description
and algorithm description. That way, only the algorithm
description requires tool specific entries whereas the prob-
lem part concentrates on the common entries. Thus, we
propose to use external software packages for the finite el-
ement (FE) discretization. Proprietary software solutions
often provide a seamless workflow starting from the CAD
model and proceeding all the way to the solution of the
discretized ODEs. Consequently, the mathematical details
and methods are completely hidden in the software.

This abstraction has the advantage that the construction
of large and complicated models becomes feasible. At
the same time, the specific numerical methods are harder,
and more frequently not at all, extendable or even known.
In contrast, the open-source packages are usually more
specialized in the single tasks. For example, the mesh
generation and the assembly (or, nowadays, the applica-
tion) of the FE operators are usually implemented in dif-
ferent libraries. Thus, the implementation of a model re-
quires a profound understanding of the underlying numer-
ical methods. From the scientific point of view, access to
the numerical methods and their implementation is key for
further improvements and for understanding the efficiency
of the simulation. At the same time, the open-source soft-
ware in many cases has free licenses, thus the costs for
the development can be reduced, when the license model
allows proprietary downstream use, and modelers have re-
ceived the appropriate training. See Sauerzapf et al., 2020
for an example where we show how to use open-source
tools for discretization and model order reduction from
within the proprietary FE package ANSYS R©.

To facilitate the cooperation between scientific disci-
plines we propose an interface between

(i) industry standard modeling tools, like ANSYS R© or
COMSOL R©,

(ii) open-source FE software packages, like DUNE or
FENICS,

(iii) ODE software packages.

In addition to the aforementioned tasks, the same interface
connects to model order reduction (MOR), sensor place-
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ment Naumann, Herzog, 2021 or even parameter estima-
tion. While the incorporation of the MOR toolbox relies
mainly on the structure of the mathematical model, higher-
level tasks such as sensor placement and parameter esti-
mation require further operations. We concentrate on the
extension of the FE discretization in space with the geo-
metric coupling approaches. The interface to MOR and
ODE packages will be discussed together.

For these purposes, the pointwise evaluation, as pro-
vided by a functional mockup unit (FMU), is not suffi-
cient. In particular the MOR methods require the sepa-
ration into inputs and corresponding coefficients. Thus,
the FMU export and import between ANSYS R© and
Modelica R© does not meet all our requirements.

We propose a tool-agnostic data format, which provides
all required information about the model in an object-
oriented layout. As a result, our proposed interface con-
tains only the relationships between physical entities, but
does not denote variables in the sense of a particular pro-
gramming language, or environment.

From an abstract point of view, our format has similar
goals as the SSP-standard Association, n.d. Both aim to
separate common properties and relationships from tool
specific ones. While the SSP-standard aims to bundle
(technical) systems, we consider a mathematical model.
In addition we made different technical decisions, like the
basic file format or notation of URIs.

The structures of the (mathematical) PDE model and
the ODE model are the basis for the interface. We briefly
explain these models in Section 2. The two interfaces, one
between the industry modeling tools and the open-source
software, and one between the generated ODE and the
simulation software packages, will be described in Sec-
tion 3. Finally, we demonstrate the interface format with
a simple model in Section 4 and give an outlook in Sec-
tion 5.

2 Mathematical background
This section provides the mathematical foundations of the
PDE and the ODE model at hand. Because the second
stems from the discretization of the first, they have some
parts in common.

The PDE model will use the heat equation for pur-
pose of presentation. As it is a scalar equation for a
scalar field, we can concentrate on the general structure.
Other physical PDE, like Eulers equation, Navier-Stokes
equations, equations of linear elasticity follow the same
scheme. They comprise differential operators in space and
time, which operate on a solution field. The tensor shape
of the solution field is determined by the physical quan-
tity. The boundary conditions close the system. Boundary
conditions for vector valued problems can also restrict the
vector to a sub-space and in general depend on the local
basis of the vector field. For example, in linear elasticity,
one fixes one coordinate direction, but leaves the others
free to prevent penetration of a wall, but allow friction-

less sliding along it.
In analogy, we present the ODE in Section 2.2 as first

order ODE. The order is determined by the order (of the
time derivative) of the PDE. Although one can transform
every higher order ODE into a system of first-order ODEs,
in a data format it is favorable to keep the second-order
structure.

2.1 The PDE model
Real world applications often feature complicated geome-
tries, where the FE discretization is the standard proce-
dure. For the mathematical theory of the discretization we
refer the reader to Grossmann, Roos, 1994; Zienkiewicz,
Zhu, 1987.

We consider the conservation of heat in a system of
solids with heat exchange between them. In the ith solid
with domain Ω(i) we describe the evolution of the temper-
ature T (i) using the heat equation, i. e.

∂t

(
ρ
(i)C(i)

p T (i)
)
−∇ ·

(
λ
(i)

∇T (i)
)
= Q(i) in Ω

(i) (2.1a)

∂nλ
(i)T (i) = g(i)N, j on Γ

(i)
N, j (2.1b)

T (i) = g(i)D, j on Γ
(i)
D, j . (2.1c)

Inside the domain Ω(i), the PDE (2.1a) holds, which de-
pends on the material parameters density ρ(i), capacity at
constant pressure C(i)

p and heat conduction λ (i), as well as
on the volumetric thermal sources Q(i). Since the machine
parts are often assembly groups consisting of several bod-
ies, in addition, we assume to have a partition of the do-
main Ω(i) into subdomains Ω

(i)
j . Each domain Ω(i), then,

is a part and the subdomains Ω
(i)
j are the single bodies in-

side that part.
When the assembly groups move relative to each other,

the domain Ω(i) is time-dependent. Thus, the domain Ω(i)

at time t can be defined as

Ω
(i)(t) :=

{
x(i)
∣∣x(i)(t) = g(i)M (t, x̂(i)) ∀x̂(i) ∈ Ω̃

(i)}, (2.2)

where Ω̃(i) is a fixed reference domain and g(i)M repre-
sents the movement. For simplicity, we restrict the move-
ments to expressions of the form g(i)M (t, x̂(i)) =O(i)(t)x̂(i)+
b(i)(t), where O(i) are orthogonal matrices. In case
of time-dependent non-orthogonal coordinate transfor-
mations, the space-discrete system gets additional time-
dependent terms.

Each boundary Γ(i) is also separated into sub-
boundaries Γ

(i)
N, j and Γ

(i)
D, j. At each sub-boundary we apply

either condition (2.1b), or (2.1c), whichever corresponds
to the sub-boundary type. Please note that the subset of
the boundaries is independent of the selection of the bod-
ies, although they might intersect. The subscripts N and D
represent Neumann and Dirichlet conditions, respectively.

In general, the material parameters and right-hand side
of the boundary conditions can be arbitrary expressions.
In particular, all expressions are allowed to depend on
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time, space and temperature, or a mixture thereof. The
dependencies of the material parameters, the sources and
the boundary conditions on the temperature determine the
classification of the PDE.

Despite the simplicity, temperature-independent ma-
terial parameters and at most linearly temperature-
dependent sources and boundary conditions, often de-
scribe the reality to sufficient accuracy. This special case
renders the PDE model linear, which carries over to the
ODE, after spatial semi-discretization. The solution of
PDEs with constant coefficients is well understood and a
wide range of numerical methods exists. The discretiza-
tion requires the dependency information for all expres-
sions.

We equip the system of heat equations with QOIs

y = C (T ) , (2.3)

where the operator C maps all temperature fields to one
vector. The following output operators are of special in-
terest:

(i) A linear, block-structured operator C , such that the
QOI yi depends on the temperature field T (i) in the
i-th body. This case includes the temperature in a
point, the average temperature in the whole domain,
in parts of the domain, or averages on surfaces. This
structure was used in Vettermann et al., 2021 to de-
scribe thermally coupled, relatively moving parts.

(ii) A linear, block structured operator C , such that
a QOI depends on the temperature fields in two
parts. These QOIs can describe the heat flux between
neighboring parts, in form of a scaled multiple of the
temperature difference.

(iii) An unstructured operator, which correspond to dis-
placements in certain important points. These dis-
placements describe the translation and rotation of a
tool. The operator is the application of the inverse of
the discrete linear elasticity on a temperature field.
Due to the mechanical coupling, the operator acts on
all temperature fields.

Thus, the complete PDE model describes a scalar PDE
in a moving domain with mixed boundary conditions and
user defined output operators. Please note, that the cou-
pling of different physics can be hidden in the output op-
erators.

2.2 The ODE model
The discretization in space transforms the system of PDEs
into a system of ODEs. This ODE is block structured,
where every block row represents the contribution of the
PDE for one solid. In the following, we will omit the su-
perscripts and describe the construction of a single block.

The basis for the FE discretization in space is the weak

Table 2.1. Expressions corresponding to the differential opera-
tors of Eq. (2.1a).

dependency ∂t(ρCpT ) −∇ · (λ ·∇T )
constant ρCpMV Ṫ λLV T

time ∂t(ρCp)MV T+(ρCp)(t)MV Ṫ λ (t)LV T

formulation of Eq. (2.1) on the reference domain Ω̃, i. e.∫
Ω̃

∂t(ρCpT )ψdx+
∫

Ω̃

(λ ·∇T ) ·∇ψdx =∫
Ω̃

Qψdx+
∫

Γ̃N

gNψdS,
(2.4)

with suitable test functions ψ . Finally, we represent the
solution T (t,x) in the form T (t,x) = ∑l Tl(t)ϕl(x). Thus,
the solution is decomposed into a time-dependent vector
and a set of space-dependent, but time-independent, func-
tions ϕl . The functions ϕl form a basis for the function
space, which includes the Dirichlet conditions. The test
functions ψ vanish on the Dirichlet boundary ΓD.

The dependencies of the material parameters, the
sources, and the boundary conditions on the temperature,
space or time can lead to more terms, or a higher complex-
ity. Note that a space parameter also has a representation
in the same form as the solution. Therefore, we can ne-
glect the space dependency in the following and concen-
trate on the time- and solution-dependence.

The Tables 2.1 and 2.2 represent the FE discretiza-
tion for the volume and surface expressions in Eq. (2.1).
Please note the linearity or independence of the solution
T . Therefore, the PDE is linear too, and the discretized
system will remain linear in the states.

The expressions MV , LV , bV , bS, j represent the space-
dependent part of the FE discretization. We use the sub-
scripts V , S and C to refer to the integrals over a volume,
surface and surface intersections, respectively. The sym-
bols M, A and b refer to the FE mass matrix, the discrete
Laplacian matrix and the integral vectors of the test func-
tions, i.e.

[MV ]kl =
∫

Ω̃

ϕlψk [bV ]k =
∫

Ω̃

ψk

[MS, j]kl =
∫

Γ̃ j

ϕlψk [bS]k =
∫

Γ̃

ψk

[LV ]kl =
∫

Ω̃

∇ϕl ·∇ψk [M(i, j)
C,m ]

kl
=
∫

Γ
(i)
N,m∩Γ

( j)
N,m

ϕ
(i)
l ψ

( j)
k .

All matrices depend only the discretization, but not on
material parameters. Thus for example the mass matrix
is neither the usual capacity matrix, nor the mass matrix
from mechanics.

The volume integrals on the left-hand side can be fur-
ther decomposed into bodies to account for piecewise ma-
terial parameters. Thus, for piecewise material, the ex-
pressions ρCpMV and λLV in Table 2.1 can be decom-
posed into sums over all bodies.

The Dirichlet boundary conditions (2.1c) describe the
value in all nodes on the surface ΓD. Thus, the test func-
tions ψ vanish on ΓD. In turn the entries [bV ]k and [bS]k
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Table 2.2. Expressions corresponding to the sources and the boundary conditions Eqs. (2.1a) and (2.1b).

Q gN, j gD, j
constant QbV gN, jbS, j gD, jbD, j

time Q(t)bV gN, j(t)bS, j gD, j(t)bD, j
α(t)T +β (t) α(t)MDT+β (t)bV α(t)MS, jT+β (t)bS, j —

α(t)
(

T ( j)−T (i)
)

— α(t)
(

M(i, j)
C,m T( j)−M(i,i)

C,mT(i)
)

—
nonlinear in T Q(y)bV gN, j(y)bS, j —

and kth rows of MS and MV vanish for xk ∈ ΓD. Instead
we insert the condition Tl = gD, j(xl) into LV and a cor-
responding vector bD, where the subscript D refers to the
Dirichlet conditions. We replace the row k of LV by the
unit row and set bD to the kth column of LV afterwards.We
refer the reader to Logg, Mardal, Wells, 2012, Section 6.3
for a local element approach. Please note that the Dirich-
let conditions cause algebraic equations and therefore lead
to a differential algebraic equation (DAE) system instead
an ODE system. For the sake of presentation, we consider
only systems of ODEs.

The Table 2.2 lists the expressions, which arise from
the discretization of the sources and the boundary condi-
tions. The rows are sorted with increasing dependency,
where the time-dependence has lower complexity than
temperature-dependence and a linear expression has also
a lower complexity than a nonlinear one.

The fourth row in Table 2.2 represents the coupling be-
tween the thermal fields through a heat flux. The heat flux
into part i is assumed to be linear in the temperature. Thus,
the surface integrals for MC,m are restricted to some com-
mon surface between the components. Due to the relative
movement, this surface is in general time-dependent, thus
the matrices M(i, j)

Cm
and M(i,i)

Cm
are in general time-dependent

too, even if the heat transfer coefficient α is constant. In
an efficient implementation, this part is interpreted as an
operator instead of a matrix.

The fifth row in Table 2.2 provides an additional ap-
proach to approximate the heat flux between different
parts and accounts for a simplified approximation of non-
linear sources and boundary conditions. The convergence
of an FE discretization requires an approximation of the
integrals in Eq. (2.4) up to the required order, with a suit-
able quadrature formula. Thus, the nonlinear boundary
condition gN has to be evaluated in the quadrature points
at the element level. Using piecewise constant tempera-
tures, where the pieces are subdivisions of the domain (or
surface), leads to a cheaper approximation at the costs of
the order of the approximation.

The piecewise constant temperature on each piece is
the average temperature, which can also serve as a QOI
of the model. The same idea can be used to approximate
the heat exchange. The coupling matrices M(i, j)

Cm
depend

on the meshes of both parts and the exchange between
the meshes can be quite demanding. Thus, approximation
uses the subdivision of the surface and replaces the point-

wise temperatures T (i) and T ( j) by their averages over the
pieces on their meshes. This makes the meshes indepen-
dent and the computations far cheaper. At the same time
we can also represent the heat exchange between moving
geometries without time dependent coefficients. The dis-
advantages of the piecewise constant approximation is the
lower accuracy and the dependency of inputs in one block
on outputs of another block.

Block ODE The full block system consists of all blocks
from the previous paragraph combined with a set of ex-
ternal systems without any particular structure. Thus, we
collect the terms by coefficients of ẋ, x, dependence on
time t and for nonlinear T and outputs y in this order to
obtain the first block in the ODE

Mẋ = (Ac +At(t))x+Bcuc +Btut(t)+Byuy(t,Y ) (2.5a)
y =Cx (2.5b)

ẋext = fext(t,xext,Y ) (2.5c)
yext = hext(xext). (2.5d)

The second block consists of all right-hand sides, which
are provided by external functions. A particular exam-
ple for the external functions are the FMUs in model ex-
change mode. By contrast, an FMU in Co-Simulation
mode contributes to the inputs uy, where the subscript y
denotes the dependency on outputs. Thus, the ODE con-
sists of all terms of the form in Tables 2.1 and 2.2, but
they are decomposed into the coefficients and the inputs.
The matrix M is composed of all coefficients of the time
derivatives, and is block diagonal. The matrices Ac and
At are the block matrices, composed of the coefficients
of T, which includes the (negative) discrete Laplacians
and the mass matrices MS and MC from the flux bound-
ary conditions gN . Please note the different origins of the
time-dependence of the coefficients. These can originate
from time-dependent heat transfer coefficients (HTCs), or
from relatively moving parts. While the time-dependent
HTCs lead to a time-dependent scalar coefficient with a
constant surface mass matrix, the coupled surfaces lead to
time-dependent operators, involving the integrals on the
common surface.

The matrices B originate from the vectors b and com-
monly correspond to the inputs u of the ODE. This in-
cludes all sources and boundary conditions, irrespective of
the type. The only differences, denoted by the subscripts
c, t and y, are the dependencies on time and outputs. Note
that the output dependencies uy introduce an indirect de-
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Figure 3.1. Relation between entities in the PDE model. Solid
edges denote an aggregation, where the heads of the edges deter-
mine the aggregation types. A diamond head represents a dictio-
nary, a circle head an array and an arrow corresponds to a single
value of the type. Heads without marker correspond to single
values of the referenced structur. Dashed lines represent indirect
relations using keys of dictionaries or indices into an array.

pendence on the states and can render the ODE a nonlinear
system, as well.

The QOIs C are represented by the operator C. We will
consider only linear output operators, therefore C can be
represented by a matrix.

3 Interfaces
The preceding section described the model equations for
the PDE and the DAE. Each equation provides a structure
and consists of several terms. Usually, the expressions in
the terms correspond to physical properties. Thus, a hier-
archical model description denotes the physical properties
as objects, whereas the equations link them together. This
section is devoted to the structure and content of the new
model descriptions.

3.1 PDE model
The Eqs. (2.1) and (2.2) show all components of the PDE
model:

• the reference domains Ω̃(i), which are approximated
by mesh files,

• the movements, which are vector valued expressions,
in contrast to the field valued sources and boundary
conditions,

• the material parameters ρ , Cp and λ , which are scalar
expressions,

• each boundary condition gN, j and gD, j, which is a
pair of a scalar expression and the reference to the
corresponding sub-boundary.

The components of the PDE model are depicted in
Fig. 3.1. The central node with the title “PDE” combines
all other entries. The entry materials is separated from the
remaining model, and only relates to the expressions.

The model joins all geometric properties and relations
using the class Geometry and the entry geometry of the
class PDE. As a consequence, the subgraph of the ge-
ometry contains the assemblies, which consist of parts
and bodies. Each part is attached to a coordinate system,
which is also part of the geometry subgraph.

The entry boundaryConditions, which is an instance
of the class BoundaryConditions, contains value and flux
conditions. Each condition references the corresponding
expression and is attached to the master. The rank of
these conditions must be the same, as the rank of the field.
Thus, for the heat equation, the expression must be scalar,
whereas for the equations of elasticity the expressions are
vector valued.

We distinguish coupling from non-coupling boundary
condition with the enum geotype. A value of Face rep-
resents loads, which are active on one surface, whereas
FaceFace represents the coupling of two neighboring sur-
faces. The corresponding facing / opposite surface is de-
termined by the entry slave. The boundary conditions and
their associated expressions must match to their physics,
respectively. Therefore, the description of mixed systems
of PDEs modeling different physical quantities require an
appropriate association. Please note the missing associa-
tion with the physics. As our models are the equations of
thermo-elasticity, we had no need to specify that explic-
itly.

All the assembly’s movements are part of the list move-
ments, where every entry is an instance of the class Move-
ment. Each assembly references the local movement,
which is relative to the kinematic parent. Thus, the global
movement of an assembly is given by the successive com-
position of the local movements of all predecessors.

The expressions are the common structure between the
PDE model and the ODE model. Due to their central na-
ture, we explain them in detail in Section 3.3.

3.2 ODE model
We depict the ODE model in Fig. 3.2. The model con-
sists of a blockIO, the expressions and associations. The
mathematical basis is a block structured ODE as given by
Eq. (2.5). Each matrix entry of the blockIO represents a
block matrix. While the output matrices C and the mass
matrices E are block diagonal, the coefficient matrices Ac
and At might be dense. Thus, the former are arrays of sub-
matrices, whereas the latter are arrays of arrays of sub-
matrices. The matrices E, Ac and At have coefficients,
which are stored in the arrays m, α and β , respectively. In
analogy the input matrices Bc, Bt and By correspond to the
inputs uc, ut and uy. The sub-scripts refer to the dependen-
cies of the expressions, i. e. constant, time-dependent and
output-dependent. The associations By link the outputs to
the expression. Please note the missing entry of the size
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Figure 3.2. The relationship of the ODE model. The line and arrow styles are the same as in Fig. 3.1.

of the blocks. This must be inferred from the size of the
sub-matrices.

This format proves to be very flexible and easy to ex-
tend, in a backward compatible way. Thus, it allows for
the incorporation of advanced mathematical methods for
the considered models. We highlight some aspects which
were included in the data format to meet the method’s
special requirements using the example of MOR for lin-
ear time-invariant as well as linear parameter-varying sys-
tems.

MOR is used to compute low-dimensional surrogate
models, which allow for accelerated simulations, see e.g.
Antoulas, 2005; Benner, Grivet-Talocia, et al., 2021.
System-theory based MOR methods require a model in
input-output form as given in Eq. (2.5). Especially, in
the case where a physical parameter is supposed to be
preserved in the reduced-order model, i. e. in the para-
metric MOR (PMOR), the splitting into time-dependent
coefficients β and constant matrices At coincides with
the parameter-affine format proposed, e. g., in Benner,
Gugercin, Willcox, 2015,. Then, the corresponding MOR
methods, based on interpolation in parameter direction,
come into consideration. Therefore, a possible parame-
ter p and corresponding coefficients β (p) were added to
the model description. Moreover, these methods require
a suitable parameter interval [a,b]. On this interval, lo-
cal reduced-order models (ROMs) are computed in some
parameter sample points. For a given parameter value
p ∈ [a,b] these sample ROMS are then interpolated in one
way or another. These PMOR methods can, thus, be di-
rectly applied to the models at hand.

Furthermore, the expected magnitude of the inputs u
is important for reliable ROMs, as the MOR error scales
with, both, the system approximation error, and u, see Vet-
termann et al., 2021 and the references therein for fur-
ther information. Thus, this magnitude is computed us-
ing the provided expressions uc,ut and uy and is then used
to transfer the scaling to the columns of the input matri-
ces Bc,Bt and By prior to the MOR step, such that it can
be taken into account in the system approximation and u
itself is normalized.

The addition of the geometric coupling approaches, as
stated in Section 2, allows for tailored MOR strategies
utilizing the special structure of these models, see Vetter-
mann et al., 2021. By including all necessary information
in the ODE model-description the MOR methods can be
applied in a user-friendly semi-automatic process.

3.3 Expressions
The expressions are the common structures, which are
shared between the PDE and ODE model.

We separate the expressions with respect to two classi-
fications

(i) The dependency on other expressions or solution
fields with the entry dependencyclass. These classes
are

• Constant are constant values, which do not de-
pend on anything else.

• Equationset represents compound expres-
sions, which involve further expressions. The
dependencies between expressions are denoted
by the map dependencies. These also include
characteristic maps, which are represented by
file names. FMUs are treated as a particu-
lar (complicated) expression. There, interac-
tion with the solution is determined by the
classification. The interaction between dif-
ferent FMUs is described by the dependency.
Thus the expressions here are comparable to
the transformations in the SSP-standard Asso-
ciation, n.d., p. 23.

• Sensor represents a linear functional of a so-
lution field on one part. The specific geome-
try entity is described in the dependency map
in analogy to the dependency on other expres-
sions. Examples for these are the temperature
average on a surface and the temperature value
at a point.

(ii) The function classification, given by classification
separates the expressions into time, time and one
field value and time and two field values, or a vec-
tor of outputs. Thus, this classification concretises
an expression of dependency class Equationset.

The first classification separates the expressions into sim-
ple, compound field-independent expressions and field-
dependent expressions. Please note that an expression
with dependency Sensor can exist only in a PDE model
and is the only expression which can reference a geomet-
ric object. Therefore, during the ODE generation, the gen-
erator must keep track of all Sensor-type expressions and
replace their occurrences by a reference to the correspond-
ing output.
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Figure 4.1. The cooling model with three flux outputs and three
temperature inputs.

The second classification provides the interface for the
function implementation, including the dependencies, to
other expressions. Please note that this classification cor-
responds to the inputs u in the ODE system (2.5). At the
same time, this classification implicitly serves as a nota-
tion for the dependency between the expressions and the
solutions. Thus, when generating an ODE, an expression
which depends on a solution value in the PDE model must
be either decomposed according to Table 2.2 or related to
an output.

Finally, an expression can have outcomes of different
sizes or even different units. Every outcome is an entry in
the list outputs, which is an instance of the class Quantity.
A Quantity denotes the physical unit, and the description
of the value. Each value consists of a vector dimension,
which encodes the shape. Constant expressions also have
a data-array, which contains the value, or a filename, if the
values are stored elsewhere.

A numerical solution of an ODE requires the evalua-
tion of the expressions. These implementations are en-
capsulated in an accompanying library, which represents
a database of functors. This database maps a string to a
functor with the signature according to the function clas-
sification (Item (ii)). The key of the corresponding functor
is the entry databasename in the expression. It is up to the
implementation of the database to provide further prop-
erties and operations, like linearity and derivatives with
respect to constant arguments.

4 Two body model
To illustrate the usage of the interface formats described in
Section 3, a simple model along with excerpts from json
files. These files are exchanged between the interdisci-
plinary groups in the CRC/TR96. In detail, the json file
Fig. 4.4 was generated using ANSYS R©by one author, and
used the code from a second author to generate Fig. 4.5.
This ODE model will be fed to the MOR toolbox, written
by the third author. Please note, that the ODE model could

also be generated using ANSYS R© directly.
The Fig. 4.2 shows the geometry of the example model.

It comprises two assemblies, where each one consists of
one part. Each part comprises two bodies, which are
highlighted by the colors. Both assemblies exchange heat
through a neighbouring surface with a linear temperature-
dependent flux of the form q = α(T (1)−T (2)).

The boundary conditions we applied are shown in
Fig. 4.3. In this particular case, the cooling system shown
in Fig. 4.1 is integrated as an FMU.

Collaborators in the authors research project con-
structed a complex cooling system in Shabi, Weber, We-
ber, 2017, which is part of the thermal model of a complex
machine tool. For the sake of presentation, we simplified
this model to a tank, an ideal pump and three pipes. The
heat exchange between fluid and body walls is realized
using convection subsystems in the Modelica R© model.

The connection to the machine is two-fold:. The FMU
inputs are the (averaged) temperatures at the correspond-
ing surfaces. Internally, the FMU computes the heat fluxes
for every pipe. These are the outputs of the FMU, and
serve as the heat fluxes at the aforementioned surfaces.

Figure 4.4 depicts the PDE model. This relates to
Figs. 4.2 and 4.3 using the same colors. We added the
FMU using a single expression and reference the corre-
sponding outputs in the boundary condition. As a conse-
quence, practically, the FMU is evaluated only once.

The ODE model in Fig. 4.5 shows the relation of the
coefficient matrix to the piecewise materials. In addition,
we also highlight the corresponding expressions for the
boundary conditions. As can be seen from the coefficient
alpha, we decompose the coupling heat flux and use only
the coefficient. Also note the change of the FMU expres-
sion. Instead of multiple outputs, we use a single vec-
tor valued output and classify the expression to depend on
time and outputs.

5 Summary and outlook
This contribution describes a PDE model and an ODE
model and introduces a data format to exchange each of
them. Each model type comprises all entities arising in
the mathematical model except the equations. Their rela-
tion is therefore only part of the documentation.

The simple two body model showed the basic thermal
properties and a thermal load given as a simplified cooling
system, which is provided as an FMU. Thus, the whole
complexity, and possible intellectual properties, remain
hidden in the FMU. This very simple example shows that
both descriptions are general enough to describe geometri-
cally coupled thermal problems with very complex loads,
developed by collaborators in the same research project.
Despite the simplicity, the example model also highlights
the successful simplification of the model exchange be-
tween mathematicians and engineers. The engineers got
access to state-of-the-art open source implementations of
FE discretizations and MOR techniques. In the other di-
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Figure 4.2. The geometry of the example model. Each color
represents one body, whereas the legend indices denote the log-
ical position as (assembly, part, body) in the description.

exchange coolingSystem2 coolingSystem3 coolingSystem4

fluxes

Figure 4.3. The boundary conditions in the example model. The
colors red and light to dark blue represent the heat exchange and
the cooling boundary conditions, respectively.

{
 "geometry": {
   "assemblies": [
     {
       "parts": [
         {
             "meshfile": "coupledflux_top.json",  
             "name": "top", 
             "bodies": [
               {"name": "left", "material": "steel" },
               {"name": "right", "material": "alu" }
             ],
             "coordinatesystem": 0
          }
       ],
       "name": "assembly"
     }, 
     {...}
     }
   ], 
   "coordinatesystems": [...]
   }, 
 },
 "materials": {...}, 

                          :

  

:
"boundaryConditions": {

"flux" :[
{

"master": [0, 0, 0],
"expression": "alphaEx",
"name": "alphaEx_0_1",
"slave": [1, 0, 0],
"geotype": "FaceFace"

},
{

"master": [1, 0, 1],
"expression": "coolingSystem",
"name": "coolingSystem2",
"output" : 0
"geotype": "Face"

},
{

"master": [1, 0, 2],
"expression": "coolingSystem",
"name": "coolingSystem4",
"output" : 1
"geotype": "Face"

},
{...}

]
}, :

 
                           :
 "expressions": {
    "steel_capacity": {...},
    "alphaEx": { 
      "dependencyclass": "Equationset",
      "classification": "timeTempTemp", 
      "databasename": "chiAlphaToMT", 
      "outputs": [{
          "value": {"tensenum": "Scalar"}, 
          "unit": {"unitstring": "kg s^-3"}
      }],  
      "arguments": ["alphaIkb"]
    }, 
    "coolingSystem" : {
      "dependencyclass" : "Equationset",
      "classification" : "timeTemp",
      "databasename": "fmuWithTemp",
      "dependencies" : [...],
      "outputs": [{
          "value": {"tensenum": "Scalar"}, 
          "unit": {"unitstring": "kg s^-3"}
      }, {...}, {...}]
    },
      ...
  },
  "sources": [] 
  "movements": [] }

Figure 4.4. Excerpt from json-file used to exchange models in the PDE-Interface format. The colors mark the corresponding
entities in Fig. 4.2 and Fig. 4.3.
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{
 "blockIO": {
   "m": [
     ["BG_0_mass_factor_1", "BG_0_mass_factor_2"],
     ["BG_1_mass_factor_1", "BG_1_mass_factor_2"]
   ],
   "alpha": [
     [["BG_0_lapl_factor_1", "BG_0_lapl_factor_2", "alphaIkb"], ["alphaIkb"]]
     [["alphaIkb"], ["BG_1_lapl_factor_1", "BG_1_lapl_factor_2", "alphaIkb"]]
   ],
   "uy": [
     [],
     ["coolingSystem"]
   ],
   "Ac": [...],
   :
   },
   "externals": [],
   "associations": {
     "By": [
       [],
       [[[1, 0], [1, 1], [1, 2]]]
     ],
     :
   },                   
                           :                  

:
"expressions": {

"alphaIkb": {...},
"alphaEx": {

"dependencyclass": "Equationset",
"classification": "timeTempTemp",
"databasename": "chiAlphaToMT",
"outputs": [{

"value": {"tensenum": "Scalar"},
"unit": {"unitstring": "kg s^-3"}

}],
"arguments": ["alphaIkb"]

},
"coolingSystem" : {

"dependencyclass" : "Equationset",
"classification" : "timeOutputs",
"databasename": "fmuHandler",
"outputs": [{

"value": {"tensenum": "Vector", "dimension": [3]},
"unit": {"unitstring": "m^2 kg s^-3"}

}]
},
:

}
}

Figure 4.5. Excerpt from json-file used to exchange models in the ODE-Interface format. The colors mark the corresponding
entities in Fig. 4.2 and Fig. 4.3

rection, the mathematicians optimized sensor placements
for the same models.

The main advantage is the simplicity of the underly-
ing data format. This simplicity renders the (ODE) de-
scription easily extendable with further entries for more
sophisticated methods, like parametric MOR approaches.

Nevertheless models with systems of PDEs describing
various physics require extensions of the PDE model.

We concentrated on the equations for thermo-elasticity,
where the elasticity is assumed to be linear and stationary.
In that particular case, boundary conditions apply either
to the heat equation or the equations of linear elasticity.
Thus, they can be distinguished by the dimension and unit
of the associated expression. In a complicated model, an
additional property would be less error prone and might
be used for consistency checks.

In particular physically coupled models, like thermo-
elastic models, require the addition of another kind of
physics. These require the extension of the boundary
conditions to assign them to the particular physics. The
thermo-elastic models with stationary equations of elas-
ticity can already be described using the output operators
in the ODE model. At the same time the space-discrete dy-
namic equations of linear elasticity are second-order sys-
tems. Thus, the ODE model requires additional coeffi-
cients to represent these.
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