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Abstract

This work discusses the development of a multi-physics
simulated model, in the frame of the decarbonization and
energy efficiency objectives of the European Commission.
Its central feature is the interconnection, through a micro-
grid, of a distributed PV installation and of several elec-
tric dispatchable loads, thus powering a Collective Self-
Consumption network. The simulator presented within
this document aims to serve as a technological enabler for
the design and testing of On-Site DR strategies, which ac-
tuate directly on the connection status of the loads, be-
fore their deployment on the target, real-world systems.
The simulator supports the design and validation of such
strategies by generating realistic simulated data of certain
loads that present monitoring difficulties, taking into ac-
count online, real external weather conditions. All the el-
ements described and modeled in the current work belong
to a real-world installation, which is a university campus
—ESTIA, Bidart, France— composed by several build-
ings with DER.

Keywords: Demand Response (DR), Distributed Energy
Resources (DER), data generation, energy demand disag-
gregation, microgrids, multi-physics simulator

1 Introduction

The non-dispatchable nature of renewable sources usually
leads to remarkable differences between generation and
demand profiles in microgrids and general power grids.
These differences must be solved somehow, as a uninter-
ruptible balance between generation and demand must be
ensured at all times, mainly by the EMS ruling these grids.
Historically, the most common solution to this issue is to
use storage systems in order to shift the time of consump-
tion of the energy generated in the grid, giving the system
a limited, yet dispatchable, energy source (Jurasz et al.,
2020), (Angenendt et al., 2019), (Maranda, 2019).

The renewable generation cannot be largely modified,
since these power generators are mostly dependant of
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weather conditions, which present a stochastic behaviour.
The use of short-term energy buffering in storage systems
is studied by Marafida et al. (Marafida, 2019), for its ap-
plication into different scenarios. The figure 1 depicts the
typical generation and demand profiles —Pp(¢) and P (t)
respectively— of residential PV installations. In the case
depicted in (b) chart, the storage is considered to cause the
buffering of the energy surplus for later use. Following the
notation proposed by Maranda et al., E; is the amount of
energy absorbed by the storage, which is consumed by the
system when needed. Contrarily, the supply of previously
stored energy into the system is referred as E g .
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Figure 1. Typical generation and demand profiles of residential
applications with (b) and without (a) energy storage ((Maranda,
2019))

It is previewed that the deployment of smart systems
and the Internet of Things (IoT) will largely contribute
to the success of DR programs, since this technology is
previewed to allow the remote control of electrical loads
(Pop et al., 2018). Duman et al. (Duman et al.) and
Romanchenko et al. (Romanchenko et al., 2021) ana-
lyze the impact of DR actions achieved through deviations




of the set-point of the so-called smart thermostats. Li et
al. present an optimal management through DR actions
of multi-stakeholder systems in low-carbon communities,
considering the carbon emission restrictions through the
carbon tax (Li and Yu, 2020).

However, all the mentioned techniques are designed to
influence the demand on a macro-scale, or aggregating
several end-users. Micro-scale is not the most common
aim of the existing DR programs. To overcome the en-
gagement issues of residential DR, some EMSs are de-
signed to shape the performance of the loads, with pre-
vious agreement of the user, actuating directly over them
to follow more precisely the actions given by the man-
agement strategies. These strategies usually generate a
schedule for each day and for each load of the system,
synchronizing them to reach certain energy and money
saving objectives (Vahedipour-Dahraie et al., 2020). The
EMS used for these cases computes certain parameters of
the loads like ToU (Time of Use), power, etc. Also some
user defined parameters, in order to respect the comfort
of the users and evaluate the available energy resources to
manage the demand levels, scheduling the loads’ activa-
tion (Mohsenian-Rad et al.).

Nolan et al. point the main barriers and challenges for
the deployment of DR programs in their study, giving a
notorious importance to the modeling of the physical char-
acteristics of such strategies (Nolan and O’Malley). An-
other main barrier in this study is the lack of data regard-
ing the disaggregated consumption of some dispatchable
loads. This is mainly due to the fact that the energy con-
sumption is usually measured at the installations point of
interconnection (POI) with the general grid, while each
loads consumption is usually left unmonitored. This is a
crucial information for EMS algorithms that need to eval-
uate at any time the amount of power available to whether
increase or decrease the demand levels in order to produce
the required DR actions. This is explored by Azari et al.
focusing onto the data uncertainty of several DR programs
(Azari et al.). Through the use of the simulator presented
within this document, we aim to produce the missing data
heuristically, thus overcoming the lack of data mentioned
before, which is considered a barrier to deploy some DR
programs successfully.

In summary, the state of the art in the available litera-
ture mainly refers to macro-scale DR strategies evaluated
on off-line, fixed weather conditions. A clear gap in this
state of the art refers therefore to generic simulation envi-
ronments, taking into account online weather conditions,
aimed at the benchmarking and optimization of generic
algorithms for DR, focusing in particular on micro-scale,
direct load management. The present contribution has
the ambition to address this gap in the literature, by
quantitatively validating the performance of the approach
presented here, demonstrating the value of micro-scale,
online-weather, simulation-based benchmarking and tun-
ing environments for direct load management strategies in
a specific real-world case. Furthermore, since the ther-
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mal devices are external conditions dependant, the present
simulation environment allows to evaluate dynamically
the energy flexibility that can be achieved through devi-
ations of the temperature set-point.

2 Description of the Scenario

This study analyses the case of a certain university campus
and its electric system interconnecting energy generators
and loads. The Ecole d’ingénieurs ESTIA is located in a
technology campus called Technopole Izarbel (see figure
2), located on the outskirts of Bidart, near Biarritz and
Bayonne, in South-West France.

Figure 2. Technopole Izarbel technology campus.

Considering the structure of a microgrid, we can con-
ceive the campus electric system as a microgrid, since it
has its own generation and consumption systems, both
connected by a distribution network. There are several
buildings (called ESTIAI, 2 and 3) that need to be sup-
plied with electric power. These three buildings are fore-
seen to have their own generation too; so, at some point,
the power generated by their generators could be shared
between each other, when the EMS of any of the build-
ings measures a generation surplus, forming a CSC net-
work in the campus. Following the economic constraint
mentioned before, the energy is preferentially used by an-
other building of the CSC network instead of injecting it
to the general grid. However, we must note that the energy
transactions between buildings is also taxed in the French
system, since these transactions use the general grid’s dis-
tribution network to share the energy between buildings.
Thus, the energy should be used preferentially by the
building where the energy has been generated. However,
these taxes belong to a special category —conceived for
CSC networks— with reduced taxes, avoiding to constrain
the profitability of these CSC networks by its users.

2.1 Energy production

The described campus production relies on a local renew-
able energy source, as mentioned before, which is a PV
installation. This installation is composed, at the moment
of this study, by 32 PV modules with a maximum rated
power of 175 W per module. We could not be provided
with further information regarding the characteristics of
the certain model of the mentioned modules, inasmuch as
this model is not available in the market anymore. Thus,
we have used a commercially available PV model that is
due to be installed in the future on the campus and whose
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technical characteristics are provided by the manufacturer.
This model is TARKA 120 VSMS 300 which presents a
maximum power — on NOCT conditions — of 244.9 W.

2.2 Energy demand

ESTIA does not have a very different energy demand pro-
file from an office building, which is composed of typi-
cal electrical devices like space heating, lighting etc. The
buildings’ installation is not equipped with smart meters
for each load type, just a general meter at the grid POI and
another one dedicated to PV generation. Therefore, it is
impossible to find, by measuring methods, which fraction
of the total energy demand is requested from each load
group (lighting, air conditioning, etc.).

nd [W]

QT AT AT AT BT AN
time [HH:MM

Figure 3. ESTIA’s mean power demand profiles with shaded
standard deviations’ range.

It must be noted that the space heating and cooling of
this campus are powered by electric air-source heat pumps
and not by a natural gas-based system. Thus, as men-
tioned, both heating and cooling systems rely on electric
energy to produce the required heat transfer rates to main-
tain the indoor air between certain comfort ranges.

The datasets used in this project were obtained from
ESTIA1 building’s general smart meter, regarding the
general demand of the building during two separated pe-
riods, with a step time of 1 hour. More specifically, the
winter dataset comprises data from January and February
2020, while the summer dataset regards July, August and
September 2020. As seen in figure 3, we have computed
the average value and standard deviation of each hour,
making the distinction between summer and winter peri-
ods. Also, we must note that due to the limited available
data we will only focus on the modeling of ESTIA1 build-
ing.

2.2.1 Dispatchable loads

From a DR perspective, we must identify the loads that
could be disconnected from the supply at certain mo-
ments, in order to shape the behavior of the building’s gen-
eral demand without disrupting the users’ comfort. The
so-called dispatchable loads are those that, when required,
can totally or partially reduce or increase their energy de-
mand.

In the case of ESTIA1, two loads have been identified
as the candidates to perform the DR actions, due to its
large power demand and controllability. These loads are:
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HVAC, water heating system and an electric car battery
(BT) charger.

Load Type Power [KW] | ToU [h]
HVAC 15 Variable

Electric Car BT Charger 11 3
Water Heating System 1.2 Variable

Table 1. Dispatchable loads’ power and ToU.

The ToU of the BT charger is variable between differ-
ent car models, depending on their BT type and capacity.
Also, the charging process of the BTs does not usually
have a constant power profile, but again, a constant pro-
file has been used for simplification matters. Instead, the
BTs are usually charged with a constant current profile,
followed by a constant voltage charge once the BT volt-
age has reached the set voltage. So, we have assumed an
indicative ToU of 3 h and a constant charging power of 11
kW, this one provided by ESTIA.

As we can see in table 1, the ToU of the HVAC sys-
tem is denoted as variable. This is because the behaviour
of these systems depends on the thermal losses of the
building, which also depend on the external temperature,
a stochastic variable. The control of the heating systems is
typically a thermostatic ON/OFF control system with hys-
teresis thresholding, whose actuation will also vary along
with the thermal losses of each day. Furthermore, their
thermal contribution varies along with external tempera-
ture too. Besides, the HVAC system relies on an air-source
heat pump to whether heat or cool the space. Due to this
heat recovery from the exterior, its electric consumption is
external air temperature dependant, with a maximum con-
sumption at 15 kW.

3 Modeling of the energy systems

In the present project, we have developed a simulated
model of the energy system described in the previous
section. The model has been generated using Open-
Modelica, an open source simulated environment, mainly
powered by the Modelica modeling language, also using
the libraries Buildings (Wetter, 2009), PhotoVoltaics (Br-
kic et al., 2019), and OpenModelica native PVSystems
(OpenModelica, 2021). The model, once generated, is
subjected to different external conditions (solar irradia-
tion, external air temperature and wind speed), in order
to design and test the DR strategies.

3.1 PV generation

The PV generation is estimated by its own model sepa-
rated from the main model, which includes the major part
of the energy system of the campus, with the aim of light-
ening the execution of the main model. This simulated
model regarding the PV installation is shown in figure 4.
In this model, we are simulating the production of a single
module connected to the 400 V side microgrid of the cam-
pus via an ideal DC/DC converter, as seen in the diagram.




The PV module block computes two inputs to calculate
the electrical power produced by them, which are solar
irradiance and cell temperature. Solar irradiance is pro-
vided by local weather station, while cell temperature is
determined computing both external air temperature and
wind speed, also provided by local weather station. The
cell temperature calculation follows the model presented
by Duffie and Beckman in (John A. Duffie, 2013), which
is the most accurate model of the analysis made by Yang
et al. in (Yang et al., 2019) and shown in the equation 1:

G 9.5
Gyocr 5.7+3.8-Viyina o
TCNOCT . <1 _ nC>

TaNOCT Ta

T. = Thir +

where T, is cell temperature [°C], G is irradiance
[Wm?], Gnocr is irradiance at NOCT conditions —
Nominal Operating Cell Temperature— [Wm?2], Viind i8
wind speed [ms], Teygep @and Tayoerp are cell and ambient
temperatures respectively at NOCT conditions [°C], 7 is
the conversion efficiency of the PV module and 7, is the
product of transmittance-absorbance. The value of these
parameters, for the PV module used in the simulator, is
shown in table 3 of the Appendix.
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Figure 4. Block diagram of the PV generation model

Once T, is determined, the PV module block is fed with
this data —in Kelvin— and the irradiance from the me-
teoData dataset. The irradiance is limited to a defined
range —[0, 1500]— previous to the connection with the
PV module, in order to avoid measurement errors, which,
in the case of negative values, could cause an error in
the electric section. Then, the PV module block injects
an electric current into the circuit depending not only on
the mentioned inputs but on the voltage on its terminals
too. Thus, we are using a mpTracker, along with a power
sensor, aiming to find the Maximum Power Point (MPP)
at any time, which changes along with the weather con-
ditions. The MPP is a certain voltage value for each
weather state, therefore the controller aims to track this
value through the whole voltage range. Even though there
are many ways to produce this tracking, the tracker used
in this model is based on the widely used Perturb and Ob-
serve technique (Putri et al., 2015).
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3.2 Microgrid structure

The electric section is the one in charge of simulating the
main loads of the system and, additionally, the energy sup-
ply of these loads. This energy supply comes from two
different and compatible sources. On the one hand, the mi-
crogrid has a distributed energy source with the PV mod-
ules and, on the other hand, the system’s energy supply
also relies on a POI with the general electric grid. We as-
sume that the energy can flow in both directions of this
POIL, whether demanding energy from the grid or injecting
the surplus of the PV generation, when necessary. Both
sources and the whole electric section are displayed in de-
tail on the figure 5.

Figure 5. Block diagram of the electric section of the model

Due to computational matters PV production is simu-
lated in a separated model, as explained in previous sec-
tion. Therefore, we use the results obtained in the mi-
crogrid side of the PV installation model into the general
model of the installation. Since we are using the same
voltage —400 V— in the mentioned microgrid side of the
PV model and the microgrid of the general model, we can
just use a current source fed with the obtained data. This is
achieved through a .txt file that is generated using Python
and the combiTimeTable Modelica block, which is able to
read such file.

The actual electric system uses 50 Hz alternated current
(AC), and the power converters required for an AC system
normally work at a rate of 22 kHZ, or higher. Also, the
iteration frequency of the simulation is recommended to
be set 10 times bigger than the highest frequency of the
system, which would suppose to work with a time step
of Ty = 4.54 - 1079 s. This fact results in an unpractical
high computational cost when simulating the system in the
order of days, weeks or months, as desired for this study.

Since the analysis of the dynamics of the system is not
the aim of this study, the simulated microgrid has been set
as a direct current (DC) circuit, allowing to set a time step
as high as 15 s. Thus, the results obtained by the simulator
regard the steady state of the system, which is fully valid
at the context of this study.

We have selected a voltage of 400 V, being this value
the typical RMS voltage value of the European three-
phase grid connection, and assuming that ESTIA is con-
nected to the general grid using this connection type.
Based on the fixed voltage of the microgrid, each load
has been modeled using a fixed resistor (equivalent to the
nominal power consumption of the loads) connected to the
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DC circuit and it is activated or deactivated using an open-
ing or closing switch, depending on the case. The value of
each equivalent resistor has been obtained combining the
Ohm’s Law and the electric power calculation, getting as
result equation 2:

V2

P )

Vv
R:—:
I

where V is constant voltage [V], R is resistance [Q], I
is constant current [A], and P is electric power [W].

We are representing the consumption of all the loads
taken into account in this study, which are: the dispatch-
able loads shown in table 1 —with two HVAC systems
due to its use in two different spaces—, and a fixed resistor
representing resting fixed consumption, whose calculation
is defined next.

As it might be seen in figure 3, the demand average
curve never crosses a certain lower threshold. This can be
clearly seen at nights, where the demand is closer to this
threshold. This lower threshold in the demand can be due
to certain parasitic loads that are not switched off during
nights or weekends, when the building is empty. We in-
cluded a fixed resistor to simulate this effect, equivalent
to this fixed consumption, computing the average value of
the time where the building is unused —from 19 to 6 on
weekdays and the 24 hours of weekends and holidays—.
We use the same expression as for the rest of the loads to
calculate the equivalent resistor (equation 2).

3.3 Physical environment of the loads

As mentioned previously, we have considered three load
types. Between them, the two heaters consume electric
energy to convert it into thermal energy, with the differ-
ence that the HVAC relies on a heat recovery system to
leverage the thermal energy contained in the external air.
Contrarily, the BT charger consumes electric energy from
the circuit to subsequently inject it into the car’s BT, af-
ter converting and adapting the electric supply to certain
conditions. We have considered the charger as a constant
power consumption that can be switched on and off when
needed, so, it can be modeled with a fixed resistor con-
trolled by a switch to model the dispatchable consump-
tion.

In order to model the control strategy of the heating sys-
tems, we have used the so-called hysteresis thresholding.
This control technique switches the controlled thermal de-
vices on and off, aiming to keep the indoor temperature
inside a defined range that can be set according to the
user’s preferences. This type of control avoids a continu-
ous intermittent switching on and off by setting a temper-
ature range sufficiently wide that allows the temperature
to increase or decrease before switching the system again.
Thus, the temperature of the plant will cycle between the
hysteresis upper and lower limits, ideally never surpass-
ing them. This, in addition to avoiding a continuous and
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relatively fast switching, saves energy while it ensures the
users comfort requirements.

3.3.1 HVAC System’s environment

The HVAC system actuation depend on the external
weather conditions, both in terms of thermal contribution
and electric consumption. Therefore, we included the in-
fluence of the external air into the model. For the internal
section, we can find rooml and room2 block simulating
the internal air closed volume of two separated spaces of
the building, along with a heatCapacitor for each of them,
simulating the thermal capacitance of any object in con-
tact with the internal air. Each room block has been set
with a rough approximation of the volume of the spaces.
This approximation has been made using satellite images
to measure the side lengths of the building (65x32 m). Be-
sides, assuming a 3 m floor height, we got a volume of
6560 m> for each room.

&
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Figure 6. HVAC system’s environment

There are three thermal sources associated to each
room. The upper heat source —ACgrpop,— represents
the main source, which is the HVAC contribution of each
room, independent between them. The thermal contri-
bution is interpolated through the data presented in the
appendix tables 4 and 5, obtained from (Priarone et al.,
2020), which represent the performance of a certain air-
source heat pump. Thus, for each external temperature
we get a different thermal contribution, along with a elec-
tric consumption that is represented in the electric circuit
of the model, related to the Coefficient Of Performance
(COP) of the HVAC system. The second thermal contri-
bution is related to the irradiance coming from the sun,
which is scaled for each room, aiming to simulate different
orientations of the rooms. The third contribution comes
from the thermal losses with the exterior. Here we com-
pute the external temperature data in K, connecting it with
the thermal circuit through a thermalConductor block that
represents the thermal insulator of the building’s walls.
The value of the convection constant G has been assumed
taking a fixed amount of heat power losses (1000 W) at a
certain temperature difference with the exterior (3 K).




4 Environment Programming Inter-
face

The tool presented within this document aims to serve as
a intermediate step for any DR strategy previous to its de-
ployment into the actual installations. These strategies
are more likely to be developed in a programming lan-
guage different from Modelica, such as Python or simi-
lar. Therefore, we identified the need for a programming
infrastructure interconnecting the simulator with the men-
tioned strategies, which in the context of this project is
referred as the Environment Programming Interface, illus-
trated in the figure 7.

|

MeteoFrance

il L
pren gt —»| HistWeatherData.txt
Downloader .
PVProduction.mo
Simulation Manager ——>
‘ PVCurrent.txt ‘
Y

MainModel.mo

{FDemand)

EMS

Figure 7. General flowchart of the Environment Programming
Interface

As seen in the flowchart of the interface, the start-
ing point is the online weather data obtained from local
weather station, which could be historical or forecasted
data, depending on the use of the simulator. The download
of this data is made by the script Weather Data Down-
loader, which stores it into a text file to be read by the
simulator through a combiTimeTable block. Once this data
is stored into the text file, the script Simulation Manager
controls the execution of the simulation models through
the API conceived for such use called OMPython (Gane-
son et al., 2012). Through this API we are able to send the
parameters of the simulation to OpenModelica, execute
the simulation, and store the results into a user defined
CSV file. This file is subsequently read by the Simulation
Manager, which extracts the estimated PV current to store
it into a text file. Finally, the DR strategies contained in
the EMS can be tested controlling the dispatchable loads
contained in the MainModel.
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5 Results and Validation

The simulator presented within this document aim to repli-
cate the performance of the energy system analyzed in pre-
vious sections, in order to produce the missing data heuris-
tically. Since we were provided with data regarding this
installation, we can proceed to evaluate the correctness of
this modeling, interpreting the results of the simulations
while comparing them with real data of the energy instal-
lation.

5.1 PV production

In the case of the PV production we are conscious about
the differences between the estimation through simulation
and the reality of the installation, since we are neglecting
the losses due to: non-optimal orientation of the modules
on the one hand, and electric inefficiencies on the other
hand. Thus, a comparison with the real measured data is
crucial to adapt our model more precisely to reality.

The data we are using to validate this model comprises
PV production from the period between the 6 April and
24" May 2021. Having this dataset, we are executing a
simulation of the PV model using weather data relative to
the same period, to subsequently save the production data
into a CSV file.

The principal aim of this process is to tune a direct re-
lation between data obtained through simulation and real
measured data. This is needed to complete the PV simula-
tor since, as mentioned before, the simulator estimates the
maximum theoretical production for given weather con-
ditions, neglecting certain power losses. Thus, in order
to produce a direct relation, the methodology applied was
to tune a polynomial curve that relates the production ob-
tained through simulation and the real data.

Since the simulations are close to be continuous pro-
cesses, the data obtained from them are close to be con-
tinuous too. Thus, each line of the figure 8 represents the
trajectory of the PV production power through a whole
day. However, as it can be observed in the graph, the
related data present high levels of noise. As is evident
from figure 8a, sudden changes occur in the production,
since there are many lines with horizontal and vertical
sectors. This is due to changes in one variable that are
not reflected in the other one, which produce the sudden
changes in the trajectories. These changes in the produc-
tion data, whether measured or simulated, must be due to
differences in weather conditions too. The only weather
variable able to present such high changes is the irradia-
tion, which is highly affected by clouds. Furthermore, the
used weather data does not belong to the exact location of
the modules —it is measured by a station less than 10 km
away—, thus, the clouds would not cover the sunlight the
same way in both locations, causing the differences we
are observing here. Finally, we tried to fit a polynomial
curve to this noisy dataset, getting as result the orange
curve of the figure 8a. This approximation can be visu-
ally discarded, since it does not follow the pattern of the
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major part of the trajectories.
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Figure 8. Correlation between estimated and measured PV pro-
duction. a: using the whole dataset unfiltered, b: selecting two
days with optimal production profiles

Considering the clouds a highly chaotic system, instead
of taking its influence into account to tune the polynomial
curve, we selected several optimal days where the produc-
tion curves are not distorted by the clouds. These opfi-
mal production curves are shown in the figure 8b, where
we can see that they follow the pattern of the unfiltered
dataset mentioned before. Another fact to mention is that
every optimal day used in this graph presented the same
two distortion points —located around 3000 and 5000 W
respectively in the horizontal axis—, where there is a sud-
den change on each of them too. Nevertheless, due to its
repetition on different days’ patterns, we concluded that
they are the result of other objects’ or buildings’ shadows
into the PV modules or the irradiance sensors. Splitting
the dataset into morning (first half of each day) and after-
noon, and using a 4 degree polynomial fitting, we get the
curves presented in the figure 8b, which follow precisely
the mentioned pattern. These curves form a function de-
fined in two parts, which are related to morning and after-
noon periods and presented in the next expression:

f(x,h) = Ap+Bp(Cp+Dp-x) + Ep(Cp + Dp - x)*
+ Fp(Cp+Dp ~x)3 +Gp(Cp+Dp 'x)4

where x is the estimated theoretical maximum produc-
tion data, & is hour, and the constant parameters (Ap, Gp)
are defined in table 2.

It must be noted that the obtained function is tuned for
the period with available data, which is April and May
2021. For a more precise function we should use a dataset
comprising the production of the whole year, since the
sunlight pattern changes along with the period of the year.
However, the period used to tune this function is one of
the most productive periods of the year in this certain cli-
mate zone, due to high irradiation and cool temperatures.

3
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Therefore, it is highly probable that any estimated value
at any other time of the year belongs to the range of this
function.

5.2 Dispatchable loads demand

One of the main objectives of the simulator was to repro-
duce the performance of certain electric loads. In this
section we aim to validate this simulated performance
through a comparison with real data. Anyway, as men-
tioned in previous sections, we cannot be provided with
actual data of the modeled loads. Instead, we are compar-
ing the data obtained through simulation with the general
demand data. Having in mind that the HVAC systems usu-
ally require the major fraction of the energy consumed in
buildings —around 67 % of the total energy demand of
buildings in France (Enerdata, 2021)—, we can assume
that its particular consumption is highly correlated with
the general demand measurements.
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Figure 9. Estimated HVAC demand vs measured general de-
mand comparison

In this case, we are executing a simulation of the
general model of the installation, putting the focus onto
HVAC demand. In this simulation we are using weather
data of the same days as the general demand data of the
actual installation, which is previewed to present a sim-
ilar profile to the simulated data. Figure 9 displays this
comparison, showing the data relative to 10 certain days
between those with available data. These days belong to
the period where the consumption is the highest, which is
the winter period, as seen in figure 3. Furthermore, this pe-
riod comprises several weekdays and a whole weekend, in
order to simulate different scenarios. Also, we are adding
a threshold to the HVAC consumption data, which is the
average value of the consumption when the building is un-
used, as explained in section 3.2. As shown in figure 9, the
general demand profile is highly influenced by the particu-
lar demand of the HVAC, as expected. We have computed
the Pearson correlation coefficient between these two vari-
ables, giving as result Pgim Real = 0.852, which represents
a very strong correlation.

6 Future work

The simulation environment presented within this docu-
ment aims to replicate the behavior of several loads of a
campus. As mentioned, these loads are external conditions
dependant as well as several constructive parameters such




P (Period) A B C

D E F G

Morning | 2249.243 | 2818.728 | -1.00297 | 0.000289 | -926.235 | -640.06 | 858.615
Afternoon | 2332.426 | 2557.087 | -1.00294 | 0.000288 | -341.671 | -353.593 | 258.558

Table 2. Parameters of the equation 3

as the thermal envelope resistance, and the building ther-
mal capacitance. These parameters have been estimated
for this implementation of the simulator. However, future
work will deal with this issue, estimating these param-
eters through several on-site experiments which will in-
volve Design of Experiments procedures along with anal-
ysis of the resulting data. This calibration process will
be based on recent studies on this issue (Wiillhorst et al.,
2022).

The results of the present study will be embedded in a
OpenADR structure, estimating dynamically the energy
flexibility offer for the local consumption controller, or
Virtual End Note (VEN) using OpenADR terminology,
with the constraint of respecting users comfort in such
flexibility offer. The implementation of this structure is
an ongoing study which is linked to the present work.
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8 Appendix

Parameter | Value | Unit
Gyocr 800 | Wm?

Tenoer 45 °C

DNOCT 20 OC
Ne 0.4 -
Ta 0.9 -

Table 3. TARKA 120 VSMS PV module’s characteristics.

External Air Temperature [°C] | Cooling Capacity [W] | Electric Consumption [W]
40 41900 16115
35 38700 13345
32 34000 10000
30 29100 6929
28 23 600 4917
25 8100 2132

Table 4. Zephir CPAN-XHE3 HVAC system’s performance data
in cooling mode.

External Air Temperature [°C] | Heating Capacity [W] | Electric Consumption [W]

-5 49700 11044
0 49500 12375
2 46200 11268
7 37100 8065
12 28400 5462

Table 5. Zephir CPAN-XHE3 HVAC system’s performance data
in heating mode.
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