
Beyond FMI - Towards New Applications with Layered Standards

Christian Bertsch1 Matthias Blesken2 Torsten Blochwitz3 Andreas Junghanns4

Pierre R. Mai5 Benedikt Menne2 Kevin Reim2 Markus Süvern2 Klaus Schuch6

Torsten Sommer7 Patrick Täuber2

1Robert Bosch GmbH, Germany, Christian.Bertsch@de.bosch.com
2dSPACE GmbH, Germany, {PTaeuber, MBlesken, MSuevern, BMenne, KReim}@dspace.de

3ESI ITI, Germany, Torsten.Blochwitz@esi-group.com
4Synopsys, Germany, Andreas.Junghanns@synopsys.com

5PMSF IT Consulting, Germany, pmai@pmsf.eu
6AVL List GmbH, Austria, klaus.schuch@avl.com

7Dassault Systems, Germany torsten.sommer@3ds.com

Abstract
The FMI standard — just like any other standard — faces
the challenge of balancing generality with enabling spe-
cific use cases. Including every domain or use-case spe-
cific extension in the core standard would significantly
increase its length, making it unreadable and unimple-
mentable. To allow for extensions of the core standard
for specific use cases, the Modelica Association developed
the concept of layered standards, first in the SSP standard
and later in FMI.

This paper presents the concept of layered standards
and describes the layered standards currently under de-
velopment by the FMI Project: XCP support of FMUs,
network communication, and structured variables and n-D
lookup tables in FMI 3.0.
Keywords: FMI, layered standard, XCP, network commu-
nication, regular maps

1 Introduction
1.1 Motivation for Extension Mechanisms of

Standards
The versions 1.0 and 2.0 of the FMI standard (Blochwitz
2011) (Blochwitz 2012) already contain many optional
features, and FMI 3.0 (Junghanns 2021) has increased
their number even more. If additional optional features
were continually added to address specific use cases and
usage domains, the standard would significantly increase
in length and become unreadable and unimplementable.

1.2 Requirements
The layered standards approach is based on a hierarchi-
cal structure of standards that meet the following require-
ments:

• The core standard remains generic to ensure broad
usage and tool support.

• The extensions (layered standards) depend on the
core standard, but not vice versa. This allows for

flexible extension not only by the FMI Project but
also by other organizations, independent of the re-
lease cycle of the FMI Standard.

1.3 Extension Mechanisms for Standards
A layered standard allows specific, new use cases to be
handled, without violating the core standard, but rather
building on it. It is realized by using extension points con-
tained in the base standard, that were either already in-
tended for extension via layered standards, or can be used,
even if not originally so intended.

Some standards are generally intended to be extended
by layered standards, providing just frameworks for this
extension: For example, URIs defined in RFC-39861

(Berners-Lee, Fielding, and Masinter 2005) gain their ex-
pressive power through the extension via scheme defini-
tions, like the file or http schemes.

Other standards provide extension via layered standards
on top of a core standard that already provides a robust set
of functionality. The HTTP standard RFC-2616 (Nielsen
et al. 1999) provides the core functionality behind the web,
while allowing among others for extension via additional
headers, which have been used to provide, e.g., RFC-2965
(Montulli and Kristol 2000) for HTTP State Management
Mechanism — Cookies, or RFC-6797 (Hodges, Jackson,
and Barth 2012) for HTTP Strict Transport Security. Sim-
ilarly, the SMTP standard RFC-2821 (Klensin 2001) pro-
vides the core functionality behind email, allowing exten-
sion via additional options or services, e.g. RFC-3207
(Hoffman 2002) for STARTTLS.

And some standards can be extended via layered stan-
dards even though the base standard only contains very
limited extension points: FMI 2.0, for example, provided
annotations as a user-defined mechanism in the core XML,
and did not prohibit additional files to appear in the FMU
archive, thus allowing extension, while not necessarily

1Here and in following references to IETF standards, not always the
newest incarnation of the RFC is cited, but rather the relevant versions
from a historical perspective of layered standard development.

DOI
10.3384/ecp204381

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

381



having layered standards in mind. The OSI Sensor Model
Packaging (OSMP) (ASAM OSI Project 2022) specifica-
tion is an example of a layered standard that was layered
on top of FMI 2.0.

1.4 The Concept of Layered Standards in the
Modelica Association

For Modelica Association standards, the concept of lay-
ered standards was first introduced for the System Struc-
ture and Parameterization (SSP) Standard version 1.0
(MAP SSP 2019)

They can be defined and released

• by third parties, completely independent from the
Modelica Association Project (MAP),

• by third parties that are endorsed by the MAP, or

• by the MAP project itself, making them a MAP lay-
ered standard.

1.5 The Concept of Layered Standards to the
FMI Standard

In FMI, the concept of layered standards was introduced
in the version 3.0 (MAP FMI 2022b), and later backported
to FMI 2.0.4 (MAP FMI 2022a). The following specific
provisions for layered standards were made, see Figure 1:

• The ZIP structure now contains an "extra/" folder
where additional files can be placed without disturb-
ing the rest of the FMI mechanisms.

• The XML schema allows extensions to elements to
add further information, via Annotation elements.

• For both of these mechanisms the standard provides
suggested rules on naming using reverse domain no-
tation to ensure that separately defined extensions do
not clash.

• New values for matchingRule or terminalKind for
Terminals can be defined.

• Potentially, layered standards could add new func-
tions to the API of the FMU, however no rules to
avoid name clashes have yet been devised as part of
FMI 3.0.

• FMI 3.0.1 introduces a recommendation for a stan-
dardized fmi-ls-manifest.xml file that allows import-
ing tools to detect which layered standards are sup-
ported by the FMU (and which version). This way,
the additional capabilities of the FMU can be used
more easily and a list of supported layered standards
can be displayed to the user.

For FMI 3.0, the standard specifies that an FMU sup-
porting a layered standard on top of FMI 3.0 must at the
same time still be a valid FMI 3.0 FMU. This requirement
puts certain constraints on a layered standard:

Elements according to FMI 3.0
Extension points:

modelDescription.xml
binary variables
annotations

terminalsAndIcons/terminalsAndIcons.xml
/extra directory

schema for fmi-ls-manifest.xml
API functions

FMU supporting a layered standard LS-XXX

Elements or their specialization according to LS-XXX
(optional) additional API functions
/extra/org.example.ls-xxx/ directoy

fmi-ls-manifest.xml
specified additional files

Definition of new values for matchingRule or TerminaKind of Terminals
modelDescription.xml with

standardized annotations
binary variables with specified MIME type

Figure 1. An FMU supporting a layered standard LS-XXX us-
ing the extension mechanisms of FMI 3.0.

• The layered standard can add optional features to the
FMU, like additional files inside the FMU’s zip file,
or it can extend XML files where the base standard
schema allows it.

• On the other hand, the layered standard can place ad-
ditional restrictions on XML elements (e.g. only al-
low the use of certain Variable types), or mandate an
optional FMI 3.0 feature to be required.

In FMI 3.0, some new features that are "orthogonal"
to the core FMI functionality (namely TerminalsAndIcons
and BuildConfiguration), were already developed with
some features of layered standards in mind, e.g., by hav-
ing their own XML files. However, as they are of most
general interest and considered very important, it was de-
cided to include them in the core FMI standard. This has
the benefit of possibly being supported by many tools, but
the drawback that updates of these features are limited to
the release cycle of the core FMI 3.0 standard.

A layered standard could also extend beyond the core
standard, e.g., by introducing additional API functions or
side channels, or by removing limitations on the calling
sequence of API functions of the FMI state machine of a
certain FMI kind. An example would be setting states of
a Co-Simulation FMU after initialization, e.g., in order to
realize nonlinear Kalman filters.

In the next sections we will give examples of layered
standards that are currently in development by the FMI
Project and other institutions or companies.

2 Current Development of Layered
Standards for FMI by the FMI
Project

Currently three layered standards are in development by
the FMI Project. They comprise extensions to FMI that
are of general interest. Additionally, they demonstrate and
standardize how FMI 3.0 and its mechanism can be used

Beyond FMI - Towards New Applications with Layered Standards

382 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204381



for new important application domains. Furthermore, the
provision of these layered standards by the FMI Project
will promote the concept and validate the extension mech-
anisms of FMI, potentially leading to further improve-
ments.

2.1 FMI Layered Standard for XCP (LS-
XCP)

2.1.1 Motivation

XCP (Universal Measurement and Calibration Protocol
(ASAM e.V. 2017) ) is a standardized protocol used in
the automotive industry to measure variables and adapt
control parameters inside an electronic control unit (ECU)
through buses like CAN. When wrapping a virtual ECU
(vECU) into an FMU, supporting XCP-based measure-
ment and calibration is required for many simulation use
cases. Before this standardization effort, already several
tools implemented proprietary XCP support for FMUs. As
these are incompatible to each other, the need for standard-
ization became apparent.

2.1.2 Approach

The main idea is to ship an A2L file (see (ASAM e.V.
2018) ASAP2) in a standardized location inside the FMU
and to describe the capabilities of the FMU w.r.t. the XCP
protocol.

The layered standard describes two alternative imple-
mentations depending on the use case and data availability
(MAP FMI 2023b):

• The FMU implements an XCP slave which provides
access to measurement and calibration variables of
the vECU and handles the communication protocol
with the XCP master in the MCD tool. The necessary
information for an MCD tool is given in a description
file which follows the ASAM MCD-2 MC standard
(aka A2L, also ASAP2) and customarily carries the
file extension .a2l. Figure 2 shows a typical design
with an XCP service contained in the FMU.

• An external XCP slave implementation accesses the
memory of the vECU to expose the XCP proto-
col to the MCD tool. In this case, the A2L file
is still shipped with the FMU but the importer
needs to provide the XCP slave implementation.
fmi3IntermediateUpdateCallback calls or the Clocks
mechanism could be used to synchronize DAQ lists.
Figure 3 illustrates a typical design utilizing an ex-
ternal XCP service.

The following extension mechanisms to FMI are used:

• The "extra/" directory is used to provide additional
files: An fmi-ls-manifest.xml provides information
about the capabilities of the FMU and an A2L file
for each supported platform describes the memory
layout.

Appl. Software

BSW

COM Stack BSW

Appl. Software

BSW

COM Stack BSW

XCP
Slave

XCP
Slave

XCP
Master

FMU FMU
Simulator

XCP communication
separated from

simulated network

IP stack of the
host OS

Figure 2. Direct communication of XCP master and XCP slave
via the IP stack of the host OS.

Appl. Software

COM Stack BSW

BSW

Appl. Software

BSW

COM Stack BSW

XCP
Slave

XCP
Slave

XCP
Master

FMU FMU

Simulator

XCP communication
separated from

simulated network

IP stack of the
host OS

Figure 3. Communication of XCP master and external XCP
slave via the IP stack of the host OS.

• A set of (structural) parameters for the config-
uration of the XCP service is introduced, e.g., to
change the TCP port the XCP service is listening on.
FMUs that provide an XCP service should also pro-
vide these parameters that follow a specified naming
convention.

• It is specified when the XCP service should be started
and stopped in order to have an early access to the
XCP calibration parameters.

This layered standard will have no effect on the FMU
interface, nor the C-API behavior. While measurement of
FMU internal variables does not have a numeric effect on
the FMU, so called calibration does. Calibration is the tun-
ing of FMU internal parameters. Such changes will affect
the numeric behavior of the FMU. If the FMU contains
controller code, numeric stability or energy preservation
laws are of lesser concern. On the other hand, plant mod-
els offering XCP access for parameter calibration may in-
troduce surprising numerical effects in solvers that might
require proper handling, like resetting solvers with every
XCP write action.

Therefore, it is necessary to synchronize XCP variable
access (read and write) with the state of the FMU.

2.1.3 Status and Outlook

A proposal for such a layered standard is being devel-
oped on GitHub (https://github.com/modelica/fmi-ls-xcp).

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204381

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

383



With small limitations, this layered standard can also be
used with FMI 2.0.4.

Most mechanisms have been agreed upon and first pro-
totype implementations have been realized. The cross-
check of generated FMUs has been started as of writing
this paper by companies such as dSPACE GmbH, ETAS
GmbH, PMSF IT Consulting and SYNOPSYS.

2.2 FMI Layered Standard for Network Com-
munication (LS-BUS)

2.2.1 Motivation

Simulation of modern automotive systems requires net-
work communication between vECUs. Traditional sim-
ulations according to FMI 2.0 or other formats deal either
with continuous signals or with non-standardized and pro-
prietary solutions for exchanging network messages. In
practice, such proprietary solutions often lead to interop-
erability issues when creating simulation systems with vE-
CUs provided by different suppliers.

To minimize the resulting effort, the FMI layered stan-
dard for Network Communication (MAP FMI 2023a) was
introduced. By using FMI 3.0 core standard features such
as Co-Simulation, Clocks, clocked variables and termi-
nals, the layered standard specifies a common bus in-
terface and defines how to emulate a transport layer for
several bus types in detail. While this layered standard
has been initiated with automotive use cases in mind
(with automotive network technologies such as CAN,
LIN, FlexRay, CAN FD, CAN XL and Ethernet), the used
concepts are kept general. This way the layered standard
could also be applied to other domains such as industrial
automation.

2.2.2 Approach

General concepts: The proposal on GitHub
(https://github.com/modelica/fmi-ls-bus) provides
two abstraction layers for different use cases:

• Physical signal abstraction ("high cut"): Use indi-
vidual, clocked signal variables to transport logical,
unit-based values between vECUs, ignoring trans-
port layer-specific properties. The layered standard
for this abstraction basically defines how bus signals
have to be described in the model description file.
It should be noted that creating FMUs with this ab-
straction layer typically requires a network descrip-
tion.

• Network abstraction ("low cut"): This abstraction al-
lows the implementation of virtual bus drivers within
FMUs on the level of the hardware abstraction layer.
It uses clocked binary variables to exchange bus op-
erations between FMUs based on a lightweight pro-
tocol defined by the layered standard. Bus opera-
tions are used to transmit bus messages as well as
bus events like acknowledge or error events. This en-
ables both ideal and more realistic bus simulations,

depending on the capabilities of the FMU and im-
porter. These capabilities can include timing, arbi-
tration, error handling, status monitoring and other
effects.

It is assumed that FMUs will provide only one of these
abstraction layers although it would be technically feasible
to support both.

System composition: In the simplest use case, the im-
porter does not need to provide specific bus semantics of
certain variables of an FMU; it simply forwards variable
values between two FMUs according to the FMI standard.
Such a simulation is shown in Figure 4. In this case, how-
ever, the bus simulation is idealized, i.e., effects like trans-
mission time, arbitration or any other bus-specific behav-
ior are not taken into account.

Importer
Direct Connection

FMU FMU

Figure 4. Direct communication of two FMUs, e.g., vECUs, on
a common importer.

Only if more than two FMUs should be connected to a
single network or a detailed bus simulation is desired in
the "low cut" case, a dedicated bus simulation component
is required. This bus simulation component then forwards
bus operations between multiple senders and receivers and
emulates the bus behavior. This type of communication
allows the simulation of complex bus features, such as ar-
bitration, the simulation of timing or the injection of bus
failures. The supported bus features cannot be specified
explicitly, but refer to a specific implementation of the bus
simulation component and depend on the requirements of
the bus simulation. The implementation of the bus simu-
lation component could be done either by special capabil-
ities of the importer, or by the provision of a Bus Simu-
lation FMU. See Figure 5 for the simulation with such a
Bus Simulation FMU. Here, the importer does not require
any special features for bus simulation.

It should be explicitly noted that the FMUs integrated
in the respective use case do not necessarily have to be dif-
ferent, which means that the same FMU can be integrated
across all system compositions. The interface of the FMU
to the importer is always the same, but a different subset
of the features may be used.

Used FMI 3.0 concepts: The following FMI 3.0 con-
cepts are used by this layered standard:

• FMI for Co-Simulation: The layered standard is
currently being described in the context of the Co-

Beyond FMI - Towards New Applications with Layered Standards

384 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204381



Importer

FMU FMU

Bus Simulation FMU

Figure 5. Realization of complex bus simulations by using a
Bus Simulation FMU in addition to the communicating FMUs
(e.g. vECUs).

Simulation mode, as this is best suited for the identi-
fied use cases.

• Hierarchical Terminals are used for grouping of
variables. For the "high cut", the signals are nested
hierarchically in several Terminals. The signals,
together with their associated Clocks, are grouped
based on the PDU and frame to which they belong.
In the final aggregation, all frame terminals are com-
bined in a Bus Terminal depending on their specific
bus type. Within the "low cut" two binary variables
and two Clocks are coupled into a common bus in-
terface aggregated by a Terminal.

• Clocks and clocked variables are used to synchro-
nize the exchange of network data among all FMUs
in the simulated network.

• Binary variables with a dedicated MIME-type are
used for the "low cut" to define the data exchanged
for a specific bus type such as CAN.

• In the "high cut" variant, the "extra/" directory can
optionally be used to ship network description files
such as ARXML, DBC, LDF, Fibex, or others.

Timing aspects: Clocks are used to inform the importer
about new signal values ("high cut") or binary bus oper-
ations ("low cut") to be exchanged. FMUs that want to
send out those values exactly in time can use time-based
Clocks and should support a variable communication step
size. Periodic (fixed-time) FMUs are also supported, but
in this case, multiple sends might fall into one communi-
cation step. While "high cut" signal variables will miss
all but the last value sent, in the "low cut" case, all bus
operations will be buffered in the binary variables.

Example for a "low cut" network interface: Fig-
ure 6 shows an example FMU with two binary vari-
ables Rx_Data and Tx_Data, and two Clock vari-
ables Rx_Clock and Tx_Clock that are aggregated to a
Bus Terminal. Independent of the bus feature Input
and Output represent exemplary additional FMI vari-
ables of the example FMU.

FMU
(Co-Simulation)

StepMode

EventMode

Input Output

Rx_Clock

Rx_Data
(Binary)

Tx_Data
(Binary)

Tx_Clock

Bus
Terminal

Figure 6. Example for a "low cut" Bus Terminal.

Based on this generic bus interface, an FMU can either
be connected to a bus simulation component or directly to
another FMU via an importer.

2.2.3 Status and Outlook

The first iteration primarily focuses on the basic concepts
of the layered standard and the support for simulating
CAN, CAN FD and CAN XL buses. Adding support for
Ethernet, LIN and FlexRay is planned for upcoming iter-
ations. Other bus systems from various domains can be
specified in the future as required.

2.3 FMI Layered Standard for Structuring of
Variables, Maps and Curves (LS-Struct)

2.3.1 Motivation

Grouping of variables, especially parameters: For
many use cases, grouping of several parameters is very
important. In FMI 1.0, 2.0 and 3.0, this can be partially
realized with the "structured naming convention" (MAP
FMI 2022a) which can be used, e.g., to represent array
variables and/or hierarchical structures of variable. How-
ever, FMI 1.0 and 2.0 define scalar variables only, so for
arrays this is not efficient, and generally the "structured
naming convention" is not flexible enough for many ap-
plications.

Realizing n-D lookup tables: A special case of group-
ing variables is the representation of n-D lookup tables. In
the context of the layered standard, an n-D lookup table is
a sampled representation of a function of n input variables
y = F(x1,x2,x3, . . . ,xn) sampled on the vertices of a rect-
linear grid. Such an n-D lookup table could be also called
a map from the n-dimensional domain to a codomain. In
(ASAM e.V. 2018) a 1-D lookup table is called CURVE, a
2-D lookup table is called MAP (see Figure 7), and a 3-D
lookup table is called CUBOID. 4-D and 5-D lookup tables
are called CUBE_4 and CUBE_5, respectively. Higher di-
mensional lookup tables are not defined in (ASAM e.V.
2018).

FMI 3.0 introduces array variables (optionally with

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204381

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

385



sizes that can be changed via structural parameters). How-
ever, an n-D lookup table is more than just one array pa-
rameter but it can be represented as a combination of sev-
eral array variables.

Some tools started to implement proprietary solutions
to represent lookup tables with FMI, e.g., through vendor-
specific annotations or naming conventions, and the need
for standardization became apparent.

2.3.2 Approach

Grouping of variables: FMI 3.0 includes a mechanism
for grouping variables through the definition of Terminals
((MAP FMI 2022b). This concept was originally designed
to allow for the connection of a group of variables, typi-
cally inputs or outputs, but also for parameter propagation.
However, the semantics of Terminals are kept general, and
thus they can be used just for grouping of variables. In this
case connecting these "terminals" isn’t the main focus.

n-D lookup tables: Their representation is a specializa-
tion of the more general parameter grouping concept. An
exposed n-D lookup table within an FMU contains the fol-
lowing information:

• Domains: For each of the n dimensions of the lookup
table an array variable (typically a parameter or a
constant) with the sampling points (along this dimen-
sion) of the lookup-table must be referenced.

• Codomain: The sampled function values are stored
in this references n-dimensional array.

• Optionally, for each dimension a variable (typically
an input or a local variable) can be referenced that
represent the current operating point (along this di-
mension)

• Optionally, additional variables containing related
information can be referenced. (e.g., the interpola-
tion algorithm in between the sampling points)

It is intended to use the concept of Terminals for this
purpose by defining specific values for the terminalKind,
variableKind and matchingRule attributes. Note that, e.g.,
CombiTable1D or CombiTable2D blocks of the Modelica
standard library used within an FMU can be exposed with
this approach as well.

2.3.3 Status and Outlook

At the time of writing this paper, this layered standard is in
an early stage. Its development can be followed on GitHub
(MAP FMI 2023c).

3 Layered Standards by other Orga-
nizations and Companies

The concept of layered standards is especially suitable for
specific extensions to FMI that will not become part of
the FMI Core standard and that are not developed by the

Domain x

Dom
ain

 y

Codomain z

Input
in_x

Inp
ut

in
_y

Current
opererating

point

Figure 7. A 2-D lookup table with the current operating point

FMI Project. Thus, companies and other organizations are
encouraged to develop their own layered standards.

First drafts for such layered standards developed have
been already created, e.g., for exchangeable binary codecs
and the realization of binary variables in FMI 2.0 via string
variables (Bosch 2023).

4 Summary and Outlook
The FMI 3.0 standard is currently in a phase of rapid adop-
tion by tool vendors. However, many existing use cases
for FMI-based simulation can already be handled with
FMI 2.0. The switch to FMI 3.0 will be driven by new
use cases with new requirements, such as detailed simula-
tions of vECUs. For their realization with FMI, additional
information and extended capabilities for certain domains
are beneficial and necessary. In this paper we presented
the concept of layered standards to FMI. We expect their
broad adoption in the near future, especially after the pub-
lication of the layered standard examples currently being
created by the FMI Project. During their development the
concept of layered standards and the foreseen extension
mechanisms in FMI 3.0 have already proven very effec-
tive.

Acknowledgements
We would like to thank all contributors to the Modelica
Association standards, particularly FMI and SSP. The con-
cept of layered standards for FMI is based on their valu-
able work and contributions.

References
ASAM e.V. (2017-11). ASAM MCD-1 XCP v1.5.0. URL: https:

//www.asam.net/standards/detail/mcd-1-xcp/.
ASAM e.V. (2018-03). ASAM MCD-2 MC (aka ASAP2) v1.7.1.

URL: https://www.asam.net/standards/detail/mcd-2-mc/.

Beyond FMI - Towards New Applications with Layered Standards

386 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204381



ASAM OSI Project (2022-07). ASAM OSMP (Open Simulation
Model Packaging) V1.3.0, part of ASAM OSI (Open Simula-
tion Interface) v3.5.0. URL: https://opensimulationinterface.
github . io / osi - documentation / # _ osi _ sensor _ model _
packaging.

Berners-Lee, Tim, Roy T. Fielding, and Larry M Masinter
(2005-01). Uniform Resource Identifier (URI): Generic Syn-
tax. RFC 3986. DOI: 10.17487/RFC3986. URL: https://www.
rfc-editor.org/info/rfc3986.

Blochwitz, Torsten et al. (2011). “The Functional Mockup Inter-
face for Tool independent Exchange of Simulation”. In: 8th
International Modelica Conference. URL: http://www.ep.liu.
se/ecp/063/013/ecp11063013.pdf.

Blochwitz, Torsten et al. (2012). “Functional Mockup Interface
2.0: The Standard for Tool Independent Exchange of Simu-
lation Models”. In: 8th International Modelica Conference.
URL: https://lup.lub.lu.se/search/ws/files/5428900/2972293.
pdf.

Bosch (2023-05). FMI Layerd Standard Drafts by Robert Bosch
GmbH. URL: https://github.com/boschglobal/dse.standards/
tree/main/modelica.

Hodges, Jeff, Collin Jackson, and Adam Barth (2012-11). HTTP
Strict Transport Security (HSTS). RFC 6797. DOI: 10.17487/
RFC6797. URL: https://www.rfc-editor.org/info/rfc6797.

Hoffman, Paul E. (2002-02). SMTP Service Extension for Secure
SMTP over Transport Layer Security. RFC 3207. DOI: 10 .
17487 / RFC3207. URL: https : / / www. rfc - editor. org / info /
rfc3207.

Junghanns, Andreas et al. (2021). “The Functional Mock-up In-
terface3.0 - New Features Enabling New Applications”. In:
14th International Modelica Conference. URL: https : / / doi .
org/10.3384/ecp2118117.

Klensin, Dr. John C. (2001-04). Simple Mail Transfer Protocol.
RFC 2821. DOI: 10.17487/RFC2821. URL: https://www.rfc-
editor.org/info/rfc2821.

MAP FMI (2022a-05). Functional Mock-up Interface (FMI)
Standard 2.0.4. URL: https : / / github . com / modelica / fmi -
standard / releases / download / v2 . 0 . 4 / FMI - Specification -
2.0.4.pdf.

MAP FMI (2022b-05). Functional Mock-up Interface (FMI)
Standard 3.0. URL: https://fmi-standard.org/docs/3.0/.

MAP FMI (2023a). Layered Standard for Bus (unreleased).
URL: https://modelica.github.io/fmi-ls-bus/main/.

MAP FMI (2023b). Layered Standard for XCP (unreleased).
URL: https://modelica.github.io/fmi-ls-xcp/main/.

MAP FMI (2023c). Layered Standard Structuring of Data (unre-
leased). URL: https://modelica.github.io/fmi-ls-struct/main/.

MAP SSP (2019-03). System Structure and Pa-
rameterization (SSP) Standard 1.0. URL: https :
/ / ssp - standard . org / publications / SSP10 /
SystemStructureAndParameterization10.pdf.

Montulli, Lou and David M. Kristol (2000-10). HTTP State
Management Mechanism. RFC 2965. DOI: 10 . 17487 /
RFC2965. URL: https://www.rfc-editor.org/info/rfc2965.

Nielsen, Henrik et al. (1999-06). Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616. DOI: 10.17487/RFC2616. URL: https:
//www.rfc-editor.org/info/rfc2616.

Session 4-A: New features of the Modelica language and of FMI 1

DOI
10.3384/ecp204381

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

387


