
Design ideas behind Bioprocess Library for Modelica

Jan Peter Axelsson

Vascaia AB, Sweden, jan.peter.axelsson@vascaia.se

Abstract
This paper discusses key design ideas behind the Biopro-
cess Library, BPL. The library facilitates modelling and
simulation of bioprocesses mainly for the pharmaceutical
industry. It borrows some structures from MSL Fluid and
Media but differs in central design choices. A typical ap-
plication consists of both configuration of standard com-
ponents from the library and tailor-made Modelica code
defining the application-dependent medium and biopro-
cess reactions. The guiding idea is that configuration of
components works well for defining the setup of process
equipment for a production line, while more flexibility
is needed for modelling bioprocess reactions and there-
fore equations are used. Another central design idea is
that components of equipment are centrally adapted to the
medium used. One could say that the library is param-
eterised with the application media and reaction models.
The focus of this paper is structural design aspects of the
library rather than the content.
Keywords: Bioprocess, media, reactions, formal type pa-
rameters, packages, components, equations

1 Introduction
There is a growing interest in simulation also in the bio-
pharmaceutical industry. Two major vendors of equipment
Cytiva (Bioreactor-scaling-tool 2023) and Sartorius today
offer services around their products based on using sim-
ulation. Two well-known companies are Siemens (with
gPROMS) and Dassault (with 3DEXPERIENCE) who of-
fer softwares and services in this market. The need is of-
ten a combination of mechanistic and more data-driven
modelling. In the academic area the interest in simula-
tion of biological systems has been there for decades and
illustrated by the public repositories of models (EMBL
BioModels 2023; UC San Diego BiGG Models 2023).
So far, Modelica has had very little impact in this field,
though. Important aspects of the question is discussed in
(Wiechert, Noack, and Elsheikh 2010).

Developing bioprocesses requires a combination of
knowledge from different fields like: reactor dynamics,
gas-liquid-transfer, buffer-reactions, cell metabolism, re-
combinant protein expression, degradation processes of
product proteins in the broth, impurities etc. Part of this
knowledge is well established and can be re-used, while
modeling of cell metabolism and product formation may
be more unique, and less re-useable. Further, the same re-
actor may be operated in different ways: batch, fed-batch,

continuous, perfusion etc. Various ideas of process control
are also interesting to evaluate using simulation.

Bioprocess Library tries to meet these needs of flexibil-
ity and possibility to re-use code. It has been gradually
developed over many years in-house for consultancy work
and also teaching. Examples of applications are (Axels-
son 2018; Axelsson 2019; Axelsson 2022). Examples of
integrating black-box models together with the traditional
mechanistic models has not been done yet, but can cer-
tainly be done in the framework. The architecture of the
library was outlined in (Axelsson 2021). A key design
aspect is to account for the different modelling needs for
the process configuration and the actual reactions in the
reactor. The engineered part is modelled by conveniently
configure components of the library. The biological part
requires more flexibility. Modelling of cell metabolism
and other reactions in the broth is done by writing down
the equations in a certain Modelica format.

This paper is organised as follows. An orientation of
the library is given in section 2. Section 3 focuses on the
reactor model and how library code is integrated with ap-
plication code. In section 4 a simple example of fed-batch
cultivation illustrates the structure of typical application
code. In section 5 the technique of constraint-based mod-
elling is briefly discussed and how such modelling can be
handled with the library. In section 6 different aspects of
the library design are discussed including the relation to
MSL Fluid and Media. The availability of the library is
outlined in section 7 and the paper ends in section 8 with
concluding remarks.

2 Library structure
The library has a flat hierarchy, limiting the use of partial
packages and models. In this way it is hopefully easier to
understand and later to expand. A brief orientation of the
library is first given. The next section describes the Equip-
mentLib, followed by a section on the media connectors.

2.1 Overview
The structure of Bioprocess Library is shown in Figure 1.
It includes the following packages:

• UsersGuide - Package of brief practical informa-
tion in different records, accessible from the FMU.

• Interfaces - Package of templates for liquid and
gas, and interfaces for the Reactor component
and its inner application models. It is all used in
EquipmentLib.

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

453

Figure 1. Structure of the Bioprocess Library. The formal (type)
parameters are marked with ∗.

• Media - Package for various standard media.

• EquipmentLib - Package of models of standard
equipment using a generic medium, e.g. tanks,
pumps, reactors, sensors, filter, mixers etc for both
liquid and gas media.

• Control - Package of blocks for generating electri-
cal control signals to equipment components. They
complement and adjust blocks from MSL.

• MSL_local - Package that contains parts of MSL for
PID-control and more. In this way BPL can be used
more independent of the general MSL version of the
compiler. Currently the MSL version 3.2.2 build 3 is
used, but to be updated to MSL 4.0.0.

• TEST2_INTERNAL - Package with small test applica-
tions including configuration of equipment for batch,
fed-batch, chemostat and perfusion cultivation.

2.2 The EquipmentLib package
The EquipmentLib package has a central role in the li-
brary. Components are coded in a generic way. The pack-
age is parametrised with two general formal (package) pa-
rameters for the media:

• Liquidphase - the package for the liquid phase

• Gasphase - the package for the gas phase

and four specific formal (model) parameters for just the
component Reactor described in section 3.

To improve readability, the code sections defining base
packages and partial models are lifted out to the package
Interfaces and imported back where needed.

2.3 The media and connectors
The flow direction of both liquid and gas media are usually
well-defined in bioprocesses and reflected in the present
components. The media connectors are however undi-
rected and prepared to handle back-flow.

The LiquidCon connector code is shown below. The
GasCon connector is defined similarly.

Listing 1. LiquidCon connector

connector LiquidCon
stream Liquidphase.Concentration c;
flow Real F (unit="L/h");
Real p (unit="bar");

end LiquidCon;

The connector uses the flow concept for the flow F and
the corresponding potential is the pressure p. The concen-
tration vector c gets its size from the actual medium. The
vector c is declared as a stream variable. The density of
the liquid media is calculated when needed based on the
concentration c and here is a function in the liquid me-
dia base template that takes information of molar weights
from the actual application medium. Similar technique as
in MSL Media.

Both the inclusion of pressure p and the use of the
stream-concept for c are introduced to "future-proof" the
library, and facilitate local balancing of models, see (Ols-
son et al. 2008; Franke et al. 2009). The pressure does
not play any role in the applications so far. The pumps are
ideal in the sense that a given electrical signal gives the
desired flow rate immediately. There has not been any ob-
vious need to model back-flow either, which is the major
motivation of the undirected connector using the stream
concept (Franke et al. 2009).

The temperature has so far not been considered impor-
tant in the modelling. The temperature is usually in the
range from room temperature up to 37◦C and well con-
trolled. The cell culture produces heat due to metabolism
and at high cell concentrations and feed rate, the cooling
capacity of the reactor sets a limit. This limit is very sim-
ilar to the oxygen transfer capacity. Both set about the
same limit of rate of metabolism supported by mechanical
reactor design. The process is usually designed with some
margin to this limit, see simulations in section 4.4.

Design ideas behind Bioprocess Library for Modelica

454 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204453

3 The reactor component
The various reactions of the process are thought to take
place only in the Reactor component. The other equip-
ment only transports, stores, separates media species, or
mixes media from several sources. The Reactor com-
bines standard and application dependent parts in a com-
plex way. The component ReactorAir is an extension of
the Reactor to also handle gas phase.

The reactions in a typical bioreactor can be divided into
different parts. These parts are user-defined sub-models,
i.e. inner components, to the Reactor and serve as for-
mal (type) parameters:

• culture - reactions in the living cells

• broth_decay - degradation of substances and even
of the living cells in the culture broth

• pH_buffer - pH-buffer reactions in the broth

• gas_liquid_transfer - gas-liquid-transfer be-
tween the reactor broth and gas phase

An important observation is that it is the concentration of
substances that drives the rate of reactions in these differ-
ent parts. The broth concentration is the "communication
link" between them. Therefore, concentration is chosen as
an inner variable in the reactor. Similarly, gas fraction
is used as an inner variable in the extension for aerated
reactor. The different parts are naturally sub-models to the
reactor model. The reactor sub-models communicate back
to the reactor through rate-variables. These rate-variables
are normalised with respect to the biomass m[X] of the re-
actor for reactions in the cell and with respect to liquid
reactor volume V for the others.

The corresponding code-snippet for the reactor model
is shown below. A key application dependent parameter
is nc, that stands for the number of components, or we
should say species, in the medium.

Listing 2. Reactor model equations

// Concen t ra t i on s f o r the l i q u i d phase :
for i in 1:Liquidphase.nc loop

c[i] = m[i]/V;
for j in 1:n_outlets loop

outlet[j].c[i] = c[i];
end for;
for j in 1:n_ports loop

port[j].c[i] = c[i];
end for;

end for;

// Mass−ba lance f o r the l i q u i d phase :
for i in 1:Liquidphase.nc loop

der(m[i]) = culture.q[i]*m[X]
+ broth_decay.r[i]*V
+ pH_buffer.r[i]*V
+ gas_liquid_transfer.r_to_liquid[i]*V
+ sum(actualStream(inlet[j].c[i])

*inlet[j].F for j)
+ sum(c[i]*outlet[j].F for j);

for j in 1:n_inlets loop
inlet[j].c[i] = c[i];

end for;
end for;

// L iqu i d volume of the r e a c t o r :
der(V) = sum(inlet[i].F for i)

+ sum(outlet[i].F for i);

The different sub-models are all optional and Mod-
elica provide language constructs to support use of
no_culture, no_broth_decay etc. The interface stan-
dard between the reactor and the sub-models are defined
in the package Interfaces in BPL.

4 Application code
A simple example will illustrate the structure of the ap-
plication code, adaptation of the EquipmentLib to the
application, and finally the configuration of the process
model. The model has no gas phase or broth decay, and
pH-buffer reactions are not defined either.

The mass-balance model of the example is as follows.
See for instance chapter 6 in (Hu 2020).

d(m[S])
dt

=−qS(c[S]) ·m[X]+SinFin(t) (1)

d(m[X])

dt
=µ(c[S]) ·m[X] (2)

dV
dt

=Fin(t) (3)

where the specific cell growth rate µ(c[S]) and substrate
uptake qS(c[S]) are directly related through the yield Y
which is here a constant

µ(c[S]) = Y ·qS(c[S]) = Y ·qmax
S

c[S]
Ks + c[S]

(4)

The dosage of substrate Fin(t) is controlled from a
process computer according to a pre-defined exponential
scheme.

4.1 Application medium and reactions
The medium is defined by the following package.

Listing 3. Application medium

package Liquidphase2
import BPL.Interfaces.LiquidphaseBase;
extends LiquidphaseBase

(name="Standard components X and S",
nc=2);

constant Integer X=1;
constant Integer S=2;
constant Real[nc] mw (each unit="Da") =

{24.6, 180.0};
end Liquidphase2;

The reactions in the cell culture are described by the
following model, see Listing 4.

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

455

Listing 4. Application culture

model Culture2 "Text-book culture model."
import BPL.Interfaces.ReactorInterface;
extends ReactorInterface(redeclare

package Liquidphase=Liquidphase2);
outer Liquidphase.Concentration c;
Liquidphase.Rate q;
constant Integer X = Liquidphase.X;
constant Integer S = Liquidphase.S;
parameter Real Ks (unit="g/L") = 0.1;
parameter Real qSmax (unit="g/(g*h)")=1;
parameter Real Y (unit="g/g") = 0.50;
Real mu (unit="1/h");

equation
q[X] = mu;
q[S] = -qSmax*c[S]/(c[S]+Ks);
mu = -Y*q[S];

end Culture2;

Note that the culture model relates metabolic flow rates
q[] to reactor concentrations c[] with a static function.
Even for much more complex culture models the relation
is a static function, cf equation (5) in the next section.
However, if we need to introduce dynamics in the culture
model this can be done in this framework too.

It is a possibility to structure the culture model in more
parts. This usually improves readability and can help in
the dialogue with microbiologists around this part.

4.2 Adaptation of the EquipmentLib
The adaptation of the BPL/EquipmentLib to the appli-
cation medium and culture model is done in the few lines
of code below.

Listing 5. Adaptation of EquipmentLib to the application

package Equipment
import BPL.EquipmentLib;
extends EquipmentLib(

redeclare package Liquidphase =
Liquidphase2,

Reactor(redeclare model Culture =
Culture2));

end Equipment;

Note that package Liquidphase and model Culture
are formal (type) parameters to EquipmenetLib and get
their values from the application. The concept of formal
parameters are discussed in section 4.4 (Fritzson 2015).

4.3 Configuration of the application process
The application process can now easily be configured us-
ing the adapted library. Note that for the component biore-
actor the medium component for cell concentration must
be specified and also that an inlet to the reactor is needed.
The component feedtank is an integration of a feedtank
with a pump. The component dosage scheme is taken
from BPL/Control package and has an electrical signal
connector and no adaptation needed.

The application code needs just the three sections
shown. It is possible in the package Equipment to de-
fine special tailor-made models of equipment needed for
the application that is not available in the library.

Figure 2. Simulation of fed-batch cultivation. See repository
CONF_2023_10_MODELICA15 at (BPL Applications 2023).

Listing 6. Application configuration

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
Equipment.Reactor bioreactor

(X=liquidphase.X, n_inlets=1);
Equipment.FeedSystem feedtank;
Control.DosageSchemeExp dosagescheme;

equation
connect(bioreactor.inlet[1], feedtank.

outlet);
connect(feedtank.Fsp, dosagescheme.F);

end Fedbatch;

4.4 Simulation results
The example above of fed-batch cultivation is simulated
with quite typical parameters for yeast (S. cerevisiae) cul-
tivation (by-product formation neglected), see Figure 2.

It is common to start fed-batch cultivation with a short
batch phase, as we see here. When the initial substrate is
consumed the substrate feeding is started at 4 h and fol-
lows a certain scheme. Here a well-designed exponential
feed scheme is used. Note that the substrate level is kept
low and growth rate kept constant at about half the max-
imal rate. From time 15 h and on, the feed rate is kept
constant in order to avoid challenging the reactor capacity,
but not modelled here. The capacity limit is determined by
the oxygen transfer and cooling capacity. During this time
with constant feed rate the culture continues to grow but
at a slowly decreasing rate.

5 Note on constraint-based modelling
The culture sub-model of the reactor is in many applica-
tions a static non-linear function f () relating reaction rates
q[] of cell metabolism and growth to reactor broth con-

Design ideas behind Bioprocess Library for Modelica

456 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204453

centrations c[]. There are nc species in the broth and rates
q[i](t) defined for each of them at time t

q[i](t) = fi(c[j](t)), j = 1...nc (5)

The function is derived from the underlying system of
equations of reactions rates. It is quite common that the
system of steady state equations is under-determined and
therefore complemented with constraints that determine
the system. This leads to a formulation of the function
f () in an implicit way, as a solution of an optimisation
problem. It is a convenience of modelling that has some
similarity with analytical mechanics in physics.

An example showing cell growth on two substrates il-
lustrates the idea. The example is a simplified version of
yeast growing on glucose G and ethanol E. In this ex-
ample the important fact that yeast can produce ethanol is
dropped. Both substrates can be taken up and metabolise
in parallel and the cell coordinate the uptake rates to max-
imize its specific growth rate µ

µ = YGr ·qGr +YEr ·qEr (6)

under the constraint of the cells limited respiratory capac-
ity qlim

O2 see (Sonnleitner and Käppeli 1986)

kog ·qGr + koe ·qEr ≤ qlim
O2 (7)

At low substrate levels the uptakes are limited by the con-
centrations in the broth

qGr ≤αG (8)
qEr ≤βE (9)

Listing 7. Calculation of "culture" f () using linear program-
ming done with Optlang in Python

def f(G,E):
qGr=Variable(’qGr’,lb=0)
qEr=Variable(’qEr’,lb=0)

mu_max=Objective(YGr*qGr+YEr*qEr,
direction=’max’

qO2lim=Constraint(kog*qGr+koe*qEr,
ub=qO2max)

qGlim=Constraint(qGr,ub=alpha*max(0,G)
qElim=Constraint(qEr,ub=beta*max(0,E)

f.objective=mu_max
f.add(qO2lim)
f.add(qGlim)
f.add(qElim)

f.optimize()
return (f,objective.value,

f.variables.qGr.primal,
f.variables.qEr.primal)

Thus, the optimization problem (6)-(9) gives the static
function (5) that relates metabolic rates to the broth con-
centrations and describes the culture, see formulation in
the high level Python package Optlang (Jensen, Cardoso,
and Sonnenschein 2017) in Listing 7.

Figure 3. Simulation of batch cultivation with two substrates.
CONF_2023_10_MODELICA15 at (BPL Applications 2023).

Listing 8. Simulation of BPL-model of bioreactor together with
"culture" f () done with FMU and PyFMI (or FMPy) together
with Optlang in Python outlined (species index omitted)

n = t_final/t_delta
initialize c[0] and q[0]
c[1] = simulate(0, t_delta, c[0], q[0])
for i in 1:n:

q[i] = f(c[i])
c[i+1] = simulate(’cont’, c[i], q[i])

A simplified solution procedure to integrate bioreactor
simulation with optimisation of culture metabolic rates at
each time instant is based on the fact that here are two time
scales. The concentrations c[t] in the reactor broth change
slowly compared to the cell culture optimisation of reac-
tion rates q[t]. Thus, simulation a short step ∆t of the in-
tegrated process is done with reaction rates q[t] kept con-
stant and gives concentrations c[t +∆t] . Then the culture
reactions rates q[t +∆t] are updated with an optimisation
based on the concentrations c[t +∆t] etc. The procedure
is often called the "direct approach" and works well for a
class of problems. Its limitations are discussed in section
2.2 and 4.4 in (Ploch, Lieres, et al. 2020). Key steps of the
Python code are outlined in Listing 8.

In Figure 3 results from simulations using PyFMI (An-
dersson, Åkesson, and Führer 2016) are shown of batch
cultivation with the two substrates G and E. For the cul-
ture to grow at maximal rate, first G is consumed and then
E. Note that during a short period 4.7-4.9 hours both sub-
strates are consumed in parallel. This occurs since levels
of G is low and the constraint on oxygen allows some E to
be consumed, and gradually more, and G vanishes.

In this example the model can very well instead be for-
mulated in terms of a system of non-linear ODE as was
done in the original publications (Sonnleitner and Käppeli
1986).

The advantage with constraint-based modelling is that
the modelling can handle larger models and remain rel-

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

457

atively transparent. The public model repository (EMBL
BioModels 2023) contains today about 1000 models and
20 percent of them use constraint-based modelling and
the rest use mainly ODE. The public repository (UC
San Diego BiGG Models 2023) contains about 100 large
genome scale models with thousands of reactions all mod-
elled using a constraint-based technique. The modelling
software preferred is COBRApy that is based on Optlang,
see (Ebrahim et al. 2013).

Thus, the framework presented here with BPL, FMU-
simulation of the bioprocess setup and Optlang for han-
dling constraint-based modelling of the culture, can inte-
grate the two modelling techniques, see (Axelsson 2018;
BPL Applications 2023).

It would likely be better to handle the constraint-
based modelling within Modelica. With the Modelica
extension Optimica at least the basic example above can
be simulated with ease (Axelsson 2018). Here is also
a recently developed Modelica toolbox for Differential
Algebraic Embedded Optimization (DAEO) which ad-
dress constraint-based models and seems very interesting
(Ploch, Zhao, et al. 2019; Ploch, Lieres, et al. 2020). The
drawback with a Modelica-solution is that models from
the public repositories needs to be translated to Modelica,
but can perhaps be automated.

6 Reflections on the library design
Here the BPL approach is compared with techniques of
MSL Fluid and Media and some other libraries. The first
sub-section addresses the scope of the library more clearly.
In the later half of the section more broader questions are
briefly discussed.

6.1 Limitations of the library
The focus of the Bioprocess Library is after all towards
bio-pharmaceutical processes, often involving recombi-
nant protein expression. This means that processes are
usually operated in the temperature range 20−37◦C. Fur-
ther the pressure is usually just above room pressure. The
viscosity of liquids is like water. The reactor volumes are
often up to 1000 L but occasionally 10000 L. Thus, sev-
eral properties of media accounted for in MSL Fluid and
Media are not that relevant.

If we look at biotechnology processes more broadly and
include antibiotics, enzyme-production, baker’s yeast pro-
duction, breweries, or biorefinery industry, then the reac-
tor scale may go up to 100 m3, and reactor media are more
complex and may be viscous. In this scenario MSL Fluid
and Media can be more of help. One interesting applica-
tion from biorefinery industry is (Ploch, Zhao, et al. 2019)
where Modelica is used together with MSL Fluid and Me-
dia in combination with tailor-made modelling of bioreac-
tor with a microbial culture.

6.2 Central vs local definition of media
The BPL has a structure where the medium is centrally
defined for all components in EquipmentLib. This is in

contrast to MSL Fluid where each component has an in-
dividual local definition of medium. There are certainly
pros and cons with the two approaches.

There has been an expressed wish to in some way au-
tomate the process of choice of medium to simplify and
ensure correctness of code. In the conclusion of (Franke
et al. 2009) it is stated: "The used medium has currently
to be defined for every component. It would be nicer if the
medium was defined at one source and the medium defi-
nition would then be propagated through the connection
structure."

The "propagation" of medium definition is in BPL done
using "adaptation" of package using formal (type) param-
eters, as shown in the example in section 4.2. The idea
behind using application package media as well as sub-
models of the reactor as "type formal parameters" for the
EquipmentLib package came from material in chapter
4.4 and an odd example in chapter 10.4 in (Fritzson 2015),
combined with an urge for simplicity.

6.3 Equations vs components

The BPL defines reactions with equations rather than com-
ponents. The reactions are grouped in four categories as
outlined in section 3, and seen as sub-models to the Reac-
tor component. The sub-models can be given an internal
structure of interacting sub-sub-models to enhance read-
ability and simplify modifications. Especially relevant for
culture models. It is up to the user who writes the applica-
tion code.

To introduce components for say the culture model is
difficult. Different approaches to model biochemical net-
works are discussed in (Wiechert, Noack, and Elsheikh
2010). There is a public Modelica library, BioChem
(Brugård et al. 2009), that brings component modelling to
biochemical reaction network. The possibility to integrate
BPL with BioChem has not been investigated, so far.

The focus of MSL Fluid and Media is on thermo-fluid
modelling as is clearly stated in the MSL documentation.
Thus, the focus of the library is not really on chemical re-
action processes as pointed out earlier (Baharev and Neu-
maier 2012).

6.4 Code in consultant-customer relation

In my experience of consultancy work the customer is fo-
cused on results of using simulation rather than the sim-
ulation tool itself. In this context it is important to show
and document the application code outlined in section 4.
Provided the configuration of the process using standard
components is clear and tested enough, there is little inter-
est for the details of the library. The customer is usually
satisfied to own the application code, while the consultant
owns the library. If there is an interest, the consultant can
deliver a compiled FMU and Jupyter notebooks that gen-
erate the results presented in the project.

Design ideas behind Bioprocess Library for Modelica

458 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204453

Figure 4. Graphical configuration of fed-batch cultivation in
OpenModelica, see Listing 9. The formal (type) parameters Liq-
uidphase and Culture of the library are not shown.

6.5 Challenges for the GUI
The library has been developed with little concern about
a graphical user interface. One reason is that the (depre-
cated) software JModelica (Åkesson et al. 2010) has been
used which lacks a GUI. Another reason is that there are
differences between different vendors design of the GUI
although the Modelica Standard Library sets an informal
standard of what GUI facilities are implemented. How-
ever, the Modelica language is richer.

The challenges to configure BPL applications graphi-
cally are the following:

1. The package BPL/EquipmentLib has two formal
(type) parameters for media: Liquidphase and
Gasphase.

2. The BPL/EquipmentLib/Reactor has four
formal (type) parameters for sub-models:
culture, broth_decay, pH_buffer, and
gas_liquid_transfer.

3. The BPL/EquipmentLib/Reactor use inner/outer
implicit connection to the sub-models listed in the
previous item. There is also a specific connection for
each sub-model back to the Reactor.

4. The BPL/EquipmentLib/Reactor has also vari-
able number of inlets and outlets and affect the icon
of the component.

A first attempt to address GUI configuration in Open-
Modelica is shown in Figure 4, cf Listing 9. We see the
model of fed-batch cultivation in section 4. Note that the
electrical connector is represented by a thin line and the
liquid phase connector with a thick filled line. For gas
phase a thick open line is used, not shown.

6.6 Library modification for different GUI
Not all Modelica implementations have a GUI that sup-
ports parametrisation of packages, although the com-
piler does. This affects the design of the package
EquipmentLib and the structure of the applications code.
One approach to solve this dilemma is to introduce a par-
allel package EquipmentLib2 where the formal (pack-
age) parameters for media as well as connector code, are
moved into each component instead. Then adaptation to

the application media is done at instantiation of the com-
ponent instead. Thus Listing 5 and Listing 6 are then com-
bined as shown in Listing 9, done by the GUI.

Listing 9. Application configuration when parametrisation of
packages are not supported by the GUI

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
EquipmentLib2.Reactor bioreactor(

redeclare package Liquidphase =
Liquidphase2,

redeclare model Culture = Culture2,
X = Liquidphase.X, n_inlets=1);

EquipmentLib2.Feedsystem feedtank(
redeclare package Liquidphase =

Liquidphase2);
Control.DosageSchemeExp dosagescheme;

equation
connect(bioreactor.inlet[1], feedtank.

outlet);
connect(feedtank.Fsp, dosagescheme.F);

end Fedbatch;

The solution in Listing 9 has a structure similar to the
MSL Fluid and Media. The drawback with this structure is
that you need to redeclare media packages for each com-
ponent. In OpenModelica this is done manually by the
user. In the software Impact from Modelon there is also a
possibility to automate this tedious and error-prone work
in the GUI, see (Modelon 2023).

An alternative approach to keep redeclaration of media
to one central place for components taken from package
EquipmentLib2, is to introduce a global formal type pa-
rameter for the application code that the components me-
dia redeclaration refer to, see Listing 10 below.

Listing 10. Application configuration when parametrisation of
packages are not supported by the GUI and global parameter for
package Liquidphase introduced to centralize user interac-
tion

model Fedbatch "Fedbatch cultivation"
Liquidphase_data liquidphase;
replaceable package Liquidphase =

Liquidphase2;
EquipmentLib2.Reactor bioreactor(

redeclare package Liquidphase =
Liquidphase,

...

The approach with a global formal type parame-
ter can be found in some MSL Fluid examples, e.g.
ThreeTanks, and the technique is in fact generally
widely used. The drawback with this method is that it
requires editing of the code manually, and can not be done
with just using the (current) GUIs.

6.7 An idea for GUI improvement
The different Modelica GUI are similar and simplified
to focus on components and their interconnections. The
awareness of which package a certain component comes
from is important at the time of configuration but later of
little use. In the code view the programmer is naturally
more aware of the package a component belong to.

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

459

Figure 5. An idea to improve GUI by including access to pack-
age parameters for Equipment.

One way to make package information accessible in the
GUI is shown in Figure 5. The package Equipment is
represented by the box in the lower right corner. Click-
ing on this box shows general (type) parameters for the
package and in this case the package Liquidphase and
what that package is, and the user can change it. The code
is then re-translated. Note that clicking on the box high-
light the components in the configuration that belong to
Equipment and affected by a change. A complement
could be to in each component introduce a symbol for
what package the component come from and when clicked
the box with information of the package is shown and
the other components in the configuration from the same
package are high-lighted.

In MSL there are libraries where the need for express-
ing common properties for several components in a cen-
tral way are addressed. The technique used is to define
a central component that other components connect im-
plicitly with using inner/outer variable mechanism. In the
Fluid library the central component is called system and
in the Multibody library it is called world. When the
central component is defined on the top level it provides
application wide access and can be seen as global pa-
rameters (SystemComponent 2023). This should be com-
pared with the idea presented in this paper, namely pack-
age parametrisation using mechanism of inheritance. It
make use of the package structure and is not global pa-
rameters. The pros and cons of the different approaches
needs further analysis.

6.8 Two-level system configuration with GUI
In practice it is common to first settle the process setup and
then explore various strategies for operation and control.
However, in some contexts it can be fruitful to investigate
the interplay of process and control design.

The process setup can effectively be coded using the
procedure in section 4 and shown in Listing 11. The con-
figuration provides an openness of how operation and con-
trol should be done. The model Fedbatch_base com-
bines the feed tank with the bioreactor, but we do not in-
clude any dosage scheme. Further we equip the reactor

with an on-line sensor for measurement of substrate con-
centration.

The operation and control of the process is then con-
figured at a second level. Here we can let the process be
operated by a fixed dosage scheme of the feed rate as be-
fore, or for example investigate the use of feedback con-
trol of the feed rate around the dosage scheme based on
the on-line substrate measurement signal.

Listing 11. Application configuration fed-batch - level 1

model Fedbatch_base "Fedbatch cultivation"
Liquidphase_data liquidphase;
EquipmentLib.Reactor bioreactor(

X=liquidphase.X, n_inlets=1,
n_ports=1);

EquipmentLib.ProbeSensor sensor(
component=liquidphase.S);

EquipmentLib.Feedsystem feedtank;
Interfaces.RealInput Fsp;
Interfaces.RealOutput S_measured;

equation
connect(Fsp, feedtank.Fsp);
connect(feedtank.outlet,

bioreactor.inlet[1]);
connect(bioreactor.port[1],

sensor.probe);
connect(sensor.probe.out, S_measured);

end Fedbatch_base;

This second-level configuration of the control system
can be done using the GUI, as shown in Figure 6. Since
we on this level only deal with electrical signals here is
little difference between the GUI of different vendors, in
this respect. Further, the advantage of exploratory GUI-
configuration is more obvious than for the process setup.

Simulation during start-up of the process is shown in
Figure 7. We see mainly that the control system is stable
and keeps the substrate level at a low level close to the
set-point during the exponential growth phase. To evalu-
ate the advantage of substrate control compared to fixed
dosage schemes requires a number of simulations taking
into account variation in the initial cell concentration as
well as variation in the culture parameters, and is outside
the scope of this paper.

A two-level configuration process is natural in many sit-
uations and combine the strength of package parametrisa-

Figure 6. Application configuration fed-batch with feedback
PID-control of feed rate from substrate measurement - level 2.
The process setup is in the dash-lined box, see Listing 11.

Design ideas behind Bioprocess Library for Modelica

460 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204453

Figure 7. Simulation of fed-batch cultivation with substrate con-
trol from on-line substrate measurement and adjustments of the
feed rate around the fixed dosage scheme. Focus on the start-up.

tion at the process level and the flexibility of GUI at the
control system level. If you prefer, the first level config-
uration can also be done graphically. And if your Model-
ica software does not support package parametrisation you
can use the procedure described in the previous section.

6.9 The importance of FMU for the library
For bioprocess simulations it is important to let it be part
of the wider context of data analysis and detailed cellular
modelling. Therefore compilation to FMU of high quality
for further integration to Python (or Julia, Matlab) is a very
important part.

One practical aspect is that information about media
and culture etc in the Modelica model is good to have ac-
cessible from the FMU. This information is often declared
as constants. Today vendors differ about whether constant
information is available in the FMU, and OpenModelica
has not implemented this facility, just yet.

7 Availability of Bioprocess Library
The library has been used in a few industrial projects over
the years where I have been involved as consultant. It has
also been used for teaching operators. These interactions
have to some extent set the priorities made in the library
development. The name Bioprocess Library is a registered
trademark and owned by me.

I am now interested in that more people use the library
and hope to get ideas back for further development. One
possibility is to make it publicly available at GitHub. In-
formation will be given at the GitHub-page, see (BPL Ap-
plications 2023).

At GitHub I already provide FMU-compiled demo ex-
amples with Jupyter notebooks that can be downloaded,
or run from the web-browser using Google Colab virtual
machines. The focus is here on further developing usage
of simulation and post-processing using Python, by the
GitHub-community. The examples include both the text-
book culture model here, as well as models of microbial
yeast (S. cerevisiae) and mammalian cell culture (CHO)
for recombinant protein production. The cultures are run
as batch, fed-batch, continuous and perfusion. The ex-
amples include dynamics of operation, model calibration,
sensitivity analysis, design space calculation, scale-down,
regulator tuning and process optimisation.

8 Concluding remarks
The presentation has focused on structural design aspects
of the Bioprocess Library, and little on the content. Design
aspects of more general interests are:

• Part of the user configuration is done by equations in
a certain format as described in Section 3 and exem-
plified in Listing 4. The other part of the user con-
figuration is done traditionally using components, as
described in Section 4 and exemplified in Listing 6.

• The parametrisation of components with media are
done on the package level instead of on the individ-
ual component level, as described in Section 4 and
exemplified in Listing 5 and 6.

• The GUI varies between different vendors and not all
supports parametrisation on the package level. Even
for those vendors that allow GUI configuration as in
Listing 6, it is not clear how to interact with the for-
mal parameters on the package level using the GUI.

Hopefully, the library will lower the threshold to use
Modelica for simulation of bioprocesses, and the unortho-
dox design appreciated. Suggestions for including im-
portant new components to facilitate usage are welcome!
There is also a public place for developing and sharing
Jupyter notebooks addressing bioprocess questions using
simulation in combination with other tools.

Acknowledgements
I thank Stéphane Velut at Modelon (now at Emulate En-
ergy) for encouraging my work on the library and espe-
cially for giving me an idea of what concepts to borrow
from MSL Fluid and Media, as well as improvements of
parts of the code. Thanks to John Batteh (Modelon) for
review and thoughts around GUI. I also thank Adrian Pop
at Linköping University for giving me feedback on how
to simplify the adaptation of EquipmentLib to the actual
application. I am also grateful for the Modelica Stackover-
flow community for concrete help as well as ideas.

Session 4-D: Medicine and biology applications 1

DOI
10.3384/ecp204453

Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

461

References
Åkesson, Johan et al. (2010). “Modelling and optimization with

Optimica and JModelica.org - languages and tools for solving
large-scale dynamic optimization problems”. In: Computers
& Chemical Engineering 34.11, pp. 1737–1749.

Andersson, Christian, Johan Åkesson, and Claus Führer (2016).
PyFMI: A Python package for simulation of coupled dynamic
models with Functional Mock-up Interfaces. Tech. rep. Lund
University: Centre for Mathematical Science. URL: https : / /
lucris.lub.lu.se/ws/portalfiles/portal/7201641/pyfmi_tech.
pdf.

Axelsson, Jan Peter (2018-01). “Integrating microbial genome-
scale flux balance models with JModelica and the Biopro-
cess Library for Modelica”. In: Proceedings of the 21st
Nordic Process Control Workshop. Åbo Akademi University,
pp. 126–127.

Axelsson, Jan Peter (2019-08). “Simplified model of CHO-
cultivation in Bioprocess Library for Modelica – some ex-
perience”. In: Proceedings of the 22st Nordic Process Con-
trol Workshop. Technical University of Denmark, Lyngby,
pp. 56–63. ISBN: 978-87-93054-88-2.

Axelsson, Jan Peter (2021-02). “Design aspects of Biopro-
cess Library for Modelica”. In: OpenModelica Workshop.
Linköping University.

Axelsson, Jan Peter (2022-03). “Interpretation of responses to
bolus-feeding during CHO-fedbatch cultivation using an ex-
tended bottleneck model and simulation with Bioprocess Li-
brary for Modelica”. In: Proceedings of the 23st Nordic
Process Control Workshop. Luleå University of Technology,
p. 34.

Baharev, Ali and Arnold Neumaier (2012-09). “Chemical pro-
cess modelling in Modelica”. In: Proceedings of the 9th In-
ternational Modelica Confererence.

Bioreactor-scaling-tool (2023). URL: https : / / www .
cytivalifesciences . com / en / us / solutions / bioprocessing /
knowledge-center/simplify-bioreactor-scale-up-and-scale-
down (visited on 2023-08-15).

BPL Applications (2023). URL: https://github.com/janpeter19
(visited on 2023-08-15).

Brugård, Jan et al. (2009-09). “Creating a bridge between Mod-
elica and systems biology community”. In: Proceedings of
the 7th International Modelica Confererence. DOI: 10.3384/
ecp09430016.

Ebrahim, Ali et al. (2013). “COBRApy: Constraint-based recon-
struction and analysis for Python”. In: BMC Systems Biology
7, pp. 74–79. DOI: 10.1186/1752-0509-7-74.

EMBL BioModels (2023). URL: https : / / www . ebi . ac . uk /
biomodels/ (visited on 2023-08-15).

Franke, Rüdiger et al. (2009-09). “Stream connectors - an exten-
sion of Modelica for device-oriented modelling of convective
transport phenomena”. In: Proceedings of the 7th Interna-
tional Modelica Confererence. DOI: 10.3384/ecp09430078.

Fritzson, Peter (2015). Principles of Object Oriented Model-
ing and Simulation with Modelica 3.3. 2nd ed. Wiley. ISBN:
9781118859124.

Hu, Wei-Shou (2020). Cell Culture Bioproces Engineering.
2nd ed. CRC Press. ISBN: 9781498762861.

Jensen, Kristian, Joao G. R. Cardoso, and Nikolaus Sonnen-
schein (2017). “Optlang: An algebraic modeling language for
mathematical optimization”. In: Journal of Open Source Soft-
ware 2.(9), p. 139. DOI: 10.21105/joss.00139.

Modelon (2023). URL: https://help.modelon.com/latest/guides/
propagate_class/?h=propaga (visited on 2023-08-15).

Olsson, Hans et al. (2008-03). “Balanced models in Modelica
3.0 for increased model quality”. In: Proceedings of the 6th
International Modelica Confererence., pp. 21–33.

Ploch, Tobias, Eric von Lieres, et al. (2020). “Simulation of
differential-algebraic equation systems with optimization cri-
teria embedded in Modelica”. In: Computer & Chemical En-
gineering 140. DOI: https://doi.org/10.1016/j.compchemeng.
2020.106920.

Ploch, Tobias, Xiao Zhao, et al. (2019). “Multiscale dynamic
modeling and simulation of a biorefinery”. In: Biotech. Bio-
eng. 116, pp. 2561–2574. DOI: 10.1002/bit.27099.

Sonnleitner, Bernhard and Othmas Käppeli (1986). “Growth of
Saccharomyces cerevisiae is controlled by its limited respira-
tory capacity: formulation and verification of a hypothesis”.
In: Biotech. Bioeng. 28, pp. 927–937.

SystemComponent (2023). URL: https : / / doc . modelica . org /
Modelica % 204 . 0 . 0 / Resources / helpWSM / Modelica /
Modelica . Fluid . UsersGuide . BuildingSystemModels .
SystemComponent.html (visited on 2023-10-28).

UC San Diego BiGG Models (2023). URL: http://bigg.ucsd.edu
(visited on 2023-08-15).

Wiechert, Wolfgang, Stephan Noack, and Atya Elsheikh (2010).
“Modeling language for biochemical network simulation: re-
actions vs equation based approaches”. In: Adv Biochem En-
gin/Biotechnol 121, pp. 109–138. DOI: 10.1007/10_2009_64.

Design ideas behind Bioprocess Library for Modelica

462 Proceedings of the Modelica Conference 2023
October 9-11, 2023, Aachen, Germany

DOI
10.3384/ecp204453

