
THE AMERICAN MODELICA
CONFERENCE 2018
October 9-10
Samberg Conference Center
Cambridge, MA
www.modelica.org

PROCEEDINGS OF

Proceedings of the 1st American Modelica Conference
Cambridge, Massachusetts, USA, October 9-10, 2018

Editors
Michael Tiller, Hubertus Tummescheit, and Luigi Vanfretti

Published by
Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7685-148-7
Series: Linköping Electronic Conference Proceedings No. 154
ISSN: 1650-3686
eISSN: 1650-3740
DOI: 10.3384/ecp18154

Organized by
North America Modelica Users’ Group
na.modelica-users.org

in co-operation with:
Modelica Association
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping
Sweden

Conference location
Samberg Conference Center
Massachusetts Institute of Technology
Chang Building (E52)
50 Memorial Drive
Cambridge, MA 02139
USA

Copyright © Modelica Association, 2018

KEYNOTE SPEAKER 1

DR. JOHN F. MCKIBBEN
Technology Section Head
Proctor and Gamble

ABSTRACT

Simulation Led Innovation at
Procter & Gamble

The required pace of innovation continues to
increase in the consumer packaged goods
industry. Increasingly historical approaches of
development by physical prototypes lead to slow
execution, high costs and incremental innovations.

By leveraging simulations we can deliver better
innovations, faster, at lower costs. Succeeding
on this journey requires more than just technical
mastery. Changing the way that innovation is
done also requires changing how decisions are
made and how resources are allocated. It is also
necessary to think about the entire lifecycle of
the digital assets such as simulation platforms in
a manner similar to how we manage our physical
assets (e.g. pilot plants). Digital assets required
continued funding, maintenance and upgrades to
remain viable over time.

BIO
John McKibben, PhD, is Section Head in Baby
Care Modeling & Simulation for Procter & Gamble
(P&G), a global consumer products innovator
where, since 2014, he has led a team focused
on driving adoption of existing M&S tools by
product and process development team.

These efforts were instrumental in significant
reduction in physical testing budgets. From 2007
to 2014 he led a multi-disciplinary M&S team
within P&G’s Family Care business unit where,
under his leadership, the team became one of the
benchmarks within P&G for integrating M&S into
business processes.

His work as the founding leader of a multi-
faceted M&S team in P&G’s Fabric and Home
Care Modeling & Simulation business (2001–
2007) resulted in a 10x increase in business
benefit and 5x increase in staffing. His leadership
of P&G’s Corporate Modeling & Simulation CFD
team (1994–2001) led to team staffing growth
based on demonstrated process and product
improvements.

Among the M&S tools brought into play under
John’s leadership are computational fluid
dynamics, finite element analysis, process
modeling and reliability simulation. John’s career
leadership accomplishments were recognized
in October 2016 by P&G with his induction into
the PRISM Society, P&G’s highest engineering
mastery award.

Dr. McKibben earned the PhD from the Institute
of Paper Science and Technology (Georgia
Institute of Technology) with an emphasis on
modeling aerodynamically driven instabilities
at free surfaces. His master’s degree, also from
the Institute of Paper Science and Technology,
involved research on convergence acceleration
of sequential modular process simulations.
He earned bachelor’s degrees in Chemical
Engineering from Oregon State University and in
Chemistry from Southern Oregon University.

KEYNOTE SPEAKER2

DR. HILDING ELMQVIST
CEO
Mogram AB

ABSTRACT

Modelica - History, State, Needs,
Trends, and Possibilities

Model-based product design requires
an intuitive and effective user interface,
a standard language to encode models,
high-fidelity model libraries for reuse,
standardized format for simulation
deployment, automated workflows and
large computing power. The presentation
will contain a brief history of Modelica
evolution and current state including
some applications. Some new needs
will be discussed such as virtual testing
of autonomous vehicles. New technical
possibilities will be introduced, such as
web apps for intuitive and effective user
interaction and easy deployment and
access, domain-specific language extensions
for advanced modeling capabilities and
cloud computing for large-scale simulation
deployment.

BIO
Dr. Hilding Elmqvist attained his Ph.D. at the
Department of Automatic Control, Lund Institute
of Technology, Sweden in 1978. His Ph.D. thesis
contains the design of a novel object-oriented
model language called Dymola and algorithms
for symbolic model manipulation. It introduced a
new modeling methodology based on connecting
submodels according to the corresponding
physical coupling instead of using signal flows.
Submodels were described declaratively by
equations instead of assignment statements.

Elmqvist spent one year in 1978-1979 at the
Computer Science Department at Stanford
University, California. His research continued in
1979-1984 on languages for implementation of
control systems and for visual modeling. Elmqvist
was in 1984-1990 the principal designer and
project manager at a subsidiary to Alfa-Laval
called SattControl in Malmö for developing
SattGraph, a user interface system for process
control and SattLine, a graphical, object-oriented
and distributed control system. In 1990-1992, he
worked for Alfa-Laval in Toronto.

In 1992, Elmqvist founded Dynasim AB in Lund,
Sweden. Their primary product is Dymola for
object-oriented modeling allowing graphical
composition of models and 3D visualization of
model dynamics.

Elmqvist took the initiative in 1996 to organize an
international effort to design the next generation
object-oriented language for physical modeling,
Modelica. In April 2006, Dynasim AB was acquired
by Dassault Systèmes. Elmqvist was the worldwide
Chief Technology Officer for CATIA Systems within
Dassault Systèmes until December 2015.

In January 2016, Elmqvist founded Mogram AB.
Current activities include designing and imple-
menting an experimental modeling language
called Modia, based on the Julia language.

Hilding Elmqvist currently works part-time
as a Technical Fellow at Modelon.

33

PROGRAM COMMITTEE
Conference Chairs
Dr. Michael Tiller, Xogeny
Dr. Hubertus Tummescheit, Modelon

Program Chair
Prof. Luigi Vanfretti, Rensselaer Polytechnic Institute

Conference Board
Dr. Christopher Laughman, Mitsubishi Electric Research Laboratories
Dr. Michael Wetter, Lawrence Berkeley National Laboratory
Paul Goossens, Maplesoft
Behnam Afsharpoya, Dassault Systèmes

Program Committee
Dr. Johan Åkesson, Modelon AB, Lund, Sweden
Dr. Krystof Arendt, University of Southern Denmark, Denmark
Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany
Prof. John Baras, Univ. Maryland, USA
Dr. John Batteh, Modelon Inc., Ann Arbor, USA
Dr. Albert Benveniste, INRIA, Rennes, France
Christian Bertsch, Robert Bosch GmbH, Stuttgart, Germany
Volker Beuter, VI-grade GmbH, Marburg, Germany
Dr. David Blum, Lawrence Berkeley National Lab
Dr. Scott Bortoff, MERL Cambridge, USA
Dr. Timothy Bourke, INRIA, Paris, France
Daniel Bouskela, EDF R&D, Paris, France
Prof. David Broman, KTH, Stockholm, Sweden
Dr. Felix Buenning, EMPA / ETH Zürich, Switzerland
Dr. Dan Burns, MERL, Cambridge, USA
Dr. Yan Chen, Pacific Northwest Laboratory
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Prof. Massimo Cimmino McGill University, Montreal, Canada
Dr. Johan de Kleer, Xerox Parc, Palo Alto, USA
Mike Dempsey, Claytex Services Ltd, UK
Dr. Olaf Enge-Rosenblatt, Fraunhofer IIS, Dresden, Germany
Jens Frenkel, ESI-ITI GmbH, Dresden, Germany
Dr. Jens Frenkel, ESI ITI Gmbh, Dresden, Germany
Dr. Yutaka Hirano, Toyota Motor Corporation, Japan
Dr. Jianjun Hu, Lawrence Berkeley National Laboratory, Berkeley, USA
Prof. Bengt Jacobson, Chalmers Technical University, Gothenburg, Sweden
Dr. Filip Jorissen, KU Leuven, Leuven, Belgium
Dr. Christian Kral, TGM, Vienna, Austria
Dr. Chris Laughman, MERL, Cambridge, USA
Prof. Alberto Leva, Politecnico di Milano, Milano, Italy
Dr. Alessandro Maccarini, Aalborg University, Aalborg, Denmark
Kristin Majetta, Fraunhofer IIS, Dresden, Germany
Dr. Alexandra Melhase, TU Berlin, Berlin, Germany
Dr. Lars Mikelsons, Bosch-Rexroth GmbH, Lohr am Main, Germany
Prof. Henrik Nilsson, University of Nottingham, Nottingham, Great Britain
Thierry Stéphane Nouidui, Lawrence Berkley National Lab, Berkeley, USA

4

Dr. Hans Olsson, Dassault Systèmes, Lund, Sweden
Zheng O'Neill, The Univeristy of Alabama, Alabama, USA
Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany
Kaustubh Phalak, Ingersoll Rand Corporation, Minneapolis, USA
Johan Rhodin, 84 Codes Consulting LLC, Missouri, USA
Lisa Rivalin, Engie Axima, Paris, France
Dr. Clemens Schlegel, Schlegel Simulation, Munich, Germany
Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany
Dr. Peter Schneider, Fraunhofer IIS EAS, Dresden, Germany
Mathieu Schuman, EDF, Paris, France
Dr. Michael Sielemann, Modelon, Munich, Germany
Dr. Ed Tate, Exa, Livonia, USA
Dr. Wilhelm Tegethoff, TLK-Thermo GmbH and TU Braunschweig, Germany
Dr. Matthis Thorade, Berlin University of the Arts, Berlin, Germany
Dr. Michael Tiller, Xogeny, Michigan, USA
Dr. Jakub Tobolar, DLR, Oberpfaffenhofen, Germany
Dr. Hubertus Tummescheit, Modelon Inc, West Hartford, USA
Prof. Alfonso Urquía, UNED, Madrid, Spain
Dr. Gavan Valentin, Engie Lab, Paris, France
Prof. Luigi Vanfretti, Rensselaer Polytechnical Institute, Troy, NY, USA
Prof. Hans Vangheluwe, McGill University, Canada and University of Antwerp, Belgium
Dr. Subbarao Varigonda, Cummins, Columbus, USA
Dr. Michael Wetter, Lawrence Berkeley National Laboratory, Berkeley, USA
Dr. Stefan Wischhusen, XRG, Hamburg, Germany
Prof. Dietmar Winkler, University College of Southeast Norway, Norway
Prof. Wangda Zuo, University of Miami, Miami, USA

CONTENTS
Session 1 / Room 1 THERMOFLUIDS 1

Investigation of Fuel Reduction Potential of a Capacity Controlled
HVAC System for Buses Using Virtual Test Drives ...7
Christian Kaiser, Sebastian Meise, Wilhelm Tegethoff, Jürgen Köhler

Control Description Language ... 17
Michael Wetter, Milica Grahovac, Jianjun Hu

Molten Salt–Fueled Nuclear Reactor Model for
Licensing and Safeguards Investigations ... 27
Scott Greenwood

Session 1 / Room 2 AEROSPACE

Development and Implementation of a Flexible Model
Architecture for Hybrid-Electric Aircraft .. 37
John Batteh, Jesse Gohl, Michael Sielemann, Peter Sundstrom,
Ivar Torstensson, Natesa MacRae, Patrick Zdunich

A Modelica Library for Spacecraft Thermal Analysis ...46
Tobias Posielek

Exergy Analysis of Thermofluid Energy Conversion Systems
in Model-Based Design Environment ...56
Daniel Bender

Session 2 / Room 1 THERMOFLUIDS 2

On Closure Relations for Dynamic Vapor Compression Cycle Models 67
Christopher Laughman and Hongtao Qiao

Fast Calculation of Refrigerant Properties in Vapor Compression Cycles
Using the Spline-Based Table Look-Up Method (SBTL) ... 77
Lixiang Li, Jesse Gohl, John Batteh, Christopher Greiner, Kai Wang

Modelica-Based Dynamic Modeling of a Solar Powered
Ground Source Heat Pump System .. 85
Defeng Qian, Zheng O'Neill

Session 2 / Room 2 ENERGY SYSTEMS

Coalesced Gas Turbine and Power System Modeling and
Simulation using Modelica .. 93
Miguel Aguilera, Luigi Vanfretti, Francisco Gómez, Tetiana Bogodorova

Analysing the Stability of an Islanded Hydro-Electric Power System 103
Dietmar Winkler

Modeling of PMU-Based Islanded Operation Controls for
Power Distribution Networks using Modelica and OpenIPSL ..112
Biswarup Mukherjee, Luigi Vanfretti

55

Session 3 / Room 1 TOOLS & FMI

ModestPy: An Open-Source Python Tool for Parameter Estimation
in Functional Mock-up Units ... 121
Krzysztof Arendt, Muhyiddine Jradi, Michael Wetter, Christian Veje

A Safe Regression Test Selection Technique for Modelica .. 131
Niklas Fors, Jon Sten, Markus Olsson, Filip Stenström

Functional Mockup Interface: An Empirical Survey
Identifies Research Challenges and Current Barriers ...138
Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner,
Thierry Nouidui, Josef-Peter Schöggl

A Method to Import FMU to Hardware Description Language147
Min Zhang

Session 3 / Room 2 MECHANICAL SYSTEMS

Developing a Framework for Modeling Underwater Vehicles in Modelica157
Shashank Swaminathan, Srikanth Saripalli

Hybridisation and Splitting of a Crank Angle Resolved Internal Combustion
Engine Model Using a Mean Value Intake for Real-Time Performance 165
Xiaoran Han, Alessandro Picarelli, Mike Dempsey, Romain Gillot

Component-Based 3D Modeling Combined with Equation-Based Modeling175
Andrea Neumayr, Martin Otter

The Deployable Structures Library ..187
Cory Rupp, Laura Schweizer

Session 5 / Room 1 TOOLS 2

Modelica Language – A Promising Tool for Publishing
and Sharing Biomedical Models .. 196
Jiří Kofránek, Filip Ježek, Marek Mateják

The OpenModelica Integrated Modeling, Simulation
and Optimization Environment ... 206
Peter Fritzson, Adrian Pop

Modelica on the Web .. 220
Tamas Kecskes, Patrik Meijer, Janos Sztipanovits, Peter Fritzson,
Adrian Pop, Arunkumar Palanisamy

Session 5 / Room 2 LIBRARIES

A Modelica Library for Thin-Layer Drying of Agricultural Products227
Augusto Souza, Brian Steward, Carl Bern

Modelica Library for the Systems Engineering of Railway Brakes236
Marc Ehret

Drilling Library: A Modelica Library for the Simulation of Well Construction246
Reza Dadfar, Stéphane Velut, Per-Ola Larsson, Mathias Strandberg, Håkan Runvik,
Johan Windahl, Pål Kittilsen, John-Morten Godhavn, Åsmund Hjulstad

6

Investigation of fuel reduction potential of a capacity controlled
HVAC system for buses using virtual test drives

Christian Kaiser1 Sebastian Meise2 Wilhelm Tegethoff1 Jürgen Köhler2
1TLK-Thermo GmbH, Germany, {c.kaiser, w.tegethoff}@tlk-thermo.com

2Institut für Thermodynamik, TU-Braunschweig, Germany, {s.meise, juergen.koehler}@tu-braunschweig.de

Abstract
The refrigerant cycle in conventional omnibus HVAC
systems has a significant influence on fuel consumption
and, as a result, on vehicle emissions. The additional
emissions resulting from the use of the air conditioning
system are called indirect emissions. In addition, there
are so-called direct emissions from the air conditioning
system caused by unintended leakage of refrigerant. A
reduction in indirect emissions can be achieved, for
instance, by adjusting the capacity of the refrigerant
compressor. A reduction in direct emissions can be
achieved by so-called alternative or natural refrigerants.
To investigate approaches to reducing direct and
indirect emissions, a total vehicle simulation model of a
coach with detailed HVAC systems was developed with
full implementation in Modelica. For this total vehicle
simulation of a coach with a detailed HVAC system, a
refrigerant cycle based on the natural refrigerant CO2
(R-744) was modeled and validated. In addition, an
efficient control strategy was developed by adjusting the
capacity of the refrigerant compressor to cover the
actual cooling capacity demand and save fuel. Based on
virtual driving test scenarios, the fuel saving potential of
the developed compressor capacity control strategy is
investigated to determine average annual fuel savings.
Keywords: HVAC, MAC, Energy efficiency, Omnibus,
Total vehicle simulation, Virtual test drive, R-744, Fuel
saving, Compressor capacity control, Cooling capacity
control, Thermal systems

1 Introduction
Reciprocating compressors with constant displacement
are typically used in air conditioning systems for
conventional buses. The compressor is usually driven
directly by the internal combustion engine through the
use of a belt drive and a magnetic clutch. Due to the
speed-synchronous mechanical linkage to the engine
and the constant compressor displacement, different
control techniques and methods are needed to realize
variable cooling capacity based on compressor capacity
control for efficient use of the air conditioning system.
For this purpose, a combination of speed control by
means of a two-speed pulley gearbox based on a
planetary gearbox and cylinder bank shutdown by
suction gas interlock are developed. In addition, there
are other techniques and methods to adapt the
refrigerant compressor capacity for cooling capacity
control of reciprocating compressors with constant
displacement (see Kaiser, 2018): for instance,
refrigerant compressor capacity control by cycling
clutch operation with a magnetic clutch or compressor
speed control by continuously variable transmission or
by separate drive with an electric machine as well as the
use of semi-hermetic electric compressors. The cycling
clutch operation of the magnetic clutch causes
uncomfortable fluctuations in the interior temperature.
The compressor speed control by continuously variable
transmission is complex and requires lot of installation
space. The use of a separate electric machine or semi-

Figure 1. Modelica-based total vehicle simulation model of a coach: (1) Ambient conditions, (2) Driving conditions,

(3) Vehicle longitudinal dynamics, (4) HVAC controller, (5) Refrigerant cycle, (6) Engine cooling and
interior heating cycle, (7) Vehicle cabin and (8) Electrical system.

7DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP181547 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

hermetic electric compressor requires lot of installation
space as well. Generally, installation of electric driven
compressors is more expensive than open-type
mechanical compressors because of the additional need
for more or more powerful electric generators and for a
frequency converter for compressor speed adaption.
Compared to a conventional mechanically driven
compressor, the conversion from mechanical to
electrical energy and back to mechanical energy for
electric driven compressors leads to additional energy
losses. Nevertheless, omnibus HVAC systems based on
electrically driven compressors are currently being
investigated, see (Meise et al, 2018; Hebeler et
al, 2018). In contrast to the above-mentioned
compressor capacity control techniques and methods,
the combination of two-speed pulley gearbox and
cylinder bank shutdown is not complex, requires nearly
no further installation space and entails no additional
energy losses through energy conversion. For this
reason, the combination of two-speed pulley gearbox
and cylinder bank shutdown is the best solution for use
in conventional buses.

The study of this combination of two-speed pulley
gearbox and cylinder bank shutdown is done by means
of a detailed vehicle simulation of a coach. The vehicle
model of a coach was developed and validated for
research issues in the realm of air conditioning systems
in buses, see (Kaiser, 2018). Figure 1 shows the overall
model, which includes the following subsystems:
ambient and driving conditions as boundary conditions,
longitudinal driving dynamics, climate controller,
refrigeration cycle, engine cooling and heating cycle,
interior of the bus as well as the electrical system.

Special emphasis was put on detailed models with
modeling of all fundamentally relevant heat transfers
and pressure losses for two air conditioning systems
based on refrigerant R-134a and R-744. A detailed
description of modeling the R-744 refrigerant cycle
appears below. Further on, the two-speed pulley
gearbox based on a planetary gearbox and the cylinder
bank shutdown by suction gas interlock are described
briefly. After that, two climatically different driving
route scenarios for the comparative study are
introduced. To conclude, the numerical simulation
results of the specified compressor capacity control
method are presented depending on two driving route
scenarios (Germany, Portugal/Spain).

2 Modeling of R-744 refrigerant cycle
for coach HVAC system

The following section presents the structure of an actual
existing R-744 refrigerant cycle for an omnibus HVAC
system as well as the topology of the corresponding
simulation model. Subsequently, the modeling of the
R-744 refrigerant cycle based on selected heat transfer
and pressure drop correlations is described and the
results of the calibration and validation process are
shown.

2.1 Modeling of R-744 refrigerant cycle
Figure 2 shows the structure of an actual existing R-744
refrigerant cycle for an omnibus HVAC system and the
corresponding simulation model of the R-744
refrigerant cycle. The side-by-side illustration of the
refrigerant cycle structures shows that the parallel heat

Figure 2. Structure of actual existing R-744 refrigerant cycle for omnibus HVAC system and topology of the

corresponding R-744 refrigerant cycle simulation model based on (TIL Suite, 2018)

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP181547
8

exchangers (gascooler and evaporator) of the rooftop
unit are merged in one corresponding heat exchanger
model in the R-744 refrigerant cycle model. In this
merging process, the geometric, all thermal and
hydraulic characteristics of the parallel heat exchangers
are accounted for in the corresponding single heat
exchanger models. For modeling of the R-744
refrigerant cycle, off-the-shelf models from the
Modelica library (TIL Suite, 2018) were used (Richter,
2008; Gräber et al, 2010; Tegethoff et al, 2011, Schulze,
2013). The heat exchanger models of the gascooler and
evaporator are modeled according to the finite volume
method with 10 discrete volumes each. The IHX
(internal heat exchanger) is also modeled according to
the finite volume method, but with 4 discrete volumes.
All of them used models from the Modelica library (TIL
Suite, 2018) with a stream operator and all of them
allow for reversal of flow and zero mass flow, see
(Schulze, 2013. The models used are very robust and
well suited for high dynamic simulation applications
with VLE (vapor-liquid equilibrium) fluids, e.g. HVAC
systems. The R-744 refrigerant cycle model shown in
Figure 2 has 391 continuous time states and 19740 time-
varying variables. The translated model of the R-744
refrigerant cycle has 2 linear equations, where the linear
equation system size is 2 and 3. In addition, the
translated model has 20 nonlinear equations, where each
nonlinear equation system has size 1. Model translation
and manipulation was done using Dymola.

The following describes the selected correlations for
calculating thermal and hydraulic characteristics of the
R-744 refrigerant cycle. Basically, all thermal and
hydraulic calculations in all component models in the
R-744 simulation model are based on geometric
parameters of the existing R-744 refrigerant cycle. For
the air side of all heat exchangers, the calculation of
convective heat transfer and pressure drop is based on
the calculation published by (Haaf, 1988). On the
refrigerant side of the heat exchangers, the refrigerant
undergoes phase change processes. For this purpose,
specific correlations are implemented. For the single-
phase refrigerant in laminar flow region (Re<2300), the
heat transfer coefficient is determined using the constant
Nusselt number of Nu=3,657. For the single-phase

refrigerant in turbulent flow region of 2300<Re<104, the
correlation of (Gnielinski, 1975) and, for larger
Reynolds Numbers (Re>104), the correlation of (Dittus
and Boelter, 1930) is used to calculate the Nusselt
number. If the high-pressure-side heat exchanger
(gascooler) operates supercritically, the refrigerant-side
heat transfer in the range of 2300<Re<104 is calculated
with the correlation of (Gnielinski, 1975), which is also
used in the subcritical region, and single phase flow for
the same range of the Reynolds number. If the
high-pressure-side heat exchanger operates subcritically
and the refrigerant passes the phase change process, the
heat transfer is calculated with the correlation of
(Cavallini et al, 2006). Additionally, for improving the
correlation of (Cavallini et al, 2006) the approach of
(Fujii and Watabe, 1987) was integrated as shown by
(Kondou and Hrnjak, 2011). The heat transfer in the
evaporators during the evaporation phase changing
process is calculated with the correlation of (Gungor
and Winterton, 1987).

Predicting hydraulic losses in the heat exchangers is
complex during the phase change process. Two basic
calculation methods for determining hydraulic losses in
two-phase flow are shown, for instance, by (Wallis,
1969) and (Rohsenow et al, 1985). On one hand, the
homogeneous calculation method applies, which
assumes equal velocities for the liquid and vapor phase.
On the other hand, the heterogeneous calculation
method applies, in which the liquid and vapor phase
have different flow velocities, so that slippage between
the two phases can be considered. For calculations of
hydraulic losses in the R-744 refrigerant cycle model,
the homogeneous calculation method is used. According
to the assumption of equal velocities of the liquid and
vapor phase, the average density is calculated based on
the vapor content of the assumed homogeneous flow
(Baehr and Stephan, 2006). In addition, the dynamic
viscosity of the assumed homogeneous flow is
determined by the approach of (McAdams et al, 1942).
The final calculation of the pressure drop in the
two-phase flow is calculated by the explicitly
formulated approximation of the Colebrook-White
equation of (Swamee and Jain, 1976). The pressure drop
in all refrigerant pipes and the turbulent flow region

Figure 3. Comparison of implemented compressor model functions (green curves) for volumetric efficiency λ, isentropic
efficiency ηisen and isentropic compressor efficiency ηisen-Compressor with measured data based points (red circles) at a

constant compressor speed of n=1000 min-1 (measurement data and equation definition based on (Försterling, 2003)).

9DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP181547 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

(Re>2300) is calculated using the formulation of
(Swamee and Jain, 1976) as well. In the laminar flow
region (Re<2300), the pressure drop in all refrigerant
pipes is calculated with ζ=64/Re.

For modeling the compressor model, (TIL Suite,
2018) offers two basic modeling approaches: an
efficiency-based compressor model and a physical-
based compressor model. The compressor model used
for the R-744 refrigerant cycle model follows the
efficiency-based approach, as shown by (Försterling,
2003). Therefore, the compressor model is characterized
by a volumetric efficiency λ, an isentropic efficiency
ηisen and an isentropic compressor efficiency ηisen-

Compressor. Figure 3 shows a comparison of the
implemented model functions for the volumetric
efficiency λ, isentropic efficiency ηisen and isentropic
compressor efficiency ηisen-Compressor with data points
based on measurement data.

2.2 R-744 simulation model validation results
The previously described simulation model of the R-744
refrigerant cycle is calibrated and validated with
measurement data of a vehicle measurement campaign.
The following validation shows a section of this
measurement campaign for a summer afternoon with an
average ambient temperature of approximately 30°C.

For the calibration of the R-744 refrigerant cycle
model, the previously specified heat transfer and
pressure drop calculation at the refrigerant side were
adapted with the aid of a constant calibration factor for
each heat transfer and pressure drop calculation. As a
result, the heat transfer and the pressure drop calculation
at the gascooler, the IHX, the frontbox evaporator and
rooftop evaporator were adapted based on constant
calibration factors. At the refrigerant pipes, only the
pressure drop calculation was adapted based on constant
calibration factors in each pipe. Model calibration was
performed using the complete closed refrigerant cycle
model as presented in Figure 2, where measured data

were used as input values e.g. for the air temperature at
the gascooler and both evaporator inlets as well as for
compressor speed. For the model calibration, the
deviation of the simulated refrigerant temperatures and
pressures from measured refrigerant temperatures and
pressures as well as the simulated and measured air

Figure 5. Comparison of calibration results of the R-744
refrigerant cycle model with measured data in ph-state

diagram at t = 2000s.

Figure 6. Comparison of calibration results of the R-744
refrigerant cycle model with measured data in ph-state

diagram at t = 3500s.

Figure 4. Top: compressor speed of simulation model based on measured engine speed. Bottom: measured ambient air

temperature and measured air temperature at rooftop evaporator inlet (also used as evaporator inlet air temperature
in simulation model) as well as comparison of measured and simulated air temperature at rooftop evaporator outlet.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP181547
10

temperatures at the outlet of the gascooler and
evaporators were minimized using the method of the
smallest error squares. The calculation of the air-
sideheat transfer and pressure drop were not modified.

The validation results of the calibrated R-744
refrigerant cycle model are shown in Figure 4, Figure 5
and Figure 6. Figure 4 shows the comparison of the
measured and simulated air temperature at the outlet of
the rooftop evaporator. The curves of the measured and
simulated air temperatures fit together very well. The
state diagrams in Figure 5 and Figure 6 show the
refrigerant-side process compared to measured data at
different times of the validation comparison (cf. Figure
4). This comparison of the simulated and measured
process states shows a good matching. Therefore it can
be said that the specific heat of the gascooler,
evaporator and IHX as well as the refrigerant outlet
temperature and pressure ratio of the compressor are
simulated correctly. Finally, the modeled R-744
refrigerant cycle model shows a very good match to
measured data.

Based on the very dynamic measurement data (as
shown in Figure 4), the CPU time for integration of the
R-744 refrigerant cycle model was more than 8 times
faster than real time. To determine the CPU time, the
R-744 refrigerant cycle model was simulated on a
standard laptop.

3 Compressor capacity control
method

The following section introduces and specifies an
innovative method for implementing capacity
adaptation in the refrigerant compressor of omnibus air
conditioning systems. This innovative method consists,
on one hand, of a compressor speed control by means of
a two-speed pulley gearbox based on a planetary
gearbox and, on the other hand, on a cylinder bank
shutdown by suction gas interlock. The pulley gearbox
based on a planetary gearbox is integrated in the
compressor belt pulley, which was presented for
automotive application by (Baumgart et al., 2006). With
this integrated planetary gearbox, two transmission
ratios (i<1 and i=1) can be implemented. Figure 7 shows

the design, schematic and operating principle of the
pulley gearbox. Insofar as the brake is closed and the
clutch is released (switch position I, nPlanet carrier=0), the
gearing between the ring gear and the sun gear
generates a transmission ratio into higher speed (i<1). If
the brake is released and the clutch is closed, the gear
unit rotates as one part (switch position II,
nPlanet carrier=nSun gear, i=1) and the gearbox runs without
any friction losses. In this case, the refrigerant
compressor is driven only by the transmission ratio of
the belt drive. If both the brake and the clutch are
released, the planetary gearbox is underdetermined and
decouples the refrigerant compressor from the belt drive
(switch position III), thus enabling the refrigerant
compressor to be disconnected from the drive as before
with a conventional magnetic clutch. The simulation
model of the two-speed pulley gearbox converts the
speed of the belt drive connected to the internal
combustion engine (in subsystem 3, see Figure 1) to the
compressor (in subsystem 5, see Figure 1) of the
refrigerant cycle model presented in Figure 2. A control
signal to the gearbox model activates or deactivates the
speed conversion in the gearbox based on described
switch positions and the Willis equation shown in
Figure 7.

The cylinder bank shutdown by suction gas interlock
is usually installed in the cylinder head of one cylinder
or cylinder pair of the refrigerant compressor. Figure 8
illustrates the schematic and operating principle of the
suction gas interlock. Insofar as no voltage is applied to
the solenoid valve, the high pressure pass to the locking
valve is closed and the spring pushes the locking valve
into the upper valve seat. The connection between the
suction chamber and suction gas line is open, and the
refrigerant compressor operates at full capacity. When
the solenoid valve is actuated, the access of the high
pressure pass to the locking valve is opened, high
pressure refrigerant flows above the locking valve and
presses it into the lower valve seat. As a result, the
connection between the suction chamber and suction
gas line is blocked and the refrigerant compressor
operates at reduced capacity. In the simulation model,
the suction gas interlock is implemented by modifying
the effective displacement volume (VH∙z) of the

Figure 7. Design (a), schematic (b) and operating principle (c) of two-speed pulley gearbox. Two-speed pulley gearbox

converts speed of the belt drive to refrigerant compressor shaft based on Willis equation above.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP181547 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

11

refrigerant compressor model, see Figure 2. Because of
this, volumetric efficiency and, as a result, isentropic
and isentropic compressor efficiency are also affected,
see equations in Figure 3.

Table 1. Transmission ratios for refrigerant compressor
drive by two-speed pulley gearbox.

Switch position Transmission ratio i
I 0.654
II 1.0

For the study within the vehicle simulation, Table 1

shows the selected transmission ratios for the refrigerant
compressor drive with the two-speed pulley gearbox
application. For the selection of the compressor drive,
total transmission ratios of the belt drive and planetary
gearbox, the conventional belt drive transmission ratio
should be maintained. Selection of the second additional
transmission ratio is based on a preliminary study
(Kaiser et al., 2013). This second additional
transmission ratio was selected in such a way that
frequent shift operations of the two-speed pulley
gearbox and activation of the suction gas interlock
during normal operational speed changes of the internal
combustion engine can be avoided in general driving
mode. This is also intended to keep the superheat
control from oscillating.

To adapt the refrigerant compressor speed, the two-
speed pulley gearbox is controlled depending on the
interior temperature (reflects the actual cooling
demand). If the interior temperature reaches or exceeds
the upper value of tSet+0.5K, where tSet is the interior set
temperature, the two-speed pulley gearbox shifts into
switch position I. If the interior temperature reaches or
falls below the lower value tSet, the two-speed pulley
gearbox shifts into switch position II. Friction power
losses with an active two-speed pulley gearbox in
switch position I are calculated with a gear box
efficiency of η=0.96 according to (Baumgart, 2010).

To adapt the refrigerant compressor capacity based
on the cylinder bank shutdown, the suction gas interlock
is controlled depending on the interior temperature as
well. If the interior temperature reaches or falls below
the lower value tSet, where tSet is the interior set
temperature, the suction gas interlock application is
activated. If the interior temperature reaches or exceeds

the upper value of tSet+0.5K, the suction gas interlock
application is deactivated. Based on the cylinder bank
shutdown by suction gas interlock, the refrigerant
compressor displacement volume can be controlled
between 50% and 100%.

For the study within the vehicle simulation, the
refrigerant compressor capacity control by means of the
two-speed pulley gearbox application and the suction
gas interlock application are used as follows: First, the
refrigerant compressor speed is adapted by the
two-speed pulley gearbox. Afterwards, the two-speed
pulley gearbox is in switch position II, and the cylinder
bank shutdown by suction gas interlock can be
activated.

4 Virtual driving route test scenarios
Two climatically different driving scenarios were

realistically modeled for the addressed research issues
in the realm of bus air conditioning systems. For this,
Figure 9 shows the selected driving routes in their
respective map sections, which are dynamically driven
through with the total vehicle model shown in Figure 1.
Based on the geographic coordinates of these two
driving scenarios, individual velocity and elevation
profiles were calculated to describe the target state for
the vehicle model driving simulation. Depending on the
defined velocity profile and the geographic position,
time-dependent representative ambient conditions were
calculated based on a meteorological database
(METEONORM, 2016; Remund et al., 2013) for the
two driving route scenarios. For the presentation of an
annual cross-section, transient ambient conditions are
calculated for every 15th of the month in a representative
year. Thus the ambient conditions include ambient air
temperature, ambient air pressure, ambient relative
humidity as well as direct and diffuse ambient solar
radiation. Figure 9 shows the calculated ambient air
temperature curves for the two driving route scenarios
as an example. The numbered ambient air temperature
curves represent the 15th of each numbered month. The
background areas in gray represent the ambient
temperature range in which the refrigerant circuit is not
active with respect to the climate controller algorithms
implemented. In this process, the refrigerant circuit is
automatically switched off at tamb≤13°C and
automatically switched on at tamb≥15°C.

Figure 8. Schematic and operation principle of suction gas interlock: (a) inactive interlock, (b) active interlock. The
suction gas interlock is integrated in the cylinder-head of a cylinder pair and locks the connection to the suction gas line.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP181547
12

5 Results
This section presents the numerical results of the total
vehicle simulation with application of the refrigerant
compressor capacity control method described above.

Figure 11 shows the dynamic simulation results of

the total vehicle simulation with the R-744 refrigerant
cycle for the virtual test driving route scenario from
Lisbon to Madrid on a representative 15th of August. It
shows the ambient boundary conditions including
ambient air temperature, ambient air pressure, ambient
relative humidity as well as direct and diffuse ambient
solar radiation. It also shows the average interior

Figure 9. Realistically modeled driving route scenarios and corresponding transient ambient temperatures for every 15th of
the month in a representative year based on a meteorological database. Driving route scenarios: Hanover to Munich (top),

Lisbon to Madrid (bottom), numbered temperature curves: (1) represents 15th of January … (12) represents 15th of
December; gray temperature areas: tamb≤13°C refrigerant cycle is off, tamb≥15°C refrigerant cycle is on.

Figure 10. Numerical results of application combination of two-speed pulley gearbox and suction gas interlock for
R-744-based air conditioning system. Shows the fuel consumption of each monthly driving scenario and, in the last

column of each diagram, the average annual fuel consumption (1/12). Black boxes present the theoretical limit
potential of fuel savings through operation of the air conditioning system. Set temperature for interior

air temperature control in driver’s workspace and passenger compartment is tSet=22.5°C.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP181547 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

13

temperature as well as the control behavior of the
two-speed pulley gearbox and the suction gas interlock.
Additionally it presents the refrigerant compressor
speed and the compressor outlet refrigerant mass flow
rate.

To evaluate the efficiency of the developed and
investigated compressor capacity control method,
vehicle fuel consumption is used for valuation purposes.
This is done because vehicle fuel consumption includes
all multivariable dependencies of the total vehicle
model and of the investigated compressor capacity

control methods and their sensitivities to the total
vehicle simulation model. The results of the change in
vehicle fuel consumption are presented in relation to the
reference vehicle model, which is validated against the
absolute average fuel consumption of a typical coach,
see (Kaiser, 2018).

Figure 10 shows the numerical results of the relative
change in fuel consumption ΔBS for the R-744 system
with the combination of two-speed pulley gearbox and
suction gas interlock depending on the two climatically
different driving scenarios. The presented results are

Figure 11. Example results of the total vehicle simulation with refrigerant compressor capacity control by two-speed
pulley gearbox and suction gas interlock for virtual driving route scenario Lisbon-Madrid on a representative 15th of

August (in accordance with index 8 of virtual driving route scenario). Shows ambient conditions of virtual driving route
scenario: (1) ambient air temperature, (2) ambient air pressure, (3) ambient relative humidity as well as (4) direct and

(5) diffuse ambient solar radiation; additionally (A) point of departure ambient air temperature, (B) point of destination
ambient air temperature. Also shows average interior temperature; (C) control behavior of two-speed pulley gearbox and

(D) suction gas interlock as well as refrigerant compressor speed and compressor outlet refrigerant mass flow rate.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP181547
14

shown in relation to the reference system simulations
with the R-744-based air conditioning systems without
the refrigerant compressor capacity control. In addition
to the relative change in fuel consumption ΔBS, the
figures show the interior air temperature in the driver’s
workspace tDriver as well as the average passenger
compartment air temperature tPC. Furthermore, the
diagrams for the relative change in fuel consumption
also include the theoretical limit potential of possible
fuel savings achievable by operating the air
conditioning system (black boxes). This theoretical limit
potential is calculated within an additional reference
vehicle simulation in which the use of the air
conditioning system does not consume any energy.

The results in Figure 10 show a continuous reduction
in fuel consumption. In all these driving scenarios, the
cooling capacity produced by the R-744 reference air
conditioning exceeds the actual cooling demand. As a
result, the compressor capacity control by two-speed
pulley gearbox and suction gas interlock reduce the
refrigerant compressor capacity as shown in Figure 11.
In this manner, the cooling capacity is more closely
matched to the actual cooling demand and fuel
consumption is reduced. The results in Figure 10 also
show that the interior air temperature in the passenger
compartment still conforms to the set air temperature of
tSet=22.5°C even when the compressor capacity is
adapted by the two-speed pulley gearbox and suction
gas interlock. Fuel consumption, and thus the indirect
emissions mentioned above through use of the air
conditioning system, can be significantly reduced with
the presented refrigerant compressor capacity control.
The coach’s total fuel consumption is reduced by an
average of 6.2% in the Hanover-Munich driving
scenario. In the Lisbon-Madrid driving scenario, total
fuel consumption is reduced by an average of 5.8%.

The CPU time for integration of the total vehicle
simulation model, including the R-744 refrigerant cycle
as well as the compressor capacity control by two-speed
pulley gearbox and suction gas interlock, was about 2
times faster than the real time. This specific simulated
total vehicle model has 830 continuous time states and
28012 time-varying variables. The translated model has
8 linear equations, where the largest linear equation
system has size 8. Further the translated model has 53
nonlinear equations, where the largest nonlinear
equation system has size 3. Model translation and
manipulation was done using Dymola.

6 Conclusion
The refrigerant cycle in conventional omnibus HVAC
systems has a significant influence on fuel consumption
and, as a result, on so-called indirect emissions. In
addition, direct emissions occur in the refrigerant cycle
caused by unintended leakage of refrigerant. To achieve
reduced indirect and direct emissions, a natural
refrigerant, CO2-based (R-744) air conditioning system

with compressor capacity control is a purposeful
solution. For this reason a detailed model of an R-744
refrigerant cycle based on the Modelica library (TIL
Suite, 2018) was developed and validated. Furthermore,
an innovative refrigerant compressor capacity control
method based on a combination of speed control by
two-speed pulley gearbox and suction gas interlock was
presented. To study the R-744-based air conditioning in
combination with the presented compressor capacity
control, two different realistically modeled driving route
scenarios were shown, which were virtually and
dynamically driven through using a total vehicle model
of a coach. In comparison to an R-744-based omnibus
HVAC system, which only reduces unintended direct
emissions, the compressor capacity control by
combination of two-speed pulley gearbox and suction
gas interlock additionally reduces indirect emissions
through significant fuel savings. As a result, the coach’s
total fuel consumption can reduced by an average of 6%
in the considered virtual test driving scenarios.

The presented R-744 refrigerant cycle model has 391
continuous time states and 19740 time-varying
variables. The translated model of the R-744 refrigerant
cycle has 2 linear equations, where the linear equation
system is size 2 and 3. Furthermore, the translated
model has 20 nonlinear equations, where each nonlinear
equation system has size 1. The total vehicle simulation
model including the R-744 refrigerant cycle as well as
the compressor capacity control by two-speed pulley
gearbox and suction gas interlock has 830 continuous
time states and 28012 time-varying variables. The
translated model has 8 linear equations, where the
largest linear equation system has size 8. Furthermore,
the translated model has 53 nonlinear equations, where
the largest nonlinear equation system has size 3. Model
translation and manipulation was done using Dymola.

The CPU time for integration of the standalone
R-744 refrigerant cycle model was more than 8 times
faster than real time. The CPU time for integration of
the total vehicle simulation model, including the R-744
refrigerant cycle as well as the compressor capacity
control by two-speed pulley gearbox and suction gas
interlock, was about 2 times faster than real time. To
determ the CPU time, the R-744 refrigerant cycle model
and the total vehicle simulation model were simulated
on a standard laptop.

References

Baehr, H. D., Stephan, K. (2006): Wärme- und
Stoffübertragung. Springer Verlag, 2006.

Baumgart, R.; Tenberge, P.; Webner, M.; Gebhardt, J. (2006):
Riemenscheibe mit integriertem Getriebe zur
Drehzahlregelung des Klimakompressors.
Wärmemanagement des Kraftfahrzeuges V: 243-255,
Expert-Verlag, 2006.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP181547 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

15

Baumgart, R. (2010): Reduzierung des Kraftstoffverbrauches
durch Optimierung von Pkw-Klimaanlagen. Doctoral
dissertation, Technische Universität Chemnitz, 2010.

Cavallini, A.; del Col, D.; Doretti, L.; Matkovic, M.; Rossetto,
L.; Zilio, C. (2006): Condensation in horizontal smooth
tubes. A new heat transfer model for heat exchanger design.
Heat Transfer Engineering, 27(8): 31–38, Taylor &
Francis, 2006.

Dittus, F. W.; Boelter, L. M. K. (1930): Heat Transfer in
Automobile Radiators of the Tubular Type. Publications on
Engineering, 2: 443-461, University of California at
Berkeley, 1930.

Försterling, S. (2003): Vergleichende Untersuchung von CO2-
Verdichtern in Hinblick auf den Einsatz in mobilen
Anwendungen. Doctoral dissertation, Technische
Universität Braunschweig, 2003.

Fujii, T.; Watabe, M. (1987): Laminar Film Condensation in
the Subcritical Region – Gravity Controlled Condensation.
JSME Trans, 53: 1801–1806, JSEM – Japan Society of
Mechanical Engineers, 1987.

Gnielinski, V. (1975): Neue Gleichungen für den Wärme- und
den Stoffübergang in turbulent durchströmten Rohren und
Kanälen. Forschung im Ingenieurwesen – Engineering
Research, 41(1): 8 – 16, Springer-Verlag, 1975.

Gräber, M.; Kosowski, K.; Richter, C.; Tegethoff, W. (2010):
Modelling of heat pump with an object-oriented model
library for thermodynamic systems. Mathematical and
Computer Modelling of Dynamical Systems, 16(3): 195–
209, Taylor & Francis, 2010.

Gungor, K. E.; Winterton, R. H. S. (1987): Simplified General
Correlation for Saturated Flow Boiling and Comparison of
Correlation with Data. Chemical Engineering Research and
Design, 65(2): 148–156, Elsevier Science B.V., 1987.

Haaf, S. (1988): Wärmeübertragung in Luftkühlern.
Handbuch der Kältetechnik: 6(B), Springer-Verlag, 1988.

Hebeler, M.; Ebeling, P.; Tegethoff, W.; Köhler, J.: Exhaust
Waste Heat Recovery for Intercity Bus Climatisation using
Rankine Technology with Focus on Topology Design. 2nd
ETA Conference, IAV Automotive Engineering, 2018.

Kaiser, C., Baumgart, R., Aurich, J., Tegethoff, W., Köhler, J.
(2013): Konzepte für die Reduzierung des
Kraftstoffverbrauchs von Omnibusklimaanlagen. 12.
Internationale Fachtagung Nutzfahrzeuge: 269-284, VDI-
Verlag, 2013.

Kaiser, C. (2018): Untersuchungen zur Effizienz- und
Leistungsverbesserung von Omnibusklimaanlagen.
Unpublished doctoral dissertation, Technische Universität
Braunschweig, 2018.

Kondou, C.; Hrnjak, P. (2011): Heat Rejection from R744
Flow Under Uniform Temperature Cooling in a Horizontal
Smooth Tube around the Critical Point. International
Journal of Refrigeration, 34: 1293– 301, Elsevier Science
B.V., 2011.

McAdams, W. H.; Woods, W. K.; Heroman, L. C. (1942):
Vaporization inside horizontal tubes-II-benzene-oil
mixtures. Trans. ASME, 64(3): 193–200, American Society
of Mechanical Engineers, 1942.

Meise, S.; Kaiser, C.; Engel, P.; Lemke, N.; Köhler, J.: R-744-
Ejektor-Wärmepumpe für elektrische Gelenkbusse.
Deutsche Kälte-Klima-Tagung, DKV e.V., 2018.

METEONORM (2016): Software for the determination of
worldwide weather data. METEOTEST, Version: 7.1.10
[Computer Software], 2016.

Remund, J.; Müller, S.; Kunz, S.; Huguenin-Landl, B.;
Schmid, C.; Schilter, C. (2013): METEONORM – Global
Meterological Database. Hanbook I/II. METEOTEST,
2013.

Richter, C. C. (2008): Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermodynamic
Systems. Doctoral dissertation, Technische Universität
Braunschweig, 2008.

Rohsenow, M. W.; Hartnett, P. J.; Ganic, E. N. (1985):
Handbook of Heat Transfer Fundamentals. McGraw-Hill,
1985.

Schulze, C. W. (2013): A Contribution to Numerically
Efficient Modelling of Thermodynamic Systems. Doctoral
dissertation, Technische Universität Braunschweig, 2013.

Swamee, P. K.; Jain, A. K. (1976): Explicit Equations for
Pipe-Flow Problems. Journal of the Hydralics Division:
102(5): 657–664, ASCE – American Society of Civil
Engineers, 1976.

Tegethoff, W.; Schulze, C.; Gräber, M.; Huhn, M.; Stulgies,
N.; Kaiser, C.; Loeffler, M. (2011): TEMO: Thermische
echtzeitfähige Modelle. Bundesministerium für Bildung und
Forschung (BMBF), 2011.

TIL Suite (2018): Software package for the simulation of
thermal systems. TLK-Thermo GmbH, Version 3.4
[Computer Software], 2018.

Wallis, G. B. (1969): One-dimensional Two-phase Flow.
MCGraw-Hill, 1969.

Nomenclature
Nu Nusselt number (-)
Re Reynolds number (-)
η Efficiency (-)
λ Volumetric efficiency (-)
ζ Pressure loss coefficient (-)
h Specific enthalpy (J/kg)
i Transmission ratio (-)

 Mass flow rate (kg/s)
M Torque (Nm)
n Speed (s-1)
tamb Ambient air temperature (°C)
tSet Set value of interior air temperature (°C)
tDriver Air temperature in driver’s workspace (°C)
tPC Air temperature in passenger compartment (°C)
ΔBS Relative difference in fuel consumption (%)
IHX Internal heat exchanger -
VH Displacement volume (m3)
VLE Vapor-liquid equilibrium -
z Number of cylinders (-)

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP181547
16

Control Description Language

Michael Wetter Milica Grahovac Jianjun Hu

Lawrence Berkeley National Laboratory
Energy Technologies Area

Building Technology and Urban Systems Division
Berkeley, CA, USA

{mwetter,mgrahovac,jianjunhu}@lbl.gov

Abstract
Properly designed and implemented building control se-
quences can significantly reduce energy consumption.
However, there is currently no process with supporting
tools that allows the assessment of the performance of dif-
ferent control sequences, export the control sequences in
a vendor-neutral format for cost estimation and for im-
plementation on a building automation system through
machine-to-machine translation, and reuse the sequences
for verification during commissioning.

This paper describes a Control Description Language
(CDL) that we developed to create such a process. For
CDL, we selected a subset of Modelica that allows a con-
venient representation of control sequences, simulation of
the control sequence coupled to a building energy model,
and development of translators from CDL to building au-
tomation systems. To aid in the development of such
translators, we created a translator from CDL to a JSON
intermediate format. In future work, we seek to work
with building control providers to develop translators from
CDL to commercial building automation systems.

Through a case study, we show that CDL suffices
for simulation-based performance assessment of two
ASHRAE-published control sequences for a variable air
volume flow system of an office building. Moreover, the
case study showed that merely due to differences in the
control sequences, annual HVAC energy use was reduced
by 30%. This difference is larger than the accuracy re-
quired when comparing different HVAC systems, thereby
questioning the current practice of idealizing control se-
quences in building energy simulations, and demonstrat-
ing the importance of ensuring that the control sequence
used during design simulations corresponds to the control
sequence that will be implemented in the real building.
Keywords: controls, buildings, HVAC

1 Introduction
The building control industry has a standard for data com-
munication called BACNet that is supported by all ma-
jor control vendors (ASHRAE, 2004). However, there is
no standard for expressing the control logic, despite the
situation that control is often not implemented as speci-

fied during design, and the savings potential due to bet-
ter control sequences is significant but not widely real-
ized. The purpose of this paper is to describe a first im-
plementation of a language with the intent to develop a
standard for expressing building control sequences. This
standard should support the mechanical designer in devel-
oping and testing control sequences within building en-
ergy simulations, and exporting these sequences to cre-
ate unambiguous specifications for the control provider. It
should support control providers in cost-estimation and in
implementation of the control sequence on their control
platform through machine-to-machine translation, and it
should support the commissioning agent when verifying
that the implemented control sequence meets the original
specification.

It is generally recognized that properly designed and
implemented control sequences can reduce energy con-
sumption around 20% to 30% (Fernandez et al., 2017).
Implementation errors in control sequences are in particu-
lar common in large buildings as they typically have built-
up heating, ventilation and air-conditioning (HVAC) sys-
tems that require custom control sequences. The need
for correct design and implementation of energy-saving
and load-shifting control sequences is increasing because
more stringent demands on energy savings and energy
flexibility for the grid leads to increased complexity of
control sequences.

For built-up HVAC systems, the current process is gen-
erally as follows: The mechanical engineer writes the con-
trol sequence in English language. This typically involves
copying and adapting a part of the control sequence from
similar projects. The document is then sent to a control
provider. The control provider uses this English language
description for cost estimation, and later for implementa-
tion. The control provider typically implements the con-
trol sequence by combining parts of sequences from pre-
vious projects that appear to have a similar controls in-
tent. During commissioning, the commissioning agent
conducts a limited number of tests to verify that the oper-
ation conforms to the commissioning agents’ understand-
ing of the control sequence.

The quality of the English language descriptions that
are underlying this process varies largely. Our observation

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

17

Designer Control provider Commissioning agent

submit and deliver
controls through
code generation

export
specification &
verification tests

import sequence from a
library, configure
and test it, connected to
an energy model

Vout

dT

verify against
design specification

failed

untested

passed
dT

Vout

dT

Vout

Figure 1. Overview of process for control sequence design, export of a specification, implementation on a control platform and
verification against the specification.

is that best-in-class sequence specifications are often am-
biguous, leave considerable room for interpretation, and
may miss part of the sequence. This is not surprising be-
cause the control sequences are rather complex, because
the English language representation aims to convey the
control intent rather than how to realize it, and the me-
chanical engineer who wrote the control sequences is nei-
ther trained in, nor reimbursed for, the implementation of
control sequences. As a consequence, such control spec-
ifications are not executable and hence do not allow for
formal testing.

To realize the energy savings potential of building con-
trol sequences, we are working on developing tools and a
process that will allow a mechanical engineer to select and
adapt a control sequence from a library of sequences, con-
nect it to a simulation model of the HVAC and building,
test the performance of the control sequence coupled to
the simulation model of the HVAC system and the build-
ing, export the control sequence in a control-vendor neu-
tral format that allows control providers to conduct cost
estimates and ultimately implement the sequence on their
control platform through machine-to-machine translation.
Figure 1 shows an overview of such a design flow.

To enable such a design flow, we are developing a lan-
guage that we call Control Description Language (CDL),
whose description is the main subject of this paper. We are
also working on a project called "Spawn of EnergyPlus"
that redesign EnergyPlus so that it supports this process
(see https://lbl-srg.github.io/soep/).

CDL needs to satisfy these high level requirements:
• It must be independent of any control-vendor specific

platform.
• It must be declarative to facilitate its translation to

other languages.
• It must be possible to simulate controls expressed in

the language within an annual building energy simu-
lation.

• It must be deterministic, e.g., for given inputs and
states, different implementations of sequences ex-
pressed must yield the same output and state updates
(within the precision of ordinary differential equation
solvers that may integrate PID controllers).

• It should be possible to translate the sequence to a

variety of building control platforms.
• It must allow identification of cyclic graphs that

would require iterative solutions and hence are not
suited for implementation in building automation
systems.

Related work in our application domain includes
the following: Husaunndee et al. (1997) developed a
MATLAB/Simulink-based toolbox of models of HVAC
components and plants for the design and test of con-
trol systems called SIMBAD. SIMBAD has been used
for testing and emulation of building control sequences,
and is commercially distributed by CSTB France. Bon-
vini and Leva (2012) developed an industrial control li-
brary in Modelica that contains a variety of blocks with
the intent to allow modelers to replicate industrial control
sequences, including vendor-specific peculiarities. Yang
et al. (2010) developed a tool chain that maps Simulink
and Modelica models into an intermediate format, and
then refined it for implementation in distributed con-
trollers. Our approach borrows from their methodology
in that we also use an intermediate format and restrict the
language to make such a translation possible. Schneider
et al. (2017) implemented a Modelica library with stan-
dardized control functions for building automation. They
use control functions from VDI 3813-2:2011 and state
graph representations from VDI 3814-6:2009. Our ap-
proach differs from their work as they document the con-
trol sequence using Unified Modeling Language (UML)
class and activity diagrams. Also, they used semantic
control connectors, which they subsequently removed for
version 1.0.0. To generate English language representa-
tions together with a process diagram, Automated Logic
Control developed CtrlSpecBuilder (ALC, 2018). Ctrl-
SpecBuilder allows mechanical engineers to select the de-
sired control functionality by answering a set of questions.
The software then outputs a Microsoft Word document
that specifies the control sequence in a vendor-neutral way
together with a process diagram. Our approach differs
from Bonvini and Leva (2012), Yang et al. (2010) and
Schneider et al. (2017) in that we use elementary control
blocks that form a basic library of control functions, and
simple composition rules that we believe suffice for com-
posing building control sequences.

As of this writing, we implemented CDL, used it

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417
18

to implement control sequences that were developed
by a project conducted for the American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE), tested these sequences in simulation, and de-
veloped an export program that converts the CDL repre-
sentation to a JSON and an English language represen-
tation. Work in progress and not reported in this paper
includes the use of CDL to compare a simulated versus an
actual building control system response. Also ongoing are
discussions with control providers to see if they can pro-
totype a translator from CDL to their commercial product
line. Based on this feedback, the CDL language may fur-
ther evolve.

2 Discussion of the Target Platform
To put this work in context, one has to recognize that
building control systems largely vary in how they im-
plement control sequences. Commercial products range
from textual languages that combine the functionality of
FORTRAN with programming structures similar to BA-
SIC (Siemens, 2000) to graphical block-diagram lan-
guages where blocks can be used from a library and new
blocks can be provided in a component-oriented program-
ming language similar to Java or C# (Thomas, 2016). Fur-
thermore, different building control systems use different
native data types; some allow boolean signals to take on
true or false only, while others also allow the value of
null. Also, control sequences often contain proprietary
algorithms, such as the computation of the start time for a
warm-up after a room temperature setback. Furthermore,
specification for the programming languages are hard if
not impossible to find for many systems. Thus, the space
of target platforms to which our language will need to
be translated is heterogeneous and often proprietary. We
therefore only intent to translate CDL to building automa-
tion systems, but do not attempt to translate a particular
control implementation to CDL.

Control providers typically also include blocks for com-
munication with hardware, and for sending messages to
the operator, such as through logging, sending email, or
displaying a value in an operator workstation. For ex-
ample, Contemporary Controls’ Sedona platform contains
a block called CControls_BASR8M_Platform that
advises the programmer how much usable memory is
available for application programming, a block to mon-
itor the execution time of a Sedona logic (ScanTim)
and blocks to communicate with BACNet or with web
pages (Contemporary Controls, 2017). CDL does not at-
tempt to support such specialized blocks. Rather, the in-
tention of CDL is to support the declaration of the control
logic in a vendor neutral way. This is also required be-
cause during the design of a building, the control provider
may not yet be known and thus the specification should
be independent of any control product line. Code that pro-
vides input/output functionality with hardware or web ser-
vices will need to be added when a CDL-conformant con-

trol sequence specification is implemented on a particular
control platform.

3 CDL Language
We will now describe the Control Description Language
(CDL). To develop CDL, we identified a small subset
of basic control functionalities that will need to be pro-
vided, together with rules that prescribe how to compose
sequences and rules that prescribe the mathematical be-
havior of these basic control functionalities and compos-
ite sequences. Specifically, we formulated CDL as a block
diagram language that consists of the following elements:

• Permissible data types.
• Elementary control blocks, each of which encapsu-

lates an elementary calculation performed on a sig-
nal in a control sequence, such as a block that adds
two signals and outputs the sum.

• Input and output connectors through which these
blocks receive values and send values.

• Syntax to specify
– how to instantiate control blocks and assign

values to parameters, such as a proportional
gain,

– how to connect inputs of blocks to outputs of
other blocks,

– how to document blocks,
– how to add annotations, such as for graphical

rendering of blocks and their connections, and
– how to specify composite blocks.

• A model of computation that describes when blocks
are executed and when outputs are assigned to inputs.

The following sections further explain these elements.

3.1 Syntax
In order to use CDL with building energy simulation pro-
grams, and to not invent yet another language with a new
syntax, we selected a subset of the Modelica 3.3 specifi-
cation for the implementation of CDL (Modelica Associ-
ation, 2012). The selected subset is needed to instantiate
classes, assign parameters, connect objects and document
classes. This subset is fully compatible with Modelica,
e.g., no other information that violates the Modelica Stan-
dard has been added, thereby allowing users to view, mod-
ify and simulate CDL-conformant control sequences with
any Modelica-compliant simulation environment.

To simplify the support of CDL for tools and con-
trol systems, the following Modelica keywords are not
supported in CDL: extends, redeclare and con-
strainedby, inner and outer.

Also, the following Modelica language features are not
supported in CDL:

1. Clocks, as the use of clocks would complicate trans-
lation to building automation systems that often dis-
tribute the control sequences to different field de-
vices.

2. algorithm sections, because the elementary
building blocks are black-box models as far as CDL

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

19

is concerned and thus there is no need to support al-
gorithm sections.

3. initial equation and initial algo-
rithm sections, because these are not needed when
composing sequences using the elementary building
blocks explained in Section 3.4.

3.2 Permissible Data Types
The basic data types are, in addition to the elementary
building blocks, parameters of type Real, Integer,
Boolean, String, and enumeration. All specifi-
cations in CDL are declarations of blocks, instances of
blocks, or declarations of type parameter, constant,
or enumeration. Variables are not allowed.1 The dec-
laration of such types is identical to the declaration in
Modelica.

Each of these data types, including the elemen-
tary building blocks, can be a single instance or one-
dimensional array. Array indices shall be of type In-
teger only. The first element of an array has index 1.
An array of size 0 is an empty array. enumeration or
Boolean data types are not permitted as array indices.

3.3 Encapsulation of Functionality
All computations are encapsulated in a block. Blocks
expose parameters, and they expose inputs and outputs us-
ing connectors.

Blocks are either elementary building blocks (see Sec-
tion 3.4) or composite blocks (see Section 3.9).

3.4 Elementary Building Blocks
The CDL library contains elementary building blocks that
are used to compose control sequences. The functionality
of elementary building blocks, but not their implementa-
tion, is part of the CDL specification. Thus, in the most
general form, elementary building blocks can be consid-
ered as functions that for given parameters p, time t and
internal state x(t), map inputs u(t) to new values for the
outputs y(t) and states x′(t), e.g.,

(p, t,u(t),x(t)) �→ (y(t),x′(t)). (1)

Control providers who support CDL need to be able to
implement the same functionality as is provided by the el-
ementary CDL blocks. CDL implementations are allowed
to use a different implementation of the elementary build-
ing blocks, because the implementation is language spe-
cific. However, implementations shall have the same in-
puts, outputs and parameters, and they shall compute the
same response for the same value of inputs and state vari-
ables.

Users are not allowed to add new elementary building
blocks. Rather, users can use them to implement compos-
ite blocks.

The elementary building blocks are implemented in
subpackages of the package CDL. For each elementary

1Variables are used in the elementary building blocks, but these can
only be used as inputs to other blocks if they are declared as an output.

Figure 2. Screenshot of CDL library.

building block, there is an example that demonstrates its
use.

An actual implementation of an elementary building
block looks as follows, where we omitted the annotations
that are used for graphical rendering:

block AddParameter
"Output the sum of an input plus a

parameter"
parameter Real p "Value to be added";
parameter Real k "Gain of input";
Interfaces.RealInput u

"Connector of Real input signal";
Interfaces.RealOutput y

"Connector of Real output signal";
equation
y = k*u + p;
annotation(Documentation(info("
<html>
<p>
Block that outputs ... [omitted]
</p>
</html>"));

end AddParameter;

3.5 Instantiation
The instantiation of blocks is identical to Modelica. In the
assignment of parameters, calculations are allowed.
For example, a hysteresis block could be configured as
follows

parameter Real pRel(unit="Pa") = 50
"Pressure difference across damper";

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

20

CDL.Logical.Hysteresis hys(
uLow = pRel-25,
uHigh = pRel+25)
"Hysteresis for fan control";

Instances can conditionally be removed by using an if
clause. This allows, for instance, to have a single im-
plementation of an economizer enable/disable control se-
quence that can be configured to optionally take the spe-
cific enthalpy as an input signal. An example code snippet
is

parameter Boolean use_enthalpy = true
"Set to true to evaluate outdoor air

enthalpy in addition to temperature"
;

CDL.Interfaces.RealInput hOut
if use_enthalpy
"Outdoor air enthalpy";

3.6 Connectors
Blocks expose their inputs and outputs through input
and output connectors. The permissible connectors are
implemented in the package CDL.Interfaces, and
are BooleanInput, BooleanOutput, DayType-
Input, DayTypeOutput, IntegerInput, Inte-
gerOutput, RealInput and RealOutput. Day-
Type is an enumeration for working day, non-
working day and holiday.

3.7 Connections
Connections connect input to output connectors. For
scalar connectors, each input connector of a block needs to
be connected to exactly one output connector of a block.
For vectorized connectors, each (element of an) input con-
nector needs to be connected to exactly one (element of
an) output connector. Vectorized input connectors can be
connected to vectorized output connectors using one con-
nection statement, provided that they have the same num-
ber of elements.

Connections are listed after the instantiation of the
blocks in an equation section. The syntax is

connect(port_a, port_b) annotation(...);

where annotation(...) is used to declare the
graphical rendering of the connection (see Section 3.8).
The order of the connections and the order of the argu-
ments in the connect statement does not matter.

Signals shall be connected using a connect state-
ment; assigning the value of a signal in the instantiation
of the output connector is not allowed.

3.8 Annotations
Annotations follow the same rules as described in the fol-
lowing sections of the Modelica 3.3 Specification:
• §18.2 Annotations for Documentation.
• §18.6 Annotations for Graphical Objects, with the

exception of
– §18.6.7 User input, and

k=k

gain

minValue

min()

yMax

e

y

Figure 3. Example of a composite control block that outputs
y = min(k e,ymax), where k is a parameter.

• §18.8 Annotations for Version Handling.
Hence, for CDL, annotations are primarily used to graph-
ically visualize block layouts and input and output signal
connections, and to declare vendor annotations (see § 18.1
in Modelica 3.3 Specification).

3.9 Composite Blocks
CDL allows building composite blocks such as shown in
Figure 3. Composite blocks are needed to preserve group-
ing of control blocks and their connections, and are needed
for hierarchical composition of control sequences.

Composite blocks can contain other composite blocks.
Each composite block shall be stored on the file system
under the name of the composite block with the file exten-
sion .mo, and with each package name being a directory.
The name shall be an allowed Modelica class name. Ap-
pendix A shows how to declare the block shown in Fig-
ure 3.

3.10 Model of Computation
CDL uses the synchronous data flow principle and the sin-
gle assignment rule, which are defined below. The defini-
tion is adopted from and consistent with the Modelica 3.3
Specification § 8.4, and is as follows:

1. All variables keep their actual values until these val-
ues are explicitly changed. Variable values can be
accessed at any time instant.

2. Computation and communication at an event instant
does not take time.

3. Every input connector shall be connected to exactly
one output connector.

In addition, the dependency graph from inputs to out-
puts that directly depend on inputs shall be directed and
acyclic. I.e., connections that form an algebraic loop are
not allowed.

3.11 Inferred Properties
CDL has sufficient information for tools that process CDL
to generate for example point lists that list all analog tem-
perature sensors, or to verify that a pressure control sig-
nal is not connected to a temperature input of a controller.
Some, but not all, of this information can be inferred from
the CDL language described above.

Note that none of this information affects the computa-
tion of a control signal. Rather, it can be used for example

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

21

to facilitate the implementation of cost estimation tools,
or to detect incorrect connections between outputs and in-
puts.

To avoid that signals with physically incompatible
quantities are connected, tools that parse CDL can infer
the physical quantities from the unit and quantity at-
tributes.

Therefore, tools that process CDL can infer the follow-
ing information:

• Numerical value: Binary value (which in CDL is
represented by a Boolean data type), analog value
(which in CDL is represented by a Real data type)
mode (which in CDL is presented by an Integer
data type or an enumeration, which allow for exam-
ple encoding of the ASHRAE Guideline 36 Freeze
Protection which has 4 stages).

• Source: Hardware point or software point.
• Quantity: such as Temperature, Pressure, Humidity

or Speed.
• Unit: Unit and preferred display unit. The use of

display unit allows for example a control vendor to
use the same sequences in North America displaying
IP units, and in the rest of the world displaying SI
units.

4 Control Sequence Implementation

16

Implement sequences with CDL
Organized sequences according to Guideline 36 structure

Figure 4. Overview of the ASHRAE Guideline 36 package im-
plemented in the Modelica Buildings library 5.0.0

To test CDL, we used it to implement control
sequences for variable air volume flow systems as
specified in ASHRAE Guideline 36, public review draft
1 (ASHRAE, 2016). Figure 4 shows an overview of
the package structure. The implementation is structured
hierarchically into packages for air handler units, into
constants that indicate operation modes, into generic
sequences such as for a trim and respond logic, and into
sequences for terminal units. For every sequence, there is
a validation package that illustrates its use.

For implementation of these sequences, we had to make
the following main design decisions:

For the PID controller, we used the same implemen-
tation as is used in the Modelica Buildings library. This
implementation is identical to the one from the Modelica
Standard Library, except that it adds an option to reset the
control output when a boolean input switches to true.
This controller is in the standard form

y(t) = k
(

e(t)+
1
Ti

∫
e(s)ds+Td

de(t)
dt

)
, (2)

where we omitted for simplicity features of the imple-
mented controller such as anti-windup, and where y(t) is
the control signal, e(t) = us(t)−um(t) is the control error,
with us(t) being the set point and um(t) being the mea-
sured quantity, k is the gain, Ti is the time constant of the
integral term and Td is the time constant of the derivative
term. Note that the units of k are the inverse of the units of
the control error, while the units of Ti and Td are seconds.

As the units of flow rates and pressure can vary between
orders of magnitude, for example depending on whether
cfm, m3/s or m3/h are used for flow measurements, we
decided to normalize the control error as follows: For tem-
peratures, no normalization is used, and the units of k are
1/Kelvin. No normalization is used because 1 Kelvin is
1.8 Fahrenheit, and hence these are of the same order of
magnitude. For air flow rate control, the design flow rate is
used to normalize the control error, and hence k is unitless.
This also allows for using the same control gain for flows
of different magnitudes, for example for a VAV box of a
large and a small room, provided the rooms have similar
transient response. For pressure control, the pressure dif-
ference is used to normalize the control error, and hence k
is unitless.

Guideline 36 is specific as to where a P or a PI controller
should be used. We used these recommendations as the
default control configuration. However, all controllers can
be configured as P, PI or PID controller. This allows for
example to temporarily configure a PI controller as a P
controller during the tuning process.

As Guideline 36 is written to convey the control intent
rather than the actual implementation, it does not discuss
how to avoid chattering of control due to sensor noise or
numerical integration error. Therefore, for the part of the
control sequences that use continuous time semantics, we
added either hysteresis blocks or timers wherever the con-
trol or measurement signal is used as an input to a switch.2

5 Export of Control Sequences
We are currently developing a parser that exports CDL-
conformant control sequences for the following use cases:

1. For human-readable documentation, the parser con-
verts the sequences to html, similar to how Modelica
tools generate html documentation.

2During the initial testing of the sequences, we indeed observed
chattering and non-convergence of the solver as we missed a few of
these switches.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417
22

k=k

gain

minValue

min()

yMax

e

y

Figure 5. Graphical rendering of a the composite control block
shown in Appendix A.

2. For further translation to control product lines, the
parser converts the sequences to two JSON formats:
One is an intermediate format that is close to the
abstract syntax of Modelica, the other is generated
by simplifying the former for easier processing by
downstream applications. The latter representation
is also used to generate html documentation of the
control sequence.

The parser is currently being developed at https://
github.com/lbl-srg/modelica-json. As an
illustrative example, consider the composite block shown
graphically in Figure 5 and textually using the CDL in Ap-
pendix A. The parser can export this specification to the
JSON format shown in Appendix B.

The parser is implemented using ANTLR (ANother
Tool for Language Recognition, http://www.antlr.
org/) which converts CDL to a JSON format, which
then is further simplified using JavaScript. For the html
output, we use the mustache templating engine (https:
//github.com/janl/mustache.js).

6 Case Study
To test the suitability of CDL for simulation, we con-
ducted closed loop simulations of multizone VAV se-
quences coupled to a whole building energy model. We
will now summarize the experiment, and refer the reader
for a more detailed description to Wetter et al. (2018)
and http://obc.lbl.gov/. For the simulations,
we used a model of one floor of the new construction
medium office building for Chicago, IL, as described in
the set of DOE Commercial Building Benchmarks (Deru
et al., 2011). For all simulations, we used the same
building and the same variable air volume flow sys-
tem, but with two different control sequences. One se-
quence is based on the above described ASHRAE Guide-
line 36, whereas the other is the control sequence VAV
2A2-21232 of the Sequences of Operation for Com-
mon HVAC Systems (ASHRAE, 2006). All models
are available in the Modelica Buildings library (Wet-
ter et al., 2014), version 5.0.0, in the package Build-
ings.Examples.VAVReheat.

It turns out that changing the control sequence from
VAV 2A2-21232 to the one published in Guideline 36
saves around 30% annual site HVAC energy under com-

parable thermal comfort. These are significant savings
that can be achieved through software only, without the
need for additional hardware or equipment. Moreover,
the magnitude of these savings also questions how con-
trols are typically represented in building energy simula-
tion programs. Building energy simulation programs typ-
ically use idealized control sequences. These programs
may then be used to compare the energy performance of
different HVAC systems, such as a VAV system versus a
radiant cooling system. However, such differences fre-
quently are also in the order of 30%. Thus, to compare the
energy performance of HVAC systems, control sequences
must be represented adequately in the simulation, and the
authors question the validity of the control idealizations
that are commonly used in building energy simulation. If
the variability due to controls is in the order of 30%, one
cannot discern what apparent savings can be attributed
to the change in HVAC system. Moreover, a process is
needed that ensures that the control sequences will be im-
plemented correctly and thus savings identified during de-
sign are realized during operation.

7 Conclusion
With the implementation of the Guideline 36 sequences
and the case study, we have shown that our subset of the
Modelica language that we identified for CDL suffices
to implement control sequences for simulation. Ongoing
work attempts to put in place a translator to a commer-
cially available building automation system to see if unex-
pected issues arise that may require changes to CDL.

Our case study indicated that annual HVAC energy use
can be reduced by 30% simply through the use of more
sophisticated conventional control sequences. These se-
quences are however more complicated to specify and im-
plement, and therefore we believe that for their proper use
in design and actual operation of buildings, a process that
allows their use in design, their (semi-automatic) transla-
tion to control product lines, and their verification relative
to design specification is essential.

A key language issue that we selected to not support
in the first version of CDL are state machines, for ex-
ample as implemented in the Modelica.StateGraph
package of the Modelica Standard Library 3.2 or as de-
scribed in the Chapter 17 in the Modelica Language Def-
inition (Modelica Association, 2012). The use of state
machines would have made the implementation of control
sequences considerably easier for blocks whose output is
computed using various time delays, interlocks and modes
of operation, which are frequently used in Guideline 36.
As state machines are not universally supported in build-
ing automation systems, and as there are various flavors of
state machines, we decided to currently not support them.

Selecting a subset of Modelica, in particular not sup-
porting replaceable classes and multiple inheritance, con-
siderably simplified the development of a translator from
CDL to JSON. We believe that this also makes it easier for

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

23

control providers to support CDL.
At present, CDL supports conventional control se-

quences. In the future, CDL will also need to support
control sequences that use Model Predictive Control or
other advanced mathematical methods. How to provide
blocks that can interface with such methods, or how to
add vendor-specific packages that provide such advanced
methods that are typically proprietary will be subject of
future work.

8 Acknowledgment
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231, and the Cali-
fornia Energy Commission’s Electric Program Investment
Charge (EPIC) Program.

References
ALC, 2018. CtrlSpecBuilder, 2018. URL https://www.
ctrlspecbuilder.com.

ASHRAE. ANSI/ASHRAE Standard 135-2004, BACnet, a data
communication protocol for building automation and control
networks, 2004. ISSN 1041-2336.

ASHRAE. Sequences of Operation for Common HVAC Systems.
ASHRAE, Atlanta, GA, 2006.

ASHRAE, 2016. ASHRAE Guideline 36P, High Performance
Sequences of Operation for HVAC systems, First Public Re-
view Draft. ASHRAE, June 2016. URL http://gpc36.
savemyenergy.com/public-files.

Marco Bonvini and Alberto Leva. A modelica library for in-
dustrial control systems. In Proc. of the 9-th Int. Modelica
Conf., pages 477–484, Munich, Germany, September 2012.
Modelica Association. doi:DOI:10.3384/ecp12076477.

Contemporary Controls, 2017. Sedona Open Control –
Reference Manual. Contemporary Controls, September
2017. URL https://www.ccontrols.com/pdf/
RM-SEDONA00.pdf.

Michael Deru, Kristin Field, Daniel Studer, Kyle Benne,
Brent Griffith, Paul Torcellini, Bing Liu, Mark Halverson,
Dave Winiarski, Michael Rosenberg, Mehry Yazdanian, Joe
Huang, and Drury Crawley. U.S. Department of Energy com-
mercial reference building models of the national building
stock. Technical Report NREL/TP-5500-46861, National Re-
newables Energy Laboratory, Golden, CO, February 2011.

Nicholas E.P. Fernandez, Srinivas Katipamula, Weimin Wang,
YuLong Xie, Mingjie Zhao, and Charles D. Corbin. Impacts
of commercial building controls on energy savings and peak
load reduction. Technical Report 25985, PNNL, 5 2017.

A. Husaunndee, R. Lahrech, H. Vaezi-Nejad, and J.C. Visier.
Simbad: A simulation toolbox for the design and test of
HVAC control systems. In Jean Jacques Roux and Monika
Woloszyn, editors, Proc. of the 5-th IBPSA Conf., pages
269–276, 1997. URL www.ibpsa.org/proceedings/
bs1997/bs97_p022.pdf.

Modelica Association, 2012. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling, Lan-
guage Specification, Version 3.3. Modelica Associa-
tion, May 2012. URL https://www.modelica.org/
documents/ModelicaSpec33.pdf.

Georg Ferdinand Schneider, Georg Ambrosius Peßler, and
Simone Steiger. Modelling and simulation of standard-
ised control functions from building automation. In
Proc. of the 12-th Int. Modelica Conf., pages 209–218,
Prague, Czech Republic, may 2017. Modelica Association.
doi:DOI:10.3384/ecp17132209.

Siemens, 2000. APOGEE Powers Process Con-
trol Language (PPCL) User’s Manual. Siemens
Building Technologies, October 2000. URL
https://www.quia.com/files/quia/users/
hpiracer/AIRC65/PPCL_Users_Manual.

George Thomas. Creating an Open Controller with Se-
dona FrameworkTM. Contemporary Controls, February
2016. URL https://sedona-alliance.org/pdf/
WPSEDONAAA0.pdf.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and
Xiufeng Pang. Modelica Buildings library. Journal
of Building Performance Simulation, 7(4):253–270, 2014.
doi:DOI:10.1080/19401493.2013.765506.

Michael Wetter, Jianjun Hu, Milica Grahovac, Brent Eubanks,
and Philip Haves. OpenBuildingControl: Modeling feedback
control as a step towards formal design, specification, deploy-
ment and verification of building control sequences. In To
appear in: 2018 Building Performance Modeling Conference
and SimBuild, September 2018.

Y. Yang, A. Pinto, A. Sangiovanni-Vincentelli, and Q. Zhu. A
design flow for building automation and control systems. In
2010 31st IEEE Real-Time Systems Symposium, pages 105–
116, November 2010. doi:10.1109/RTSS.2010.26.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

24

Appendix A
The following statement, when saved as CustomPWithLimiter.mo, is the declaration of the composite block
shown in Figure 3

block CustomPWithLimiter
"Custom implementation of a P controller with variable output limiter"
parameter Real k "Constant gain";
CDL.Interfaces.RealInput yMax "Maximum value of output signal"

annotation (Placement(transformation(extent={{-140,20},{-100,60}})));
CDL.Interfaces.RealInput e "Control error"

annotation (Placement(transformation(extent={{-140,-60},{-100,-20}})));
CDL.Interfaces.RealOutput y "Control signal"

annotation (Placement(transformation(extent={{100,-10},{120,10}})));
CDL.Continuous.Gain gain(final k=k) "Constant gain"

annotation (Placement(transformation(extent={{-60,-50},{-40,-30}})));
CDL.Continuous.Min minValue "Outputs the minimum of its inputs"

annotation (Placement(transformation(extent={{20,-10},{40,10}})));
equation

connect(yMax, minValue.u1) annotation (
Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}}, color={0,0,127}));

connect(e, gain.u) annotation (
Line(points={{-120,-40},{-92,-40},{-62,-40}}, color={0,0,127}));

connect(gain.y, minValue.u2) annotation (
Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}}, color={0,0,127}));

connect(minValue.y, y) annotation (
Line(points={{41,0},{110,0}}, color={0,0,127}));

annotation (Documentation(info="<html>
<p>
Block that outputs <code>y = min(yMax, k*e)</code>,
where
<code>yMax</code> and <code>e</code> are real-valued input signals and
<code>k</code> is a parameter.
</p>
</html>"));
end CustomPWithLimiter;

Appendix B
The JSON representation of the composite control block shown in Figure 5 is as follows, where we omitted the
graphical annotations to keep the listing short.

[
{
"modelicaFile": "CustomPWithLimiter.mo",
"topClassName": "CustomPWithLimiter",
"comment": "Custom implementation of a P controller with variable output limiter",
"public": {
"parameters": [
{
"className": "Real",
"name": "k",
"comment": "Constant gain",
"annotation": {
"dialog": {
"tab": "General",
"group": "Parameters"
}

}
}

],
"models": [
{
"className": "CDL.Interfaces.RealInput",

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

25

"name": "yMax",
"comment": "Maximum value of output signal"

},
{
"className": "CDL.Interfaces.RealInput",
"name": "e",
"comment": "Control error"

},
{
"className": "CDL.Interfaces.RealOutput",
"name": "y",
"comment": "Control signal"

},
{
"className": "CDL.Continuous.Gain",
"name": "gain",
"comment": "Constant gain",
"modifications": [
{
"name": "k",
"value": "k",
"isFinal": true
}

]
},
{
"className": "CDL.Continuous.Min",
"name": "minValue",
"comment": "Outputs the minimum of its inputs"

}
]
},
"info": "<html>[omitted for briefity]</html>",
"connections": [
[
{ "instance": "yMax" },
{ "instance": "minValue", "connector": "u1" }

],
[
{ "instance": "e" },
{ "instance": "gain", "connector": "u" }

],
[
{ "instance": "gain", "connector": "y" },
{ "instance": "minValue", "connector": "u2" }

],
[
{ "instance": "minValue", "connector": "y" },
{ "instance": "y" }

]
]
}

]

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

26

Molten Salt–Fueled Nuclear Reactor Model
for Licensing and Safeguards Investigations1

M. Scott Greenwood1
1Oak Ridge National Laboratory, Oak Ridge, TN, USA greenwoodms@ornl.gov

Abstract
Fluid-fueled nuclear reactors, particularly molten salt

reactors (MSRs), have recently gained significant
interest. As with all reactors, modeling and simulation
are key factors for advanced reactor design and licensing
and will be required for the deployment of MSRs.
However, there are significant gaps between simulation
capabilities and system behavior for MSRs. This paper
presents the system model of an MSR that is based on
the Molten Salt Demonstration Reactor. The model
includes important physics specific to MSRs, such as
fission product and tritium transport and reactivity
feedback.
Keywords: molten salt reactors, salt-fueled, nuclear

1 Introduction
The past few years have seen a significant increase in
the interest of advanced fluid-fueled reactor systems,
specifically molten salt reactors (MSRs). A fluid-fueled
reactor is any reactor in which the fissile material is
carried by the primary coolant throughout the primary
flow circuit. Reactors such as MSRs could represent a
revolutionary shift in the way nuclear power is
implemented, and as a broad class of reactors, they have
the potential to directly fulfill many US energy policy
objectives.

Modeling and simulation are key for advanced
reactor design and licensing. There are several modeling
and simulation capabilities that can be used to
investigate various aspects of nuclear reactors, including
the Consortium for Advanced Simulation of Light
Water Reactors (CASL) and the Nuclear Energy
Advanced Modeling and Simulation Program
(NEAMS). However, these have not been approved as
licensing tools. Many of the capabilities from these and
other programs are being adapted, or new ones are being
created (Touran et al., 2017), to address the needs of
advanced nuclear reactors and to ultimately generate
tools that can be used for design and licensing of
advanced reactors. Even so, significant technological

1Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

gaps are preventing rapid development of these tools,
such as lack of data or difficulties in adapting legacy
code intended for alternative applications such as LWR
technologies.

Development of a low-fidelity, system-level model
was identified as a straightforward path to identifying
needs and gaps in data and simulation capabilities. For
example, a system level model would allow for
sensitivity analysis of dominating parameters that
require additional research (e.g., heat and mass transfer
coefficients) and for the exploration of safeguards and
nuclear material accountancy that is an active area of
research for MSRs. The identification of the various
needs and gaps will inform required modifications to
existing capabilities, help direct experimental data
generation, and assist in requirement generation for
modern high-fidelity code generation. This paper
describes a system-level model of a thermal fluoride
salt-fueled MSR that was created using the Modelica-
based TRANSFORM tool developed by the Oak Ridge
National Laboratory (ORNL) (Greenwood, 2017a).
Additional details can be found in the following
reference (Greenwood et al., 2018).

1.1 TRANSFORM
The TRANsient Simulation Framework of

Reconfigurable Models (TRANSFORM) is a Modelica-
based library developed at ORNL (Greenwood, 2017b;
R. Hale et al., 2015). The tool’s primary purpose is to
provide a common simulation environment and baseline
modeling resources to facilitate rapid development of
dynamic advanced reactor models. Critical elements of
this effort include (1) definition of standardized,
common interfaces between models and components,
(2) development of a library of baseline component
modules to be assembled into full plant models using
available geometry, design, and thermal-hydraulic data,
(3) definition of modeling conventions for model and
component development, and (4) establishment of user
interfaces and support tools to facilitate simulation
development and analysis (R. Hale et al., 2015; R. E.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815427 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

27

Hale, Cetiner, et al., 2015; R. E. Hale, Fugate, et al., 2015).
The TRANSFORM library has been successfully used
for a variety of projects, including investigations into the
performance of nuclear hybrid energy systems
(Greenwood, 2017c; Greenwood, Cetiner, et al., 2017;
Greenwood, Fugate, et al., 2017; Rabiti et al., 2017) and
tritium transport (Rader et al., 2018).

1.2 Trace Substances
The Modelica language allows for a class called a
connector, which allows a set of variables to always be
defined between the connection of two models (e.g., in
a fluid system: pressure, mass flow rate, specific
enthalpy of the fluid, mass fraction of each species in the
fluid, and trace substance mass weighted fraction). This
fluid connector is implemented in the Modelica
Standard Library and is adopted by TRANSFORM
throughout its thermal-hydraulic library. A key feature
of this variation of the fluid connector is the inclusion of
a variable that accounts for trace substances. This work
employs the trace substance variable to track the
behavior of fission products, including delayed neutron
precursors, principal contributors of reactivity feedback
(e.g., xenon) and decay heat, and tritium.

A trace substance is assumed to be present in such
small quantities that it has an insignificant impact on the
mass of the system. Trace substances are tracked as
unspecified mass-weighted fractions of the primary
flow, so they flow as a homogenous part of the primary
fluid, but they do not participate in the normal mass
balance of the primary fluid. The absolute units of the
traced substances are user definable based on the
application. For example, if the primary fluid flows at 1
kg/s and a trace substance’s (C) mass-weighted fraction
is 100 atoms of C/kg fluid, then the primary fluid mass

balance assumes that there is 1 kg/s of primary fluid, and
the trace substance mass has its own mass balance
tracking the 100 atoms/s flowing through the system.
This method allows for mapping of small quantities of
substances in traditional thermal-hydraulic processes as
a first-order approximation, obviating the need to create
complex media proprieties, pressure loss functions, etc.
The behavior of the primary fluid is driven by its own
mass, energy, and momentum balances.

2 Model Criteria
MSR development requires integrated performance
models to understand the interaction and feedbacks
between systems. As this model was intended to inform
the development of salt-fueled reactors, necessary
requirements of the model were identified from
licensing and safeguards considerations. In broad terms,
licensing and safeguards may be defined as follows:
• Licensing: The process by which the US Nuclear

Regulatory Commission (NRC) ensures the
protection of public health and safety, the common
defense and security, and the environment (NRC
2010). Of primary importance are the types of
radioactive sources and the pathways of exposure of
those sources to site personnel and the public.

• Safeguards: “the timely detection of diversion of
significant quantities of nuclear material from
peaceful nuclear activities to the manufacture of
nuclear weapons or of other nuclear explosive
devices or for purposes unknown, and deterrence of
such diversion by the risk of early detection”
(Paragraph 28, INFCIRC/153) (IAEA, 1972).

Figure 1. Simplified flowsheet of the salt-fueled thermal MSDR. Boxes represent corresponding systems between the
MSDR flowsheet and the system model.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815427
28

In addition to licensing and safeguards, available
data, historical experience, and current proposed MSR
designs were also evaluated to guide the design criteria
of the system model. Historical operational experience
is limited to two small salt-fueled, thermal spectrum
demonstration reactors, both of which were operated at
ORNL (Rosenthal 2009). The Aircraft Reactor
Experiment (ARE) was operated in 1954, and the
Molten Salt Reactor Experiment (MSRE) was operated
from 1965–1969. Numerous design documents,
including balance-of-plant and auxiliary systems
documents, were generated under the Molten Salt
Breeder Reactor (MSBR) Program in the 1960s and
1970s. Modern MSR designs will need to understand the
source term behavior in their systems for licensing and
safeguards considerations, as well as performance of
auxiliary systems such as off-gas and decay heat
removal systems. The criteria required of the dynamic
models are enumerated below.
1. Inclusion of delayed neutron precursor models that

account for delayed neutron precursor production,
transport, and decay throughout the primary fueled
reactor loop (i.e., reactor core to primary heat
exchanger and back) and auxiliary systems

2. Radionuclide inventory accounting, including
source term production and holdup and release
mechanism models

3. Thermal-hydraulic analyses of sufficient fidelity to
capture flow and power dynamics in salt-fueled
concepts

4. Time-, temperature-, flux-, and flow-dependent
materials and salt interaction data, and models to
predict corrosion, erosion, and irradiation effects

5. Modeled concepts that rely on existing data where
possible to minimize development time while
remaining relatively generic and applicable to
modern MSR designs

3 Model Development
3.1 Reference Design
In accordance with the identified model criteria, the
Molten Salt Demonstration Reactor (MSDR) (Bettis et
al., 1972) provides the base design concept for the
fluoride salt-fueled reactor dynamic model (Figure 1),
with the exception that a U/Pu fuel salt is used rather
than the Th-fueled salt of the original concept. This
concept has a nominal thermal output of 750 MWt. The
purpose of the MSDR was to demonstrate the molten-
salt reactor concept on a semi-commercial scale while
minimizing development of basic technology beyond
that already demonstrated by the MSRE.

An advantage of basing the reactor concept on an
existing design is attributable to the detailed design
document developed by researchers who were
intimately familiar with the MSRE technology. The
MSDR also leverages the work of the MSBR
(Robertson, 1971) for information on off-gas,
chemistry, materials, neutron physics, fuel reprocessing,
etc., an effort which was also carefully documented.
This model provides information that directly applies to
the development of commercial reactors, minimizing
development requirements and complication of systems.
These elements help meet the near-term deployment
targets of modern vendors.

Figure 2. System model of a fluoride salt-fueled thermal reactor based on the MSDR. Boxes represent corresponding
systems between the MSDR flowsheet and the system model.

Primary Fuel Loop

Primary Coolant Loop

Off-Gas System & Drain Tank

Decay Heat Removal System

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815427 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

29

3.2 System Model
The system model (Figure 2) was developed based on
the available MSDR literature and the identified criteria.
Specific subsystems and other important phenomena are
discussed in more detail below. Other critical systems
that impact the reactor behavior such as the balance of
plant (BOP) will be modeled in the future.

3.2.1 Primary Fuel and Coolant Loop
The primary fuel loop (PFL) is defined as the primary
circuit of fuel salt, including the reactor, the primary fuel
pump, piping to and from the primary heat exchanger,
and the primary heat exchanger
(fuel side).

The principal component of the PFL is the reactor
(Figure 3). The reactor consists of an inlet and outlet
plenum, two axial reflectors, a radial reflector, and the
core. Since the surface area and volume of graphite and
fuel salt are important not only for heat transfer
considerations but also for interaction with trace
substances, a concerted effort was made to preserve
reactor geometries in the model.

The identical inlet and outlet plenums are ideally
mixed volumes. The identical inlet and outlet graphite
reflectors are made from radial rings of graphite, with
each ring consisting of several smaller sections of

graphite. The graphite is modeled as a 2D radial (r-z)
conduction model with a specified number of parallel
graphite blocks. Heat and mass transfer are modeled on
the inner and outer radial surfaces and neglected on the
top, bottom, and edge. The fluid subchannel is
represented by a 1D discretized homogeneous fluid,
with geometry specified by the total cross section area
and the wetted perimeter of the reflector.

The radial reflector consist of stacked rectangular
slabs and is therefore modeled with a 2D slab (x-z)
conduction model. The slab is assumed to have an
adiabatic centerline which permits modeling only half
of the slab. The entire slab can be modeled by increasing
the number of parallel characteristic solids by a factor of
two. Heat and mass transfer are neglected on the top,
bottom, and small edge of the block.

The core region graphite (Figure 4) is also modeled
with a 2D slab (x-z) conduction model with appropriate
dimensions. The fluid channel was determined by the
cross-sectional flow area and the wetted perimeter, in
association with their respective graphite.

The pipes to and from the primary fuel heat
exchanger dimensions are approximated based on rough
estimations from drawings, as their dimensions were not
specified in available documentation. Likewise, the
pump and pump bowl were never fully defined, so the
dimensions of the pump bowl were assumed to be

Core Radial Reflector

Axial Reflectors

Control Rods

Pipe to Fuel Pump

Pump Overflow Pipe

Load Bearing Ring

Pipe to Drain Tank

Pipe from Primary Heat Exchanger

Dished Reflector Head

Vessel Head

Figure 3. MSDR reactor vessel geometry (Bettis, Alexander, and Watts 1972, Fig. 2, ORNL DWG 72-2829).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815427

30

similar to those in the MSBR. The off-gas system
interfaces with the primary loop at the pump bowl inlet
and the pump outlet by cycling a fraction of the overall
flow through a separator to strip fission product gas
products, and then returns the remaining fluid and
fission products to the pump bowl. A small amount of
fuel salt also leaves the system and travels to the drain
tank, where it is pumped back to the pump bowl. The
amount of salt sent to the drain tank and back to the
pump bowl depends on the flow rate of carrier gas for
the off-gas system and the level controls of the drain
tank pumping system. Additional information on the
off-gas and drain tank systems is detailed in Section
3.2.4.

Figure 4. Reproduction of core cell (Bettis, Alexander, and
Watts 1972, Fig. 7; ORNL DWG 72-2830). Dimensions in
inches; the dashed magenta line indicates a unit cell.

The primary fuel heat exchanger is a simple shell-
and-tube heat exchanger (Bettis et al., 1972). The
primary coolant loop (PCL) is defined as the primary
circuit of coolant salt, which includes the primary heat
exchanger (coolant side), the coolant pump, the
secondary heat exchanger (coolant side), and associated
piping.

3.2.2 Reactor Kinetics & Fission Product Transport
The reactor kinetics implementation is a critical

component of the system model, as it determines the
reactor power output and establishes the behavior of the
source terms (generation, reactivity feedback, etc.)
throughout the system. The current implementation is
based on a modified form of the point reactor kinetics
(Greenwood and Betzler, In Review). This model
captures the creation, decay, and transport of fission
products and the reactivity feedback of neutron
absorbers such as xenon, and it includes decay heat in
terms of the near- and far-field energy deposition
associated with fission product.

Fission product substances such as neutron precursor
groups are treated as trace substances transported at the
same rate as the primary carrier fluid, as described in the
Introduction above. Fission product concentrations and
their associated decay are tracked for all fluid volumes
throughout the entire system.

3.2.3 Tritium Transport
Tritium (𝐻𝐻13) is generated in significant quantities in
MSRs. Its source is primarily from interaction of
lithium-6 (𝐿𝐿𝐿𝐿3

6) in the carrier salt with neutrons in the
reactor vessel. For example, Eqs. (1–4) summarize the
major production pathways of tritium in a FLiBe-based
system (Stempien, 2015).

𝐿𝐿𝐿𝐿3

6 + 𝑛𝑛01 → 𝐻𝐻𝐻𝐻2
4 + 𝐻𝐻13 (1)

𝐿𝐿𝐿𝐿3

7 + 𝑛𝑛01 → 𝐻𝐻𝐻𝐻2
4 + 𝑛𝑛01 + 𝐻𝐻13 (2)

𝐵𝐵𝐻𝐻4
9 + 𝑛𝑛01 → 𝐻𝐻𝐻𝐻2

6 + 𝐻𝐻𝐻𝐻2
4 (3)

𝐻𝐻𝐻𝐻2
6 → 𝐿𝐿𝐿𝐿3

6 + 𝐻𝐻+ (𝑡𝑡1
2
= 0.8𝑠𝑠𝐻𝐻𝑠𝑠) (4)

To account for this production, an additional source

term for tritium is included in the modified reactor
kinetics model based on the composition of the fluid.

Tritium differs from other fission products due to
(1) its generation by interaction of salt with neutrons,
and (2) the manner in which it readily diffuses through
piping at the elevated operating temperatures of MSRs,
especially through the thin walls of the heat exchangers
(Mays et al., 1977). Using mass transfer analogies to
heat transfer, the tritium is permitted to flow from the
primary fuel loop to the primary coolant loop and from
the primary coolant loop to the balance of plant through
the respective heat exchangers. Further details on the
methodology can be found in (Rader et al., 2018). Other
major components accountable for tritium leaving the
primary fuel loop, or tritium management systems, may
be incorporated in the future.

3.2.4 Auxiliary Systems
An actual MSR, like any industrial scale facility, will
have many auxiliary systems. Three systems important
to MSRs that are included in the system model are the
off-gas system, the drain tank system, and the decay heat
removal system. While these systems are important for
understanding performance and source term behavior,
they are not well defined in literature. Therefore,
engineering judgment and simplifications were made
for preliminary modeling purposes.

The off-gas system removes a specified set of fission
products (i.e., gaseous products) from the primary fuel
salt pump bypass line at a specified efficiency using a
helium carrier gas (Figure 2). A portion of primary fuel
salt is also carried from the primary fuel loop at a rate

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815427 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

31

dependent on the carrier gas flow rate. The separated
fuel salt travels directly to the drain tank, where it is then
pumped back to the pump bowl of the primary fuel loop.
The rate of fuel salt return from the drain tank can be
controlled using the control settings of the drain tank
sump pump. The carrier gas with the separated fission
products also travels to the drain tank. The characteristic
hold-up time of the gas depends on the tank volume.
From the drain tank, the gas is split at a specified ratio
between a return line that runs directly back to the pump
bowl and a charcoal adsorber bed. As the gas passes
through the charcoal bed, substances decay, give off
heat, and may become trapped. After exiting the
charcoal bed, the carrier gas, along with any remaining
substances that did not completely decay or that were
otherwise filtered, are returned to the pump bowl.

The charcoal bed transports (Sun et al., 1994) the
trace substances between volumes in the adsorber bed at
a rate (𝑚𝑚�̇�𝐶) which is a function of the inflow rate, the
time spent in a volume (𝜏𝜏), the decay rate of the
substance (𝜆𝜆), and any sources of each substance from
the decay of other substances, as shown in Eq. (5):

𝑚𝑚�̇�𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚�̇�𝐶𝑖𝑖𝑖𝑖𝑒𝑒−𝜆𝜆𝜆𝜆 +∑𝑚𝑚�̇�𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(5)

The adsorber bed is heated by the decay of fission
products. Like the drain tank heat removal system, the
adsorber bed is cooled by a passive circulation loop. For
simplicity, a fixed boundary temperature is set for the
adsorber bed so that the cooling requirement can be
easily monitored, as no design information is available
for that system.

The drain tank is separated into two volumes (Figure
2), one for the gas and one for the fuel salt. The gas
volume is determined by the liquid level of the fuel salt
in the specified geometry, while the pressure of the fuel
salt volume is set by the gas volume. Products decay and
emit heat in each of these volumes and then continue
through the process. The gas volume continues to the
adsorber bed or goes directly to the pump bowl as
previously discussed, while the fuel salt is pumped back
to the pump bowl based on the control algorithm
implemented. The preliminary control is a level monitor
which switches its control setting based on minimum
and maximum fuel salt levels. The drain tank is
thermally connected with the decay heat removal system
through double-walled thimbles, as described below.

The decay heat removal system (Figure 5) is a
passive, buoyancy driven, NaK-filled circulation loop.
The loop removes heat from the drain tank via double
walled thimbles, which rely on radiation heat transfer
between the pipes and convective heat transfer between
the working fluids and the pipe walls. The hot fluid
rejects to a water tank at a higher elevation via identical
double-walled thimbles. The cold fluid recirculates back
to the drain tank to be reheated. As this system is not
well defined, a flow resistance is inserted into the loop
so that the mass flow rate matches the design references.
This resistance would be comprised of bends, orifices,
and other pressure losses not already accounted for by
the pressure drop correlations in the pipes. The water
tank has a simple control system that maintains the
outlet temperature at the design condition. The current
model of the water tank includes a simple, ideally mixed
volume that does not consider latent heat effects, so the

Figure 5. Model of the drain tank natural circulation decay heat removal system.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815427
32

flow rate required to keep the tank at design conditions
is overestimated.

4 Results
There are many various scenarios of potential interest to
the regulator body and MSR community. A subset of
accident and normal operation scenarios include the
following:
• Loss of power
• Single and multiple pump failures
• A variety of reactivity insertion/removal events
• Tritium dose to the environment
• Fission product inventory
• Decay heat removal performance
• Load following ability
• Overall passive safety performance

This list can be quite extensive. Two scenarios are
presented herein. The first scenario is a steady-state case
with a focus on demonstrating fulfillment or progress on
the model criterion. This steady state case also serves as
the initial condition for the second case. The second
scenario is an accident type scenario in which the
primary fuel pump trips, after which the primary coolant
pump trips. Under both scenarios, the temperature
feedback for the point kinetics equations establishes the
power level. At full power, this temperature feedback is
assumed to be linear between the nominal inlet and
outlet temperature. Exact dimensions/parameters are
excluded, and results are normalized, as the cases are
meant to demonstrate overall behaviors and capabilities.
Simulations were run using Dymola 2018 FD01. Details
of the simulation can be found in Table 1.

Table 1. Simulation Parameters

Parameter Value
Simulation Time 172800 s
Real Time 260 s
Solver Esdirk45a
Tolerance 0.0001
Equations 13290
Scalar Equations 58082

4.1 Case 1: Steady State Behavior
A steady-state condition was reached by simulating the
model for 172,800 seconds (2 days). The extensive
simulation time was due to permitting the reactor to start
from zero concentration fission product and therefore
required a sufficient length of time for longer lived
produces, like xenon (half-life on the order of 9 hours)
to build-up to steady-state concentrations.

Figure 6 demonstrates the expected skew of
temperature feedback and power based on the assumed
linear increase in reference temperature as specified in
the case description. The power at the inlet of the core
is near zero (though decay heat is still generated) as the
fluid enters near the nominal inlet temperature. The
power in the subsequent nodes increases due to the
temperature feedback, although the profile shifts toward
the core outlet due to movement of the precursor
neutrons. The temperature difference between the
measured and reference temperature decreases toward
the outlet of the reactor, decreasing the temperature
feedback and slightly lowering the power level of the
reactor.

Figure 6. Normalized power and temperature reactivity
feedback in the core.

Figure 7 presents the concentration of tritium, a
selected neutron precursor group with a relatively short
half-life, and xenon as a function of position in the
reactor model. The tritium is generated in the core,
dependent on the power profile, and then it diffuses
through the PFL heat exchanger (HX) to the PCL. Little
variation is seen elsewhere due to the long half-life of
tritium (~12 years). Neutron precursors, the principle
feedback mechanism for point kinetics, are typically
separated into several groups. For discussion purposes,
only one of the groups, which has a half-life on the order
of seconds, is presented. The plot demonstrates the
behavior of this group as its generation rate closely
follows the power profile of the core and then decays to
nearly zero between the core outlet and the PFL HX
inlet. Like tritium, xenon’s decay rate is slow compared
to the loop transit time. However, removal of xenon to
the off-gas and charcoal adsorber bed for decay hold-up
can be seen in the figure at a position of approximately
10-m. The pump bowl is at this position, which has the
associated separation process previously described.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815427 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

33

Figure 7. Normalized concentrations of Tritium, a neutron
precursor group, and xenon as a function of position in the
reactor model.

4.2 Case 2: Sequential Pump Trips
Following the two-day simulation, the reactor pumps for
the PFL and PCL were ramped down by 95% from the
full power operation flow rate over a period of 60
seconds. The PFL was tripped first, followed by the PCL
pump five minutes later. This process can be seen in
Figure 8.

Figure 8. Pump trip event showing the sequential coast
down of the PFL and PCL pumps and the associated impact
on the respective loop transit times.

Figure 9 – Figure 12 illustrates the feedback on the
system due to the drop in PFL flow rate. Upon PFL
pump trip, the temperature within the core of the reactor
heats up due to the decreased flow rate (Figure 9). As
the temperature increases, the temperature feedback of
the reactor drives the power down (Figure 10) as it
attempts to correct the discrepancy between the
reference and measured nodal temperatures. The
oscillations in temperature, and therefore reactivity and
power, is associated with the influx of colder-than-
nominal fluid returning from the PFL HX. This fluid is
cooled more than usual due to the continued operation
of the PCL pump. For clarity Figure 11 and Figure 12
are both presented. These plots illustrate the time-

dependent behavior of the entire loop temperature. At
the time of the PFL pump trip, the increase in core
temperature and decrease in HX temperature are clearly
seen. Once the PCL pump trips, the system shifts
slightly back toward the nominal condition, as the
temperature feedback once again compensates for the
off-nominal temperature differences.

Although the change in a variety of behaviors in the
PFL is noticeable in the simulation, in the decay heat
removal system the heat removal response is very
limited, as would be expected since moderate- to long-
lived isotopes are the primary contributors of decay heat
(Figure 10).

Figure 9. Normalized core temperature and thermal
reactivity feedback as a function of time.

Figure 10. Normalized power generated in the core and
removed in the decay heat rejection system.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815427

34

Figure 11. Normalized PFL temperature as a function of
loop position for select times throughout the transient
case.

Figure 12. Time history of the evolving PFL temperature
as a function of position in the loop.

The tritium release rate oscillates as a function of
changes in fluid densities, generation rates, etc. Figure
13 demonstrates the response throughout the system. As
expected, the tritium generation rate tracks the power of
the reactor. As the initial PFL pump trips the release rate
slowly rises, decreases, and rises again. This behavior is
due to oscillations in the fluid density (change in tritium
volumetric concentration) as temperature waves from
the transient case propagate through the system. Once
the PCL trips, temperature, and therefore densities and
concentrations, return to conditions close to nominal.
The difference in release rate of tritium at the beginning
and end of simulation are approximately equal due to the
amount of tritium being released being a small fraction
of the actual amount of tritium in the system. Over
longer periods of time, on the order of days, the release

rate decreases to match the generation rate.

Figure 13. Tritium generation and release rate from the
PFL to the PCL and the PCL to the environment (or BOP).

5 Summary
To advance the understanding of molten salt-fueled

nuclear reactors, a low-fidelity system-level model has
been generated in Modelica using the ORNL-developed
TRANSFORM library. The simulation relies on the
trace substance methodology introduced in the MSL and
adopted in TRANSFORM to account for the transport
of species, such as fission products, and their impact on
the system, including reactivity feedback and decay heat
generation. The paper presents a select set of data for
steady state and pump-trip scenarios to demonstrate the
capabilities and implemented physics of the model. This
model will continue to be extended and tailored to
specific examples and demonstrations to help identify
needs and gaps in data and simulation capabilities in
current and future nuclear reactor licensing and design
tools. More generally, the presented model and fission
product modeling approach demonstrates the ability to
advance the understanding of the dynamics of complex
fluid-fueled reactor systems, a critical part of licensing
and safeguards analysis, for which few if any tools exist.

Acknowledgments
The author would like to acknowledge and thank the US
Department of Energy for funding this work.

References
Bettis, E. S., Alexander, L. G., and Watts, H. L., 1972. Design

Studies of a Molten-Salt Reactor Demonstration Plant (No.
ORNL-TM-3832). Retrieved from
http://moltensalt.org/references/static/downloads/pdf/ORN
L-TM-3832.pdf

Greenwood, M. S., 2017a. TRANSFORM-Library: A
Modelica based library for modeling thermal hydraulic
energy systems and other multi-physics systems. Modelica,
. Retrieved from https://github.com/ORNL-
Modelica/TRANSFORM-Library

Greenwood, M. S., 2017b. TRANSFORM - TRANsient
Simulation Framework of Reconfigurable Models.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815427 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

35

Modelica, Oak Ridge National Laboratory. DOI:
10.11578/dc.20171109.1

Greenwood, M. S., 2017c. Component Development for
Nuclear Hybrid Energy Systems (pp. 839–846). Presented
at the 12th International Modelica Conference, Prague,
Czech Republic. DOI: 10.3384/ecp17132839

Greenwood, M. S., and Betzler, B. R., In Review. Modified
Point Kinetic Model for Neutron Precursors and Fission
Product Behavior for Fluid-Fueled Molten Salt Reactors.
Nuclear Science and Engineering.

Greenwood, M. S., Betzler, B. R., and Qualls, A. L., 2018.
Dynamic System Models for Informing Licensing and
Safeguards Investigations of Molten Salt Reactors (No.
ORNL/TM-2018/876, 1456790). DOI: 10.2172/1456790

Greenwood, M. S., Cetiner, S. M., Harrison, T. J., and Fugate,
D. L., 2017. A Templated Approach for Multi-Physics
Modeling of Hybrid Energy Systems in Modelica (No.
ORNL/TM-2018/757). Oak Ridge National Lab. (ORNL),
Oak Ridge, TN (United States).

Greenwood, M. S., Fugate, D. W., and Cetiner, S. M., 2017.
Control Systems for a Dynamic Multi-Physics Model of a
Nuclear Hybrid Energy System. Presented at the 10th
International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface
Technologies, San Francisco, CA (United States).

Hale, R. E., Cetiner, S. M., Fugate, D. L., Batteh, J. J., and
Tiller, M. M., 2015. Update on Small Modular Reactors
Dynamic System Modeling Tool: Web Application (No.
ORNL/SPR--2015/17). Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN (United States). DOI:
10.2172/1252137

Hale, R. E., Fugate, D. L., Cetiner, S. M., and Qualls, A. L.,
2015. Update on ORNL Transform Tool: Simulating Multi-
Module Advanced Reactor with End-to-End I&C (No.
ORNL/SPR-2015/257). Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN (United States). DOI:
10.2172/1239756

Hale, R., Fugate, D. L., Cetiner, S. M., Ball, S. J., Qualls, A.
L., and Batteh, J. J., 2015. Update on ORNL TRANSFORM
Tool: Preliminary Architecture/Modules for High-
Temperature Gas-Cooled Reactor Concepts and Update on
ALMR Control (No. ORNL/SPR--2015/367). Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN (United
States). Retrieved from
https://info.ornl.gov/sites/publications/Files/Pub56863.pdf

IAEA, 1972. The Structure and Content of Agreements
Between the Agency and States Required in Connection
with the Treaty on the Non-Proliferation of Nuclear
Weapons (No. INFCIRC/153 (Corrected)). International
Atomic Energy Agency. Retrieved from
https://www.iaea.org/publications/documents/infcircs/struc
ture-and-content-agreements-between-agency-and-states-
required-connection-treaty-non-proliferation-nuclear-
weapons

Mays, G. T., Smith, A. N., and Engel, J. R., 1977. Distribution
and Behavior of Tritium in the Coolant-Salt Technology
Facility (No. ORNL/TM-5759). Oak Ridge National Lab.
(ORNL), Oak Ridge, TN (United States).

Rabiti, C., Epiney, A. S., Talbot, P., Kim, J. S., Guler
Yigitoglu, A., Greenwood, M. S., Cetiner, S. M., et al.,
2017. Status Report on Modelling and Simulation

Capabilities for Nuclear-Renewable Hybrid Energy
Systems (No. NL/EXT-17-42441). Idaho National
Laboratory.

Rader, J. D., Greenwood, M. S., and Humrickhouse, P. W.,
2018. Verification of Modelica-Based Models with
Analytical Solutions for Tritium Diffusion. Nuclear
Technology, 1–8. DOI: 10.1080/00295450.2018.1431505

Robertson, R. C., 1971. Conceptual Design Study of a Single-
Fluid Molten-Salt Breeder Reactor (No. ORNL-4541). Oak
Ridge National Laboratory. Retrieved from
https://www.osti.gov/scitech/servlets/purl/4030941

Stempien, J. D., 2015, May. Tritium Transport, Corrosion,
and Fuel Performance Modeling in the Fluoride Salt-
Cooled High-Temperature Reactor (FHR). Cambridge,
MA: Massachusetts Institute of Technology.

Sun, C. L., Chen, J. C., Yu, Y. W., Ha, H. C., Lu, C. S., and
Lee, T. Y., 1994. Dynamic adsorption properties of Kr and
Xe isotopes in charcoal. Journal of Radioanalytical and
Nuclear Chemistry, 181(2), 291–299. DOI:
10.1007/BF02037635

Touran, N. W., Gilleland, J., Malmgren, G. T., Whitmer, C.,
and Gates, W. H., 2017. Computational Tools for the
Integrated Design of Advanced Nuclear Reactors.
Engineering, 3(4), 518–526. DOI:
10.1016/J.ENG.2017.04.016

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815427

36

Development and Implementation of a Flexible Model Architecture
for Hybrid-Electric Aircraft

John Batteh1 Jesse Gohl1 Michael Sielemann2 Peter Sundstrom3 Ivar Torstensson3

Natesa MacRae4 Patrick Zdunich4

1Modelon Inc., USA, {john.batteh,jesse.gohl}@modelon.com
2Modelon Deutschland GmbH, Germany, {michael.sielemann}@modelon.com

3Modelon AB, Sweden, {peter.sundstrom,ivar.torstensson}@modelon.com
4National Research Council Canada, Canada, {Natesa.MacRae,Patrick.Zdunich}@nrc-cnrc.gc.ca

Abstract
This paper describes the implementation of a flexible,
modular, hybrid-electric aircraft modeling architecture
for the development of a virtual and physical
demonstrator system that will be used in the
advancement of sustainable mobility systems by the
National Research Council of Canada (NRC). The
initial modeling architecture was established in
Modelica based on the NASA X-57 electric flight
demonstrator aircraft. A series of models were
assembled from a high level aircraft system
architecture to mimic the initial developmental path
from the baseline conventional aircraft to the X-57
electric aircraft variant. The multi-physics component
models describe the aircraft dynamics and
performance, integrated with the relevant mechanical,
electrical, and thermal dynamics of the electric aircraft
power train. The proposed modular architecture
allowed the simulation of three different aircraft
configurations with different degrees of electrification,
demonstrating its effectiveness and versatility in the
design and development of hybrid-electric aircraft.
Keywords: aerospace, hybrid-electric aircraft,
electrification, electric propulsion, thermal

1 Introduction
Triggered by the demand for reduced emissions /

fuel burn, external noise, and maintenance costs, the
aircraft industry is actively pursuing the concepts of
‘more electric’ and ‘fully electric aircraft’. Although
the first manned electric aircraft flight took place in
1973 with the Militky MB-E1 (Taylor, 1974), a
growing trend has emerged in the past decade with the
increased electrification of the Boeing 787 Dreamliner
(Boeing, 2018), the all-electric Airbus E-Fan (with
recent plans for the collaborative development of the
E-Fan X between Airbus, Rolls Royce and Siemens)
(E-Fan/E-Fan X, 2017), the Pipistrel Alpha Electro
(Pipistrel, 2018), and the ongoing development of the
National Aeronautics and Space Administration
(NASA) X-57 (NASA, 2018). Current advancements
in the technologies that support this trend include
innovations in the fields of power electronics, sensors,
high density electric motors, energy storage, and power
generation. In addition, advances in modeling and
simulation software have led to the development of
flexible, modular model architectures, which provide a
uniquely efficient way to manage the challenges
inherent in the modeling of advanced multi-domain
systems.

Figure 1. NASA X-57 project approach
(NASA: Borer et al, 2016)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815437 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

37

This paper describes the development and
implementation of a flexible, modular model
architecture for hybrid-electric aircraft.

1.1 Model Architecture Application
Electrically propelled and powered aircraft represent

a disruptive technology that, from an aviation safety
and reliability perspective, requires an evolutionary
technological development path. To support this
development, the NRC has initiated two parallel
‘sister’ projects that will provide both a virtual and
physical test platform for hybrid-electric aircraft
system innovation. The first is a Sustainable Mobility
Systems (SiMS) Virtual Demonstrator – a multi-
disciplinary virtual prototyping tool that will support
the development of hybrid-electric aircraft throughout
the system development life cycle. This tool will be
used to support the evaluation of individual and
integrated component-level technologies associated
with hybrid-electric aircraft, including power
generation, storage, transmission, conversion, and
consumption components. It will also provide support
for system and component characterization,
optimization, trade studies, performance evaluation,
and failure modes and effects analysis. The second is
the development of a Hybrid Electric Aircraft Testbed
(HEAT) – an airborne electric propulsion test-bed
demonstrator that will be used to evaluate various
hybrid-electric propulsion systems / configurations and
gather experimental data to inform evolving
certification requirements. Initially, SiMS will act as a
virtual prototyping tool for the design and development
of the HEAT physical demonstrator. In turn, HEAT
will provide data to validate or tune system and
component level models used by SiMS. Together,
these systems will provide a dedicated research
platform to advance hybrid-electric aircraft
development and certification.

1.2 Developmental Approach
For the creation of SiMS, a custom aircraft model

architecture was developed in Modelica using a suite of
Modelon libraries: Aircraft Dynamics Library,
Electrification Library, and Liquid Cooling Library
(Modelon AB, 2018). To define a reasonable starting
point for the modeling framework, the architecture was
established using a real-world electric aircraft: the
NASA X-57. The high availability of technical data
related to the NASA X-57 project provided a unique
opportunity to demonstrate the effectiveness of these
libraries in supporting the development of a custom
electric aircraft model architecture. In addition, since
the X-57 is being developed in stages (Tecnam, 2018),
it provided the opportunity to demonstrate the ability of
the model architecture to adapt to configuration
changes starting from a conventional baseline aircraft –
the Tecnam P2006T (Mod 1) and leading to a fully

modified electric aircraft (Mods 2 & 3). Note that the
X-57 is currently in development with flight testing of
Mod 3 targeted for mid-2020. A model of the final
configuration (Mod 4) was not developed.

2 Model Libraries
The Aircraft Dynamics Library from Modelon is a new
library offering that includes a full, flexible model
architecture and compatible component models for
modeling aircraft systems. The library includes a
powerful sizing model for implementation of the
aircraft systems and can support a range of analyses
integrating:
• Specification of aircraft geometry
• Flight dynamics
• Propulsion dynamics
• Aerodynamics
• Energy and fuel consumption
• Fuel dynamics
• Thermal dynamics
• Environmental control
• Auxiliary power
• Actuation systems
• Landing gear
• Flight controls
• Flight maneuvers and mission profiles

The library provides a 6DOF representation of the
aircraft flight dynamics using aircraft geometry and the
distributed mass and inertia of the individual
subsystems (Stengel, 2004). The top level aircraft
subsystem decomposition is shown in Figure 2,
including the airframe, power systems, and general
aircraft systems (including avionics, flight deck and
cabin systems, etc). These subsystem models can be
further broken down into individual components.

Figure 2. Aircraft decomposition in Aircraft Dynamics
Library
Figure 3 shows the next level of decomposition of the
airframe subsystem where the fuselage, wings, tail,
landing gear, and aerodynamics are specified.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815437
38

Figure 3. Architecture of the airframe subsystem
Figure 4 shows the architecture of the power
subsystem, where the Electrification and Liquid
Cooling libraries can be applied, and where the
engines, electrical systems, actuation systems, auxiliary
power systems and fuel systems are specified.

The sizing model (Kroo, 2001) enables the
realization of different types of aircraft quickly. Users
are provided with configurable options for input of the
different parameters needed to specify the aircraft
geometry. This capability allows the model to estimate
missing information where minimal data is available
(in order to quickly establish a working aircraft model),
while also providing options for input of detailed
geometry, where this data is known.

Figure 4. Architecture of the power subsystem

Models are built by configuring templates, and
models of different levels of fidelity can easily be
implemented within the flexible model architectures.
Further details of model implementation will be
provided in the following sections describing the
implementation of the Tecnam P2006T and X-57
models. Note that the Aircraft Dynamics Library
integrates with other Modelon libraries including Jet
Propulsion Library, Fuel Systems Library,
Environmental Control Library, Hydraulics Library,
Pneumatics Library, and Liquid Cooling Library.

3 X-57 Modeling and Simulation
This section describes the development and
implementation of the P2006T and X-57 models. The
development of these models roughly followed the
project approach shown in Figure 1 with the initial
development of the baseline P2006T model (Mod 1),
followed by various developmental milestones leading
to the X-57 (up to Mods 2 & 3).

3.1 Aircraft Overview

(a) Tecnam P2006T

(b) NASA X-57 rendering

Figure 5. Tecnam P2006T and NASA X-57 aircraft
The Tecnam P2006T is a twin-engine four-seat general
aviation aircraft. Shown in Figure 5a, the P2006T has a

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815437 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

39

high wing and twin Rotax 912 S3 100 hp four cylinder
internal combustion engines. The engines drive two-
bladed constant speed propellers capable of full
feathering. Nominal specifications include a maximum
cruise speed of 77 m/s (150 kt), 1239 km range, and
fuel consumption of 17 L/h (4.5 gal/hr) per engine
(Tecnam, 2018).

The NASA X-57 aircraft is a heavily modified
Tecnam P2006T and is being developed as part of the
Leading Edge Asynchronous Propeller Technology
(LEAPTech) project (NASA, 2018), initiated in 2014.
Shown in Figure 5b as an artist’s rendering, the X-57
features two wing tip cruise motors and six small
electric motors distributed along the leading edge of
each wing. The wing of the X-57 is optimized for the
high-speed cruise condition, and therefore, its area is
substantially reduced and aspect ratio increased
compared to the original Tecnam P2006T. In order to
produce the necessary lift at the lower speeds of take-
off and landing, a trailing edge flap is deflected, and
the motors distributed along the leading edge are
operated to increase the flow velocity over the wing
and therefore increase lift. These lift augmentation
propellers fold snugly along the motor nacelles when
not in use during cruise to reduce drag.

3.2 P2006T Modeling and Results

(a) Tecnam P2006T

(b) Tecnam P2006T rendering

Figure 6. Actual and animation of P2006T aircraft
The first step in the development of the X-57 Modelica
model was the creation of a baseline model of the
P2006T aircraft (Mod 1). The sizing model from the

Aircraft Dynamics Library was used to provide
reasonable implementations of the various aircraft
subsystems for modeling the airframe. A simplified,
high level model of the P2006T powertrain was
assembled, and a surrogate turboprop model was used
to drive the P2006T. A default aerodynamic model
provided by the sizing model was used to provide first
cut estimates for the aerodynamic forces based purely
on the geometry (using information and technical
drawings from the manufacturer’s website (Tecnam,
2018)).

The ability to animate the entire aircraft is natively
integrated into the individual airframe models
generated by the sizing model (see Figure 6). This
animation can provide feedback on the aircraft
dynamics as well as visual feedback on the geometric
specification of the aircraft. Users can then leverage
the animation to refine the geometric parameters
provided directly or entered into the sizing model.

Figure 7 shows the top level P2006T modeling
experiment. This experiment contains the aircraft
model and a controller implementation that controls the
aircraft elevator and thrust to provide the specified
aircraft velocity and altitude profiles. The simulation
was run with a cruise velocity set-point of 70 m/s
(~136 knots). The resulting aircraft response with
respect to velocity, height, drag and lift coefficients,
and thrust force are shown in Figure 8.

Figure 7. P2006T flight experiment

The simulation resulted in a shaft power
requirement (thrust force x velocity) of 124 kW (167
hp), which the combined shaft power of the Tecnam’s
two Rotax power plants is capable of producing (150
kW or 200 hp); the aircraft drag is implicit in the
power requirement and is therefore also deemed
acceptable. The lift coefficient of CL = ~0.5 is a
reasonable value for an aircraft of this type and is
consistent with the lift coefficient obtained in cruise
condition under test (Nicolosi, 2010).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815437

40

Figure 8. P2006T simulation results

3.3 X-57 Modeling and Results
With a reasonable baseline model for the P2006T
achieved, the model was adapted to represent the X-57
in a series of model-based development steps. The
modeling steps that parallel the project approach
shown in Figure 1 are described in this section.

X-57 Mod 2 involves the development and testing of
the electric powertrain, first on the ground and then
integrated into the P2006T airframe. The X-57 electric
powertrain was modeled using the Electrification
Library and cooling system components from Liquid
Cooling Library (Modelon AB, 2018). The modeling
approach is similar to that described in (Falck, 2017),
including thermal models to capture thermal
interactions and potential thermal operating constraints
for the electric powertrain. These models are focused
on overall energy efficiency and thus use an averaged
approach for the power electronics (detailed models of
electrical system operation with switching is not
required). This simplification also improves the
computational efficiency of simulations performed
over an entire mission profile. Though the specification
of the X-57 powertrain is still under development, the
electric powertrain model includes the following:
• Dual 120 Ah battery packs with 128 cells in series,

40 cells in parallel
• Two 60 kW electric motors
• Power inverters
• Lossy electric cables

• Two 1.5m propellers
• Air cooled thermal system with flow from motor to

inverter
Figure 9 shows one half of the X-57 electric

powertrain on a test bench, including the thermal
system and propeller. The aircraft speed and ambient
air density are applied as boundary conditions, and the
motor torque command and propeller pitch angle are
applied as commands. The propeller performance is
modeled after (Wainausky, 1989).

Figure 9. X-57 electric powertrain test bench
This test bench allows for model-based development

of the electric powertrain for system sizing and
integration, energy consumption, and controls
development.

Figure 10. Full battery discharge, full power, V=50 m/s

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815437 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

41

Figure 10 shows results from the powertrain test
bench. These simulations were run with the aircraft
speed set at 50 m/s and full power commanded from
the motor. This simulation showed that after 3000 s,
the battery state of charge went from 0.95 to 0.06. The
pack voltage drops as the state of charge decreases due
to changes in the battery voltage capability and the
increase in resistance; thus, the power delivered by the
motor and power produced by the propeller also drop.
The battery pack temperature increases over the entire
simulation due to the large thermal capacitance of the
battery pack. When the state of charge drops, there is
more heat generated by the battery pack due to
increased electrical resistance and thus an increase in
the temperature rise rate. Temperatures for the cable,
inverter, and motor are also shown. This type of
simulation can be used for system sizing and for
estimating potential aircraft range for a specific electric
powertrain configuration.

Figure 11 shows results from a blade pitch angle
ramp at full power command, with aircraft speed at 50
m/s. As the blade pitch angle increases, the propeller
power drops to maintain the constrained air speed
condition. The plot shows the power out of the battery
pack, delivered by the motor at the shaft, and delivered
by the propeller as thrust power.

Figure 11. Propeller blade angle ramp, full power
command, aircraft speed 50 m/s

This type of simulation can be used to develop
optimum system operation strategies for different
aircraft operating conditions and power demands.

To facilitate integration of the electric powertrain
into the aircraft model, a new power template for
Aircraft Dynamics Library was created, as shown in
Figure 12. As compared to the original power template
shown in Figure 4, this new power template
incorporates the following changes to allow drop-in
replacement of the various electric powertrain
subsystems without requiring any additional
connections between subsystems:
• Addition of electrical bus connectors to the engine

and electric systems (blue connections)
• Addition of thermal bus connectors to the engine

and electric systems (red connections)
• Addition of a new thermal subsystem with

electrical and thermal bus connectors

Figure 12. New Power template for electric aircraft
As described in Figure 1, Mod 2 progresses from

ground testing of the electric powertrain to integration
of the electric powertrain into the P2006T airframe to
replace the conventional engine powertrain. Using the
new power template shown in Figure 12, the electric
powertrain shown in Figure 9 was integrated as
follows:
• electric subsystem contains the battery pack (1 for

each side) for the cruise motors
• engine2 and engine3 subsystems contain the cable,

inverter, motor, and propeller for the cruise motors
(1 for each side)

• thermal subsystem provides cooling to components
(one thermal system in total to more easily handle
the connections between systems on the thermal
side)

With the power system implemented, a simple
redeclare was all that was needed to create the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815437

42

model variant of the P2006T with the electric
powertrain as shown in Figure 13.

After the initial testing of the electric powertrain in
the P2006T airframe, Mod 3 in the X-57 development
plan includes the modification of the P2006T airframe
to integrate the Distributed Electric Propulsion (DEP)
wing design. These same changes were implemented in
the model to develop the X-57 Mod 3 aircraft.
model P2006TElectric_Aircraft "P2006T with electric powertrain"
 extends X57.Aircraft.TecnamP2006T(redeclare replaceable
 X57_Power power);
end P2006TElectric_Aircraft;

Figure 13. Modelica code for electric P2006T aircraft
The final X-57 configuration will include the

distributed electric propulsion system and a cruise-
optimized wing geometry with a program goal of a 5x
reduction in cruise energy consumption when
compared with the baseline P2006T (Deere, 2017). For
the purposes of the X-57 model in this work, only the
cruise motors were considered, as the Mod 3 focus is
on understanding energy usage under cruise conditions
when the high lift motors are not active. The new wing
geometry was implemented based on the geometric
specification in (Deere, 2017). The extensive CFD
analysis conducted on the proposed X-57 wing designs
(Deere, 2017) was used to create a custom
aerodynamics model using the Aircraft Dynamics
Library. This new table-based lift and drag model was
implemented with coefficients as a function of angle of
attack. The X-57 aircraft model was then constructed
as a variant of the P2006T by redeclare of the
airframe, aerodynamics model, and power subsystem
as shown in Figure 14.

model X57_Aircraft "X57 aircraft"
 extends X57.Aircraft.TecnamP2006T(redeclare replaceable
 X57_Power power,
 redeclare X57.Airframe.AirframeX57 airframe(redeclare
 X57TableBasedAero aero));
end X57_Aircraft;

Figure 14. Modelica code for X-57 aircraft
The animation for the X-57 aircraft is shown in

Figure 15. Note the visual depiction of the new wing
design as compared to the P2006T in Figure 6. The
P2006T wing area is reported as 159 ft2 with an aspect
ratio of 8.8 as compared to the simulated X-57 design
with wing area of 67 ft2 and an aspect ratio of 15.

The X-57 Mod 3 flight experiment is shown in
Figure 16. The model includes the X-57 Mod 3 aircraft
and a controller. The controller acts on motor torque,
propeller blade angle, and aircraft elevator to achieve a
desired height, propeller speed, and aircraft speed.
Simple PID controllers were sufficient for targeting
cruise operating conditions.

Figure 17 shows results from a velocity ramp for the
X-57, from 60 m/s to 75 m/s with the propeller speed
command at a constant 2250 RPM. As expected, for a

constant speed propeller, the pitch angle and the
battery pack, motor, and propeller power increase with
an increase in aircraft velocity.

Figure 15. X-57 animation

Figure 16. X-57 flight experiment
Figure 18 shows the sensitivity of the battery state

of charge to the drag coefficient for the X-57 wing
design with the same velocity ramp simulation shown
in Figure 17. The variations in drag coefficient were
achieved via a multiplier of 1, 1.1, 1.25, 1.4, and 1.5 on
the table-based drag values.

Figure 19 shows the sensitivity of the power
consumption to the aircraft altitude using the same
velocity ramp conditions simulated previously. The
standard atmosphere model in Aircraft Dynamics
Library provides atmospheric conditions that vary with
altitude. These simulations were run at altitudes of
3048 m, 1500 m, and 250 m, where the results are
primarily driven by the increase in density at lower

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815437 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

43

altitudes and thus, higher drag. Because the lift is also
affected by the density, there is an interaction with the
aircraft angle of attack, an effect that is not seen when
varying the drag coefficient in Figure 18.

Figure 17. X-57 velocity ramp, constant height

Figure 18. Battery state of charge sensitivity to drag with
velocity ramp

Figure 19. Power consumption sensitivity to aircraft
altitude with velocity ramp

4 Summary
The move towards ‘more electric’ and ‘fully electric
aircraft’ has significantly expanded the design space
for aircraft systems. In order to support this paradigm
shift in aircraft design, a multi-physics modeling
approach that captures the relevant mechanical,
electrical, and thermal dynamics was undertaken. This
approach provides the framework for rapid model
variant development and for performing a range of
analyses of multi-domain systems. Analyses ranging
from electric powertrain test benches to integrated
electric aircraft performance were performed using a
coordinated suite of Modelon libraries, focusing on
Mod 1 to Mod 3 of the X-57 project for cruise
efficiency demonstration. The Mod 3 model variant
can be extended in future work to include the fully
distributed high lift electric propulsion system. With a
full model, an extended range of mission profiles,
including takeoff and landing can be simulated.

As a result of this work, the underlying framework,
power train model architecture, and new electrification
model templates have been developed and
demonstrated, and will be used to support the
continued advancement of the virtual (SiMS) and
physical (HEAT) demonstrator systems.

Acknowledgements
The authors would like to thank Jim Claesson for his
support with the library releases for this effort and
Abhilash Kumar for his work on these models.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815437

44

References
Boeing, (2013). http://787updates.newairplane.com/787-

Electrical-Systems/787-electrical-system
Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D.,

Clarke, S., Redifer, M., Christie, R., Stoll, A., Dubois, A.,
Bevirt, J., Gibson, A., Foster, T., Osterkamp, P., “Design
and Performance of the NASA SCEPTOR Distributed
Electric Propulsion Flight Demonstrator,” AIAA-2016-
3920, 16th AIAA Aviation Technology, Integration, and
Operations Conference, AIAA AVIATION Forum,
Washington, D.C., June 2016.

Deere, K.A., Viken, J.K., Viken, S.A., Carter, M.B., Wiese,
M.R. and Farr, N., “Computational Analysis of a Wing
Designed for the X-57 Distributed Electric Propulsion
Aircraft”, AIAA Aviation Forum, Denver, CO, June 5-9,
2017.

E-Fan / E-Fan X (2017). “Airbus, Rolls-Royce and Siemens
develops Hybrid-Electric demonstrator”,
https://leehamnews.com/2017/11/29/airbus-rolls-royce-
siemens-develops-hybrid-electric-demonstrator/

Falck, R. D., Chin, J. C., Schnulo, S. L., Burt, J. M., and
Gray, J. S., “Trajectory optimization of electric aircraft
subject to subsystem thermal constraints,” 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Denver, CO, 2017.

Guy Norris. "Motor Mounting Marks Milestone for NASA's
Electric X-plane". Aviation Week & Space Technology,
Sep 5, 2018.

Kroo, I., Shevell, R., “Aircraft Design: Synthesis and
Analysis”, Desktop Aeronautics, 2001.

Modelon AB, Lund, Sweden. (2018). Aircraft Dynamics
Library. http://www.modelon.com/products/modelon-
library-suite/aircraft-dynamics-library/

Modelon AB, Lund, Sweden. (2018). Electrification Library.
http://www.modelon.com/products/modelon-library-
suite/electrification-library/

Modelon AB, Lund, Sweden. (2018). Liquid Cooling
Library. http://www.modelon.com/products/modelon-
library-suite/liquid-cooling-library/

NASA, 2018, ”NASA Armstrong Fact Sheet: NASA X-57
Maxwell”.
https://www.nasa.gov/centers/armstrong/news/FactSheets/
FS-109.html

Nicolosi, F., De Marco, A., Vecchia, P.D., “Stability, Flying
Qualities and Parameter Estimation of a Twin-Engine CS-
23/FAR 23 Certified Light Aircraft”, AIAA Guidance,
Navigation, and Control Conference, Toronto, ON, Aug 2-
5, 2010.

Pipistrel, (2018). https://www.pipistrel.si/plane/alpha-
electro/overview

Stengel, R. F., “Flight Dynamics”, Princeton University
Press, 2004.

Taylor, John W. R., “Jane's All the World's Aircraft” Page
573, London: Jane's Yearbooks, 1974-75.

Tecnam, (2018). “P2006T Homepage”,
http://www.tecnam.com/aircraft/p2006t/

Tecnam, (2018). “ P2006T X-57 MAXWELL NASA
Homepage”, https://www.tecnam.com/innovation/p2006t-
x-57-maxwell-nasa/

Wainausky, H. S., Rohrbach, C., Wynosky, T. A., “Prop-Fan
Performance Terminology”, SAE Aerospace Technology
Conference and Exposition, Long Beach, CA, Oct 5-8,
1987.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815437 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

45

A Modelica Library for Spacecraft Thermal Analysis

Tobias Posielek1

1Institute of System Dynamics and Control, DLR German Aerospace Center, Oberpfaffenhofen, Germany
tobias.posielek@dlr.de

Abstract
In spacecraft missions it is vital to maintain all space-
craft components within their required temperature
limits. Thus, a model incorporating all main heat
fluxes acting on the spacecraft is necessary to allow
for the design of a thermal control subsystem. This
paper introduces the thermal space systems library
which implements common models of radiation and
thermal components of a spacecraft. Special effort is
put into the calculations of the angles describing the
orientation of the spacecraft with respect to sun and
earth. Issues occurring due to the recalculation of the
angles in each time step are shown and methods for
their determinations are given.
Keywords: space modeling, thermal modeling, angle
determination

1 Introduction
In spacecraft engineering, it is essential to ensure
that all components operate in their appropriate tem-
perature range to avoid malfunction and equipment
breakage. Therefore, an analysis of the thermal dy-
namics is a necessity to design the required thermal
control (Gilmore and Bello 1994), (Meseguer, Pérez-
Grande, and Sanz-Andrés 2012), (Fortescue, Swinerd,
and Stark 2011). A rigorous description of the ther-
mal system is difficult as it has to incorporate the
orbit and the orientation of the spacecraft during the
mission, as well as the sun’s position and the dissi-
pated energy within the spacecraft. The modelling
of the thermal system is a present topic of interest
(Ruan, Hu, and Sun 2017) (Lefeng et al. 2017) (Qian
et al. 2015). Approaches of various complexity ex-
ist to design the thermal control. Simple design ap-
proaches consider only static worst case scenarios to
account for degradation and orbit thermal dynamics
(Larson and Wertz 1991). Other methods use ana-
lytical models to obtain the dynamic evolution of the
temperature over the course of multiple orbits (Tsai
2004).

The proposed library allows the simulation of the
complete spacecraft system including the thermal sys-
tem as well as the electric and mechanical system
providing the dissipated energy and spacecraft ori-
entation dependent on the spacecraft mission. The
library is proposed in view of simple analytical mod-

els. Generally, a spacecraft is modelled by a huge
number of nodes with different heat fluxes acting on
each. We will only model the most important nodes
e.g. each surface may be modelled as a node for a
cuboid spacecraft. For each of these nodes the tem-
perature dynamic is determined by the dynamic of
its adjacent nodes and the four main heat flows due
to the environment. One main point which will be
illuminated is the calculation of the angle between
the spacecraft surfaces and its surroundings. As the
attitude of spacecraft is usually not known a priori
and determined online, suitable methods to calculate
this angle are proposed. The library is created in
view of earth orbiting spacecraft. However, the li-
brary can also be used for simulations of spacecraft
leaving earth orbit as long as modifications regarding
the coordinate systems and approximations, such as
shadow calculations, are made. The proposed library
uses the other Modelica-based libraries of the Insti-
tute of System Dynamics and Control at the DLR
German Aerospace Center such as the Environment
library (Briese, Klöckner, and M. Reiner 2017) and
SpaceSystems library (M. J. Reiner and Bals 2014).
The library is created as an in-house library as a part
of the design of an energy management for spacecraft.
Section 2 introduces the essential fundamentals for
the thermal dynamics. Section 3 gives details to the
Modelica implementation and in Section 4 an exam-
ple scenario is simulated to show the functionality of
this library.

2 Fundamentals
This section introduces the coordinate systems, heat
fluxes, solar angles, form factor and shadow function
necessary to simulate the spacecraft thermal system.

2.1 Coordinate Systems
The Earth-Centered Inertial (ECI) Frame is defined
such that the xI-axis points in direction of vernal
equinox, this is the intersection between the equa-
tor and the sun’s apparent orbit during spring. The
zI-axis is parallel to the mean Earth’s rotation axis
and towards the North Pole and the yI-axis completes
right handed coordinate system. For all following ref-
erence frames the rotation matrix to ECI coordinates
is given by their coordinate axes. Each coordinate
system will be denoted with a superscript which will

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815445

46

s

r
ξ

n
φ

(a) Main angles influencing the temperature evolution
in a spacecraft. The solar zenith angle ξ is defined
as the angle between the vector to the spacecraft r
and the vector pointing to the sun s. The normal
solar angle φ describes the angle between the normal
of a spacecraft surface n and the vector pointing from
spacecraft to the sun. The dotted line describes the
spacecraft orbit.

(s� x
O)x

O +(s� z
O)z

Oθ
β

ξ

s

r

(b) Angles describing the influence of the solar zenith
angle ξ. The solar noon angle θ describes the angle
between the vector pointing to the spacecraft r and
the solar noon, i.e. the vector pointing to the sun
projected on the orbit plane (xOs)xO +(zOs)zO. The
beta angle β is defined as the angle between the orbit
plane and the vector pointing to the sun s.

Figure 1. Solar Angles

be used for the notation of their coordinate axes and
rotation matrices. We denote T S,I =

[
xS yS zS]�

as the transformation from ECI coordinates to an ar-
bitrary coordinate system with superscript S. So for
rI in ECI coordinates the transformed vector rS is
calculated via

rS = T S,IrI . (1)
The orbit frame is defined for a spacecraft in an el-

liptical orbit with position rI(t) and velocity vI(t) in
inertial coordinates by the yO-axis which is normal to
the orbit plane in direction of negative angular mo-
mentum, the zO-axis which points to geocentric nadir
and the xO-axis which completes the right handed co-
ordinate system and is for circular orbits in direction
of velocity. We omit the time argument on the right
hand side and obtain the transformation from ECI
coordinates to orbit coordinates as

T O,I(t) =
[

rI×(rI×vI)
‖rI×(rI×vI)‖ − rI×vI

‖rI×vI‖ − rI(t)
‖rI(t)‖

]�
. (2)

2.2 Environmental Heat Fluxes
Mainly four environmental heat fluxes are acting
on a spacecraft surface, namely the heat flux due
to direct solar irradiation, the solar radiation re-
flected by the earth, the radiation of the earth emit-
ted in the infra-red spectrum and the radiation of
the spacecraft emitted to deep space (Larson and
Wertz 1991),(Meseguer, Pérez-Grande, and Sanz-
Andrés 2012). Each of these fluxes and its calculation
is introduced in this section.

2.2.1 Direct Solar
The solar radiation is the main factor influencing tem-
perature changes of the spacecraft. A solar constant
Gs0 is defined as in (Meseguer, Pérez-Grande, and
Sanz-Andrés 2012) which gives the mean solar irradi-
ance acting on a unit area perpendicular to the solar
rays in a distance of 1ua where ua denotes the astro-
nomical unit. As the amount of irradiance crossing
spherical surfaces with different radii is assumed to
be constant, the solar irradiation Gs scales with dis-
tance as

Gs(d) = Gs0
d0
d

2

where d is the distance in astronomical units and
d0 = 1ua. The solar energy is mostly distributed
in visual and short wavelength infra-red (Larson and
Wertz 1991). This allows for surfaces which are very
reflective in the solar spectrum but highly emissive
to long wavelength infra-red. A simple analytical
model incorporates the angle φ = φ(n,r,s) ∈ [0,π]
between the surface normal and the sun and the
shadow of the earth described by the shadow coef-
ficient ν = ν(r,s) ∈ [0,1] introduced in Section 2.5.
Then the acting solar flux reads

Qsun =
{

αGs

(
‖s−r‖
1ua

)
Acos

(
φ

)
ν if 0 < φ < π

2
0 if π

2 < φ < π
(3)

where α denotes the solar absorptance of the surface
and A the area of the surface.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815445 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

47

2.2.2 Albedo
By albedo we denote the part of the solar radiation
which is reflected by the earth or scattered by the
planet surface and atmosphere. Combining the simple
models from (Larson and Wertz 1991) and (Meseguer,
Pérez-Grande, and Sanz-Andrés 2012) we obtain

Qalb =
{

ρalbαGs(d)AFform cos
(
ξ
)

if 0 < ξ < π
2

0 if π
2 < ξ < π

(4)

where ρalbedo ∈ [0,1] is the albedo coefficient. This
coefficient can vary over the course of an orbit and
depends on the orbits inclination. This model incor-
porates the solar zenith angle ξ(s,r) ∈ [0,π], the angle
between the sun and the spacecraft, and a form factor
Fform(r,n) defined in Section 2.4 to describe the part
of the radiation that actually strikes the spacecraft
surface.
2.2.3 Planetary Radiation
As planetary radiation we denote the thermal radia-
tion which is emitted by the planet as long wavelength
infra-red radiation. The emitted radiation can be cal-
culated as the absorbed solar radiation of the planet
minus the radiation emitted via albedo. Then, by as-
suming the planet to be a black body we obtain the
planetary infra-red thermal heat acting on a sufrace
of a spacecraft as in (Meseguer, Pérez-Grande, and
Sanz-Andrés 2012)

Qplanet(r,n) = εAFform(r,n)σT 4
p (5)

where Tp denotes the black body temperature of the
earth, σ the Stefan-Boltzmann constant and ε the
infra-red emissivity of the surface. Instead of using
the black body temperature of the earth (5), it is
often written as

Qplanet(r,n) = εAFform(r,n)IIR (6)

where IIR is the intensity of earth infra-red flux to
account for the variation of Qplanet. Note that IIR
is actually not a constant but also varying over the
course of an orbit. However, the variation of IIR is
small in comparison to the albedo variation.
2.2.4 Radiation to Deep Space
The outer surfaces of a spacecraft are radiatively cou-
pled to space. The energy of the reradiation to space
is usually in the long wave infra-red spectrum and can
be described by

Qds = εAσT 4 (7)

where T denotes the temperature of the surface.
These four heat fluxes are the main environmen-

tal heat fluxes acting on the spacecraft. Other fluxes
dues to the environment exist but are neglected in the

analysis due to their minor influence on most space-
craft. Numerical values for the parameters describing
the solar absorptivity and infra-red emissivity of dif-
ferent surface can be found in the literature such as
(Larson and Wertz 1991). Hot and cold case scenario
parameters for ρalb, IIR and Gs dependent on the or-
bit and can be found in (Larson and Wertz 1991).
Formula to describe the solar angles φ, ζ, the form
factor Fform and the shadow coefficient ν are intro-
duced in the following sections.

2.3 Thermal Angles
For the calculation of solar, albedo and infra-red ir-
radiation, different angles describing the position of
the sun and the attitude of the surface are of inter-
est. These angles are visualized in Figure 1. Figure
1a shows the zenith angle ξ and normal solar angle φ
which are the angles influencing the generation of heat
and Figure 1b the solar noon angle θ and beta angle
β which can describe the influence of the solar zenith
angle as will be explained later. In this section, we
define these angles, show the relations between them
and introduce two different ways to calculate these
angles.

Problem Formulation
Usually two vectors v1 and v2 are given in a reference
coordinate system. In order to calculate the angle
between these two vectors, it may seem advantageous
to use the scalar product as in formula (8) as you
do not need any other rotations or coordinates sys-
tem and use only the property of the scalar product.
This however, gives only angles between [0,π] which
is sufficient for many calculations which use uneven
functions but it leads to undesired results when ro-
tations are considered as illustrated in Figure 3. In
this figure the angle between the vectors v1 and v2(t)
is displayed on the left hand side over the course of
a full uniform planar rotation illustrated in the mid-
dle. The angle moves between 0 and π which makes
no unique identification of the position of v2 from
the angle possible. Note that in the control context,
the uniqueness issue can be solved by using quater-
nions which use the normal axes of the rotation as
additional information. On the right hand side, the
desired angle evolution is displayed which ensures the
bijection between position and angle in a single rota-
tion. In order to achieve this angle definition between
(−π,π], we use the properties of cylinder coordinates.
Such a definition is simple if a coordinate system is
constructed which x − y-plane describes the rotation
plane or if the reference frame can be rotated on the
rotation plane. Note however, that only a minimum
of information about the rotation is known and one
can only rely on the current value v1(t) and v2(t) but
not on a closed description of the functions v1(·) and
v2(·). This information has to be used to construct

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815445

48

v1

v1 +v2

v1 −v2

x

y

(a) Angle definition using
(8)

v1

v1 +v2

x

y

v1 −v2

(b) Angle definition using
coordinate system (9)

Figure 2. Different angle definitions

the same coordinate system at every time step over
the course of the rotation. Problems using intuitive
coordinate systems definitions are illustrated in Fig-
ure 5 and 4. Thus, an additional vector is necessary
to construct this coordinate system. In the case of or-
bit rotations this vector comes by the cross product
of velocity and position.

Angle Definitions

The most intuitive definition defines the angle θ ∈
[0,π] as the smaller positive angle between the two
vectors v1,v2 ∈ R3 as

θ = ∠(v1,v2) := cos-1
(

v�
1 v2

‖v1‖‖v2‖

)
(8)

where cos-1 denotes the inverse of the cosine with a
domain of [0,π]. This definition is sufficient for most
purposes especially if only the cosine of an angle is of
interest. However, as a result the angle between v1
and αv1 + v2 is the same as between v1 and αv1 − v2
with v�

1 v2 = 0 and α ∈ R which is undesirable in view
of planar rotations as illustrated in Figure 2a. This
flaw can be overcome by using a cartesian coordinate
system and its polar coordinate representation.

For cartesian coordinate system with axes x,y
and z represented by its transformation matrix T =[
x y z

]
so that Tv1 and Tv2 are in the x-y-plane,

we define the angle θ ∈ (−π,π] by

θ = ∠x(v1,v2) := atan2(e2Tv2,e1Tv2)
−atan2(e2Tv1,e1Tv1) .

(9)

where ei denotes the i-th unit vector in R3 and atan2

the extension of the atan function as

atan2(b,a) :=





atan
(

b
a

)
if a > 0

atan
(

b
a

)
+π if a < 0 ∧ b ≥ 0

atan
(

b
a

)
−π if a < 0 ∧ b < 0

π
2 if a = 0 ∧ b > 0
−π

2 if a = 0 ∧ b < 0
undefined if a = 0 ∧ b = 0

.

We use the superscript x in ∠x to reference to the
corresponding x − y − z-coordinate system which de-
scribes T . This definition gives for planar rotations
angles the results as desired and is illustrated in Fig-
ure 2b. The angle between between v1 and v1 + v2
and v1 and v1 −v2 have different signs in comparison
to Figure 2a.

With this definition we can describe the angles for
planar rotations by using an at the beginning estab-
lished coordinate system with the mentioned prop-
erties. However, as the desired reference coordinate
systems for the calculations of the angles are subject
to slow changes, it is necessary to redefine the coor-
dinate system at every point of time. This means the
coordinate axes have to be constantly recalculated.
Clearly, it is desirable to obtain continuous axes that
do not experience a change of sign. Furthermore, the
coordinate system shall be right handed and use only
information about the current point of time.

By the definition of the cross product, it is suffi-
cient to use only two vectors v1 and v2 to define a
coordinate system via

x = v1
‖v1‖ , (10a)

y = z ×x, (10b)

z = v1 ×v2
‖v1 ×v2‖ . (10c)

However, for a constant v1 but a rotating v2 the
y- and z-axis change their direction when v1 and v2
become parallel as can be seen in Figure 4.

Consider the Gram Schmidt process as a way to
construct the coordinate system with

x = v1
‖v1‖ , (11a)

y = v2 − (x�v2)x
‖v2 − (x�v2)x‖ , (11b)

z = v3 − (x�v3)x− (y�v3)y
‖v3 − (x�v3)x− (y�v3)y‖ . (11c)

However, with this definition it cannot be guaranteed
that the resulting coordinate system is right handed
as illustrated in Figure 5.

We combine these two methods in order to obtain
a continuous right handed coordinate system.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815445 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

49

v1

v2(t2)
π

π

π

π v2(t4) v2(t3)

v2(t1)

θ(t2)

θ(t1)

θ(t4)

θ(t3)v2(0)t1 t2 t3 t4 t1 t2

t3

t4

0 0

Scalar product angle definition Planar angle definition
Planar rotation

Figure 3. Angle of a planar rotation described by two different definitions

y

x

z

v1

v2

y

x

z

v1
v2

Figure 4. Defined coordinate system using (10)

y

x

z

v1

v2

v3

y

x

z

v1
v2

v3

Figure 5. Defined coordinate system using (11)

Let xGram,yGram,zGram be the coordinate axes as
in (11). Then define for the coordinate system T =[
x y z

]
as

x = xGram , (12a)
y = z ×x, (12b)
z = zGram . (12c)

Thus (9) gives with (11) and (12) a method to cal-
culate the continuous angle between v1 and v2 using
an additional vector v3. This method is introduced in

view of continuous rotations of v1 and v2 in a slowly
changing v1-v2-plane. However, it must be ensured
that the plane normal does not get perpendicular to
v3.
2.3.1 The Solar Noon Angle
The solar noon angle θ is the angle between the space-
craft vector r and the sun pointing vector s projected
on the orbit plane

θ = ∠xSN(
r,(xOs)xO +(zOs)zO)

, (13)

using (9) and {xSN,ySN,zSN} denoting the coordinate
system obtained with Equation (11) and (12) with the
vectors v1 = (xOs)xO +(zOs)zO, v2 = r and v3 = −yO.
This definition gives for a single orbit of a spacecraft
an angle between (−π,π] with one discontinuity at
most.
2.3.2 The Beta Angle
The beta angle β ∈ [−π

2 , π
2] defined as in (Meseguer,

Pérez-Grande, and Sanz-Andrés 2012) describes the
relative orientation of the orbit with regard to the
sun, and is defined as the minimum angle between
the orbit plane and the solar vector. The beta an-
gle is defined as positive if the spacecraft orbits in a
counter clockwise direction and negative if it revolves
clockwise with respect to the sun as

β =
{

∠
(
s,(xos)xo +(zos)zo

)
if s�yo < 0

−∠
(
s,(xos)xo +(zos)zo

)
if s�yo ≥ 0

(14)

using the definition of the orbit frame from Section
2.1 and Equation (8) . Another way to calculate the
beta angle is to use the normal of the orbit plane and
parameterise the vectors by the orbital elements de-
scribing the movement of the sun and the satellite.
Consider the sun as a satellite of the earth with the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815445

50

inclination is and the sum of the argument of periap-
sis and true anomaly ωs +νs, i.e. the opliquity of the
ecliptic and the true solar longitude of the ecliptic.
Then the vector to the sun s and the vector orthogo-
nal to the plane yO can be written in ECI coordinates
as:

s = cos(ωs +νs)xI +sin(ωs +νs)cos(is)yI

+sin(ωs +νs)sin(is)zI ,

yo = sin(Ω)sin(i)xI − cos(Ω)sin(i)yI +cos(i)zI .

Instead of calculating the angle to the projection we
calculate the angle to the orbit normal as

sin(β) = −cos(β + π

2) = −s�yo

⇒ β = sin-1 (
cos(ωs +νs)sin(Ω)sin(i)
− sin(ωs +νs)cos(is)cos(Ω)sin(i)
+sin(ωs +νs)sin(is)cos(i)

)
.

(15)

This description emphasises the dependence of the β
angle from the orbit inclination and longitude of the
ascending node.
2.3.3 The Solar Zenith Angle
The solar zenith angle is defined as in (Meseguer,
Pérez-Grande, and Sanz-Andrés 2012) to describe the
portion of the illuminated planet which is seen by the
spacecraft. The solar zenith angle ξ is defined as the
angle between the spacecraft vector r and the sun
pointing vector s as

ξ = ∠(r,s) (16)

using (8). In order to enable a thermal analysis de-
pendent of the orbit attitude, the influence of this an-
gle can be described by the slowly time varying beta
angle β and the periodic solar noon angle θ.

For the solar zenith angle ξ, the beta angle β and
the solar noon angle θ holds

cosξ = cosβ cosθ . (17)

As can be seen in Equation (4) the solar zenith an-
gle influences the acting heat significantly. By using
(17) we have introduced two different angles which al-
low analysing the impact of the chosen satellite orbit.
The satellite orbit can be described by the six orbital
elements a, ε, i, Ω, ω and M0. If the orbiting object is
only influenced by a gravitation field described by a
spherical symmetric planet these orbital elements are
constant. In many applications, orbits are chosen to
be circular sun synchronous orbits. Thus, a uniform
movement is obtained and the solar noon angle can be
described as θ = ωot, where ωo is the angular rotation
rate dependent on the semimajor axis a. However,
the beta angle is determined by the inclination of the

orbit i and the of the longitude of the ascending node
Ω as can be seen in (15). Therefore, the choice of Ω
influences the heat acting on the satellite due to the
sun significantly.
2.3.4 The Normal Solar Angle
The normal solar angle φ is defined between the nor-
mal of a spacecraft surface n and the vector pointing
to the sun s− r as

φ = ∠
(
s− r,n

)
≈ ∠

(
s,n

)
. (18)

This approximation holds because the distance be-
tween earth origin and spacecraft is negligible com-
pared to the distance between sun and spacecraft in
low earth orbits.

2.4 Form Factor
For the form factor described in the previous section
it is sufficient to assume the spacecraft surface to be
a infinitesimally small plate and the earth to be a
sphere. Then we can use the results from (Juul 1979)
and obtain the form factor as a function of distance
to the plate and angle ζ = ∠(r,n), the angle between
the normal of the plate n and vector between earth
and plate which is approximately the vector between
earth and spacecraft r. Let H = ‖r‖

r⊕
where r ∈ R3 is

the spacecraft position and r⊕ the radius of the earth,
then the form factor is

Fform =




cos(ζ)
H2 ζ < π

2 − sin-1 (1
H

)

Fform,2
π
2 − sin-1 (1

H

)
< ζ < π

2 +sin-1 (1
H

)

0 ζ > π
2 +sin-1 (1

H

)
(19)

with

Fform,2 = 1
2 − 1

π
sin-1

(√
H2 −1

H sin(ζ)

)

+ 1
πH2

(
cos(ζ)cos-1 (

−
√

H2 −1cot(ζ)
)

−
√

H2 −1
√

1−H2 cos(ζ)2
)

.

2.5 Shadow Function
The shadow function gives the occultation of the
satellite due to the earth. We use cylindrical shad-
ows as illustrated in Figure 6. The distance between
earth and sun is way higher than the difference of
their radii and the distance between earth and space-
craft, which is why it is sufficient to assume cylindrical
shadows instead of conic ones. We construct an or-
thonormal basis {x,y,z} ⊂ R3 with x = s

‖s‖ then the
shadow coefficient ν = ν(r,s) is calculated as

ν =
{

1 if r�x < 0∧‖r�y + r�z‖ < r⊕
0 otherwise

. (20)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815445 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

51

r

xsh ysh

zsh

β θ

Figure 6. Cylindrical Shadow Model

Note that instead of taking an arbitrary normal ba-
sis we can define a coordinate system ·sh using the
defined solar noon and beta angle via

T sh,I =
[
xsh ysh zsh]�

= Ry(−π
2)Rx(β)Ry(θ)Ry(π)T o,I ,

where

Rx(θ) =




cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1




and

Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


 .

We can use this coordinate system to parameterise
r as

r

‖r‖ = cos(θ)cos(β)xsh +cos(θ)sin(β)ysh − sin(θ)zsh .

Then Equation (20) reads

ν =
{

1 if |θ| > π
2 ∧

√
cos(θ)2 sin(β)2 +sin(θ)2 <

r⊕
‖r‖

0 otherwise
.

(21)

Other methods divide the earth’s shadow into um-
bra and penumbra. The shadow coefficient ν ∈ (0,1)
in penumbra is then determined by the overlapping of
two circular disks. A detailed derivation can be found
in (Montenbruck and Gill 2011).

3 Modelica Implementation
The implementation of the Thermal Space library is
an extension of the DLR Space Systems library from
(M. J. Reiner and Bals 2014) and uses gravity and
sun models of the DLR Environment Library (Briese,
Klöckner, and M. Reiner 2017). The implemented
models are based on the Modelica Standard Library.

3.1 Heat Fluxes Implementation
Each of the solar radiation, albedo radiation, infra-
red radiation and deep space radiation is imple-
mented. We will discuss only the implementation of
the Albedo radiation in detail as all other radiations
follow the same implementation concept. The albedo
model is shown in Figure 7. The user may provide
the material specific solar absorptance parameter α
as well as the area of the surface A and the normal of
the surface nB in body coordinates. Additionally, the
average solar flux constant Gs0 and the albedo coeffi-
cient ρalb may be provided. Standard values for these
parameters exist, however it is often desired to simu-
late special hot and cold case scenarios which makes
an adaption of these parameters as implemented a de-
sirable feature. The model has two ports, a frame and
a heat port connector. As the spacecraft is usually
modelled as a rigid body using the Modelica Multi-
Body Library (Otter, Elmqvist, and Mattsson 2003),
the frame connector has to be connected to the body
modelling the spacecraft. Like this the orientation of
the frame can be accessed to provide the position r
and orientation of the spacecraft T B. Additionally,
the outer world model is used to obtain the position
of the sun s. Then Equations (8) and (16) are used to
determine the solar zenith angle ξ. The orientation of
the spacecraft is used to transform the normal vector
in body coordinates nB into ECI coordinates n using
Equation (1). Then the position of the spacecraft r
and the normal of the surface n are used to deter-
mine the form factor with Equation (19). Finally the
albedo heat flow Qalb is calculated using (4) and fed
to the heat port as can be seen in Figure 7. This heat
port can then be connected to other sources and sinks
of heat to model the thermal dynamics. Instead of
using (16), Equation (17) can be used with (9), (12),
(13) and (14) to describe the influence of the solar
angle. This gives the same results but uses the beta
angle β instead of the solar zenith angle ξ which may
be easier to parameterise with respect to the satellites
orbit as can be seen in (15). The other radiations have

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815445
52

Figure 7. Albedo Model Diagram

Figure 8. Spacecraft Surface Model Diagram

the same structure but use the Equations (3), (5) and
(7), respectively, with the angle defined in (18) and
the shadow function (20).

3.2 Thermal Space Components
The thermal model of a spacecraft surface can be seen
in Figure 8. The thermal dynamics are described by
the differential equation

CṪ = Qalb +Qsun +Qplanet −εAσT 4 +Qr (22)

where C is the thermal capacitance of the surface and
Qr describes all other heat fluxes which are acting on
the heat port. This includes foremostly the internal
power dissipation of the satellite. The capacitance
is implemented as a conditional component. This
model offers the opportunity to remove the thermal
capacitance if only the steady state calculations are
of interest. Additionally, a desired temperature of the
surface may be given to obtain the necessary dissipa-
tive power which have to be for example produced by
heaters to maintain this temperature.

Since many small satellites have the form of a
cuboid, a model with six spacecraft surfaces with an
infinite resistance between them is implemented. This
can be used to simulate the heat evolution at each
spacecraft surface as in Section 4. In order to account
for the different satellite modes, attitude specific sur-
face configurations are implemented as for e.g. earth
pointing mode in which the attitude of the satellite is

fixed. Satellite components are modelled as a thermal
capacitor which is connected to a spacecraft surface,
usually a radiator. For each of these components the
parameters already discussed may be provided to sim-
ulate different scenarios of interest.

3.3 Architectures
There are three thermal concepts commonly used for
micro- and nano satellites as described in (Baturkin
2005) - autonomous concept, centralized concept and
combined concept. Each of these structures is imple-
mented modelling the thermal coupling between each
thermal component and the external heat exchange.

4 Example Scenario
In order to show the functionality of the library, the
thermal dynamics of a cuboid earth pointing space-
craft are simulated. The cuboid is modelled by six
surfaces having the properties of a radiator. The sur-
faces have the same area A = 1m2 and thermal prop-
erties α = 0.25 and ε = 0.88. The spacecraft is in
a sun synchronous orbit with an altitude of 600km
and 10 : 30h longitude of the ascending node simu-
lated 2018-02-10 at 10 : 00h. The earth’s gravitation
field is approximated up to the second zonal coeffi-
cient (Markley and Crassidis 2014). No dissipative
heat is simulated and the parameter are chosen as
Gs = 1361Wm−2, ρalb = 0.3 and Tp = 255K. One
complete orbit, which takes about 5800s ≈ 97min, is
simulated. The satellite is earth pointing over the
whole orbit, i.e. the spacecraft body axes which are
perpendicular to the cuboid surfaces are aligned with
the orbit frame.

Figure 9 shows the visualisation of the described
scenario. The spacecraft itself is visualised as a sim-
ple grey cuboid. The heat flows, the sum of solar,
albedo and infra-red radiation, acting on each surface
are visualised using head up displays from the Visu-
alization library (Bellmann 2009). It can be seen that
all but the zenith direction are influenced by a con-
stant heat flow due to the earth’s infra-red radiation.
Furthermore, it can be seen that the spacecraft is in
the sunlight after approximately 1100s up to 4990s
and that the transition between shadow and sunlit
is discontinuous. The nadir direction is mainly in-
fluenced by the infra-red and albedo irradiation as its
view to sun is mostly blocked by the earth. Due to the
low solar absorptance of the surface the change of the
acting heat flow is comparatively small. The zenith
direction however is mostly influenced by the solar
radiation. No albedo and infra-red radiation reaches
this surface. The surface perpendicular to the orbit
plane and in sun direction is foremostly influenced by
the solar radiation as well. However, due to the small
change of the angle between this surface and the di-
rection to the sun, this heat flow is almost piecewise
constant. On the contrary, the surface perpendicular

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815445 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

53

Figure 9. Heat flows acting on the surfaces of a cuboid earth pointing spacecraft

to the orbit plane and in anti sun direction is only in-
fluenced by the infra-red and albedo radiation. Due
to the small solar absorptance, the albedo radiation
influence is comparatively small and this surface has
the smallest heat flow changes. The surfaces in veloc-
ity and in anti velocity direction are mirrored with re-
spect to the solar noon of the spacecraft. Albedo and
infra-red radiation are acting continuously on these
surfaces while the influence of the solar radiation can
be seen in the sudden discontinuity of the heat flow.
All in all, it can be observed that all surfaces are
subject to high heat flux changes especially when the
spacecraft enters and exits the eclipse. The smallest
variation and overall incident heat flux acts on the
surface orthogonal to the orbit plane in anti sun di-
rection making it suitable as a surface with radiator.

5 Conclusions
We have presented a Modelica library suitable for the
development of a thermal spacecraft model. The main
acting environmental and spacecraft heat flows are in-
troduced and their dependence on different angles is
given as in the literature. Issues regarding the de-
termination of these angles have been described and
novel methods for their calculation are given and dis-
cussed. An application example of the proposed li-
brary is given to demonstrate the usefulness and flex-
ibility of the Modelica implementation.

References
Baturkin, Volodymyr (2005). “Micro-satellites ther-

mal control—concepts and components”. In: Acta
Astronautica 56.1-2, pp. 161–170.

Bellmann, Tobias (2009). “Interactive simulations
and advanced visualization with modelica”. In:
Proceedings of the 7th International Modelica Con-
ference; Como; Italy; 20-22 September 2009. 043.
Linköping University Electronic Press, pp. 541–
550.

Briese, Lâle Evrim, Andreas Klöckner, and Matthias
Reiner (2017). “The DLR Environment Library
for Multi-Disciplinary Aerospace Applications”. In:
Proceedings of the 12th International Modelica
Conference. 132, pp. 929–938.

Fortescue, Peter, Graham Swinerd, and John Stark
(2011). Spacecraft systems engineering. John Wiley
& Sons.

Gilmore, David G and Mel Bello (1994). Satellite
thermal control handbook. Vol. 1. Aerospace Cor-
poration Press EI Segundo, CA.

Juul, N. H. (1979). “Diffuse Radiation View Factors
from Differential Plane Sources to Spheres”. In:
Journal of Heat Transfer 101.3, p. 558.

Larson, Wiley J. and James R. Wertz (1991). Space
Mission Analysis and Design. Springer.

Lefeng, Sun et al. (2017). “Modeling and Simulation
on Environmental and Thermal Control System of
Manned Spacecraft”. In: Proceedings of the 12th
International Modelica Conference. 132. Linköping
University Electronic Press, pp. 397–405.

Markley, F. Landis and John L. Crassidis (2014).
Fundamentals of Spacecraft Attitude Determina-
tion and Control. Springer.

Meseguer, J, I Pérez-Grande, and A Sanz-Andrés
(2012). Spacecraft Thermal Control. Woodhead
Publishing.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815445

54

Montenbruck, Oliver and Eberhard Gill (2011). Satel-
lite Orbits: Models, Methods and Applications.
Springer.

Otter, Martin, Hilding Elmqvist, and Sven Erik
Mattsson (2003). “The New Modelica Multibody
Library”. In: 3rd International Modelica Confer-
ence, pp. 311–330.

Qian, Jing et al. (2015). “Projection-based reduced-
order modeling for spacecraft thermal analysis”. In:
Journal of Spacecraft and Rockets 52.3, pp. 978–
989.

Reiner, Matthias J and Johann Bals (2014). “Nonlin-
ear inverse models for the control of satellites with
flexible structures”. In: Proceedings of the 10 th In-
ternational Modelica Conference. 096, pp. 577–587.

Ruan, Hui, Xiaoguang Hu, and Dan Sun (2017). “Sim-
ulation design and implementation of thermal con-
trol subsystem for satellite simulator”. In: 12th
IEEE Conference on Industrial Electronics and Ap-
plications. IEEE, pp. 1260–1263.

Tsai, Jih-Run (2004). “Overview of satellite thermal
analytical model”. In: Journal of spacecraft and
rockets 41.1, pp. 120–125.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815445 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

55

Exergy Analysis of Thermo-Fluid Energy Conversion Systems in
Model-Based Design Environment

Daniel Bender

Institute of System Dynamics and Control, DLR German Aerospace Center, Germany Daniel.Bender@dlr.de

Abstract
Exergy-based analysis has been emerging as a powerful
tool for the evaluation of energy intensive systems. Exergy
is the maximum theoretical useful work obtainable as the
system is brought into complete thermodynamic equilib-
rium with the thermodynamic environment. Besides the
thermodynamic efficiency, both the real thermodynamic
value of an energy carrier and the real thermodynamic in-
efficiencies within a system can be identified. Environ-
mental control systems (ECS) of aircraft as highly inter-
acting systems are an ideal candidate for exergy-based
analysis. The design task on architectural level is currently
performed using model-based design methods. However,
if such systems are evaluated from an exergetic point of
view, the analysis is done subsequent of the model-based
simulations using rudimentary tools. This work presents a
way how exergy-based methods can be integrated into the
model-based design environment of Modelica with focus
on generic compatibility.
Keywords: exergy analysis, thermo-fluid systems, energy
conversion systems, aircraft ECS

1 Introduction

Figure 1. Modelica diagram of power generation cycle partly
modeled with components from MSL.

Exergy analysis is a very specific field of evaluation
methods for energy conversion processes and usually not
well known by the broad audience. A simple example of
its evaluation capability is given right here in the begin-
ning to support the understanding of the further work.

Figure 1 shows the Modelica diagram of a simple power
generation process. Cold air is preheated within a heat
exchanger and then expanded while passing a turbine to
produce power. Using exergy-based methods one can
give information about the real thermodynamic value of
the energy supplied (Fuel, E_fuel) to the system, how
much is discharged to the environment (Loss, E_loss) and
wasted due to inefficiencies, the so-called exergy destruc-
tion (E_D).

Figure 2. Grassmann diagram showing the results of the exergy
analysis for the power generation cycle of Figure 1.

Figure 2 shows a Grassmann diagram (Grassmann,
1950) of the simulation results for the power generation
cycle. The analysis shows that 40.6% of the supplied
fuel exergy is only used to produce power in the turbine.
52.1% is wasted due to inefficiencies in the components
and 7.3% is discharged by the exiting flows leaving the
system. Further the results identify the heat exchanger
as the main source of inefficiencies. It is responsible for
72.0% of the exergy destruction, which is 37.6% of the
supplied fuel exergy. The turbine causes less with about
27.9% and 14.5%, respectively. The losses within the
pipes can be neglected. The outcomes of the exergy anal-
ysis give not only information about the total inefficiency
of the process, but also about the impact of the single com-
ponents.

This example shall convey an idea of exergy-based
methods and their significance. The focus of this work is
to present the integration of exergy-based methods into the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456

56

model-based design environment of Modelica. Within this
section, state of the art tools for the modeling of thermo-
fluid systems and evaluation of such are discussed. Then,
a brief introduction to the methodology of exergy analysis
is given and their application within this work. The next
section presents the integration of the exergy-based meth-
ods into the model-based environment and two examples
are shown. Finally, the paper is concluded with some re-
marks.

Model-based design methods have become well es-
tablished methods for numerical simulations of complex
thermo-fluid systems. This comprises the simulation of
single components and large scale systems with large
time scales. Much effort have been put into the mod-
eling of energy intensive systems for different fields of
applications. Ranging from basic thermo-fluid modeling
(Elmqvist et al., 2003) to automotive refrigeration systems
(Limperich et al., 2005), large buildings simulation (Wet-
ter et al., 2014) and environmental control systems of air-
craft (Sielemann et al., 2007).

The modeling and simulation process as part of a de-
sign process usually comes along with subsequent evalua-
tion and optimization tasks of the system of interest. Op-
timization capabilities for different kinds of applications
are provided by specific libraries (Pfeiffer, 2012; Bender,
2016). The evaluation of energy conversion systems is
performed in most cases using evaluation criteria based
on the first law of thermodynamics. Energy balances are
formulated and the efficiency of a conversion process is
measured by comparing the supplied energy with the de-
sired output of the process. The difference of the supplied
energy and output represents the waste energy, in other
words the losses of the process. Most component models
of energy conversion processes, such as turbo components
or heat exchangers are either described by thermodynamic
efficiencies based on the first law or are equipped with
such. Hence, an additional library or tool is not necessary.
Unfortunately, this does not apply for analysis that asks
for extended questions such as the following topics. Envi-
ronmental or economical issues are usually not mandatory
for the simulation of the energy conversion process and are
influenced by additional factors such as costs and system
specific aspects linked to their field of application. (Wis-
chhusen et al., 2003) present the simulation and optimiza-
tion of a complex industrial energy system with respect to
economic benefits. The analysis was performed using an
applied simulation tool based on Modelica. A physical do-
main independent library was developed by (Zimmer and
Schlabe, 2012). Economic models are provided for the
implementation into Modelica and allow energy manage-
ment tasks.

Exergy analysis can be seen as an extended thermody-
namic analysis that requires a different view of the energy
conversion process. The exergy equations need only basic
math and are usually performed subsequent of the simula-
tion process. When it comes to exergy analysis of dynamic
systems, a subsequent analysis needs more effort as the

dataset increases significantly. (Sanghi et al., 2014) devel-
oped a Modelica-based tool to provide a dynamic exergy
analysis for buildings simulation. The library followed a
similar approach as it is presented in this paper. Unfor-
tunately, the library is not published and the formulation
of the exergy equations are not documented. Therefore,
no statement is possible if it meets the requirements for
the application to aircraft environmental control systems.
This circumstance leads directly to the motivation of the
work presented here.

The question of how exergy analysis can be integrated
into the model-based design environment developed dur-
ing the endeavors for a comprehensive formulation of
exergy-based methods for aircraft environmental control
systems.

The definition of exergy balances highly depends on
the actual thermodynamic states of the working fluid and
the conditions of the reference state. Aircraft operate
among highly varying environmental conditions that im-
pact temperature, pressure and humidity. The same ap-
plies to aircraft ECS. With changing ambient environment,
the ECS operates on different operation points. Depend-
ing on the definition of the reference environment for the
exergy analysis, any possible situation must be considered
for the integration of exergy-based methods. The impact
of the reference environment on the definition of the ex-
ergy balances is consolidated later in this paper.

Based on the demands derived from the exergy-based
methods and the ongoing development of aircraft ECS us-
ing model-based design, a library is presented with the aim
to allow exergy-based analysis of aircraft environmental
control systems. The application of this library shall not
be limited to aircraft applications and library structures
currently used for the modeling and simulation of aircraft
ECS (Sielemann et al., 2007; Zimmer et al., 2018). Both
libraries have been developed in collaboration with an in-
dustry partner and are not publicly available at their cur-
rent development stage.

2 Exergy analysis
Energy balances consider the quantity of energy, but ne-
glects to express the quality of energy. The real thermo-
dynamic value, i.e. its quality, of an energy source gives
information about its potential to cause a change in a use-
ful way. Kinetic, potential, mechanical and electric energy
can be transformed in an ideal process to any other form
of energy. The quality of thermal and chemical energy,
however, depends on the state of the energy carrier (tem-
perature, pressure and chemical composition) with respect
to the environment. In thermodynamics, exergy character-
izes the quality of a given quantity of energy. Using an en-
ergy balance in combination with the second law of ther-
modynamics, both the thermodynamic true value of an en-
ergy carrier, and the real thermodynamic inefficiencies can
be determined. This is possible for a single process and on
system level. Within the system boundaries, the occurring

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815456 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

57

Table 1. Definition of exergy of fuel and exergy of product.

Component schematic Operation Conditions Exergy Rates

Tin ≥ T0

ĖFuel = Ẇ + ĖCh
in − ĖCh

out

ĖProd = ĖPh
out − ĖPh

in

Tin ≤ T0 ≤ Tout

ĖFuel = Ẇ + ĖT
in + ĖCh

in
− ĖCh

out

ĖProd = ĖPh
out − ĖM

in

Tout ≤ T0

ĖFuel = Ẇ + ĖT
in − ĖT

out
+ ĖCh

in − ĖCh
out

ĖProd = ĖM
out − ĖM

in

real thermodynamic inefficiencies are exergy destruction
and exergy transfers out of the system are regarded as ex-
ergy losses (Bejan et al., 1996).

(Tsatsaronis, 2007) specified the definition that the ex-
ergy of a thermodynamic system is the maximum theo-
retical useful work obtainable as the system is brought
into complete thermodynamic equilibrium with the ther-
modynamic environment while the system interacts with
this environment only.

The total flow exergy of a fluid stream i is expressed as:

Ėt,i = ṁ · [hi −h0 −T0 · (si − s0)] (1)

where ṁi is the mass flow, and h and s represent the
specific enthalpy and specific entropy of the fluid stream i
and reference environment 0.
The exergy flow balance for the k − th component is
defined by:

ĖF,k = ĖP,k + ĖD,k (2)

where subscripts F, P and D represent the fuel exergy,
product exergy and destroyed exergy of the k − th com-
ponent. (Lazzaretto and Tsatsaronis, 2006)
The balance for the total system can be written as:

ĖF,tot = ĖP,tot +∑
k

ĖD,k + ĖL,tot (3)

with tot representing the total amount of the overall sys-
tem.
The exergetic efficiency εk of the k− th component is de-
fined by the following expression:

εk =
ĖP,k

ĖF,k
= 1−

ĖD,k
˙EF,k

(4)

The rate of exergy destroyed related to the exergy of total
fuel is expressed by the exergy destruction ratio:

yD,k =
ĖD,k

ĖF,tot
(5)

The approach of defining the exergy balance using fuel
and product exergy instead of entering and exiting energy
flows is explained in detail by (Lazzaretto and Tsatsaronis,
2006) and (Tsatsaronis and Morosuk, 2013). The prod-
uct exergy ĖP represents the desired result (expressed in
terms of exergy) generated by the system being consid-
ered. The fuel exergy ĖF represents the general resources
in terms of exergy that are expended to provide the prod-
uct exergy. The fuel and product parts of a component
are determined by considering the physical exergy ĖPh,
i.e. thermal ĖT and mechanical ĖM parts, and chemical
exergy ĖCh of each stream. The definition of the bal-
ances is done for each component differently depending
on its aim, i.e. the balances for a heat exchanger differ
from the balances for an expansion device. Additionally

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456
58

to the component’s aim, the reference environment has to
be taken into account. (Bender, 2017) gives a comprehen-
sive overview for typical energy conversion processes of
an aircraft environmental control system. Table 1 shows

Table 2. Component categories and number of operation condi-
tions considered for the definition of exergy rates.

Component categories # of Cases

Heat exchanger 6
Compressor 3
Turbine 3
Water extraction 1
Water injection 3
Mixer 1
Flow resistance 1

exemplary the definition of the exergy rates for a turbo
driven compressor or fan. During the compression, ex-
ternal power is supplied to the process and increases the
pressure and concurrently the temperature of the entering
fluid stream. Applying now the methodology of fuel and
product exergy, the supplied power belongs to the fuel and
the pressure increase counts as product exergy. The chem-
ical exergy does not change among the process for most
cases. It needs to be considered for a comprehensive ap-
proach because it could change in the case of having a
saturated moist air flow and evaporation takes place dur-
ing the compression. The details of the behavior of the
chemical exergy are not discussed here as they would ex-
ceed the scope of this work. However, the thermal exergy
that depends on the temperature changes differently from
the pressure. It reaches its minimum of 0 at the reference
temperature and increases with increasing deviation from
T0. Depending on the operation condition, three exergy
balances can be identified. The operation conditions de-
fine in this context at which temperature the compressor
operates with respect to the reference environment, in par-
ticular the reference temperature T0. The first case con-
siders the operation above the reference environment. The
second case includes the crossing of T0. During the third
case, the temperature at the outlet remains below T0.

3 Integration into model-based envi-
ronment

The analysis of thermo-fluid energy conversion systems
using exergy-based methods is usually performed in two
steps. The system is simulated in a first step using a sim-
ulation environment, such as Ansys (Ansys, 2018), Aspen
Plus (aspentech, 2018) or Modelica. The produced ther-
modynamic data is then used to do the exergy analysis in
a subsequent step. This requires a data transfer to another
calculation software (e.g. EES (F-Chart, 2018) or MS Ex-
cel). If the analysis is limited to one or a few operation
points, the amount of data remains manageable. But if the
exergy analysis shall be performed for several operation

points or include dynamic behavior of a system, the pro-
duced data exceed soon a practicable amount.

Modelica is already used for the application of large
thermo-fluid systems. Evaluation criteria based on the first
law of thermodynamics such as energetic efficiencies are
provided in most components that describe energy con-
version processes. The advantage of the model-based ap-
proach that system models can be built from scratch or
modified using available libraries within a short time shall
now be extended with the capability of exergetic-based
methods. The exergy analysis is a subsequent calculations
step and does not impact the system behavior.

3.1 Requirements
In order to achieve a solution as generic as possible some
requirements need to be formulated derived from both, the
exergy-based methods and the model-based environment:

Exergy-based Methods

• Retrieve thermodynamic state of all energy streams
entering and exiting a component

• Identify the aim the component’s energy conversion
process

• Select the appropriate exergy balance of fuel and
product exergy rates depending of the operation con-
dition and reference environment

• Allow a user defined exergy analysis on system level
using the component’s based analysis

• Centralized propagation of reference environment on
system level among all components

• Media models must provide appropriate functions to
calculate further thermodynamic data

Model-based environment

• Generic approach for easy integration into any
thermo-fluid library

• Compliant with Modelica Standard Library (Usage
of MSL Media models and MSL Fluid connectors)

• Minor impact on numerical computation

The best way to put these requirements into action would
require the screening of the modeled system architecture.
The structure could be gathered to identify the compo-
nents’ aims and link them with their appropriate fuel and
product definition. This procedure can be seen as a pre-
ceding step before the simulation starts. Unfortunately,
Modelica at its recent stage of development used for this
work (The Modelica Association, 2013) does not provide
sufficient practical sequential capabilities. Therefore the
integration needs to be realized in a different way.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815456 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

59

Listing 1. Modelica code of exergy implementation in sensor models: Calculation of exergy flows.

columnscolumns
columnscolumns columns// Exergy implementation
columnscolumns columns// ---------------------
columnscolumns columns(e_t_in,e_therm_in,e_mech_in,e_chem_in) = Functions.exergyFlow_MoistAir(
columnscolumns columnsairMediumA.state, state_ref);
columnscolumns columns(e_t_out,e_therm_out,e_mech_out,e_chem_out) = Functions.exergyFlow_MoistAir(
columnscolumns columnsairMediumB.state, state_ref);
columnscolumns columnsE_t_in = e_t_in * airMediumA.X[2] * m_flow;
columnscolumns columnsE_t_out = e_t_out * airMediumB.X[2] * m_flow;
columnscolumns columns
columnscolumns columnsE_therm_in = e_therm_in * airMediumA.X[2] * m_flow;
columnscolumns columnsE_therm_out = e_therm_out * airMediumB.X[2] * m_flow;
columnscolumns columns
columnscolumns columnsE_mech_in = e_mech_in * airMediumA.X[2] * m_flow;
columnscolumns columnsE_mech_out = e_mech_out * airMediumB.X[2] * m_flow;
columnscolumns columns
columnscolumns columnsE_chem_in = e_chem_in * airMediumA.X[2] * m_flow;
columnscolumns columnsE_chem_out = e_chem_out * airMediumB.X[2] * m_flow;
columnscolumns

3.2 Component level
The exergetic analysis on component level includes the ex-
ergy balance of Equation (2) and the calculation of the ex-
ergetic efficiency with Equation (4). Table 1 gives an ex-
ample of how the fuel and product exergy is defined for a
compressor. To calculate the appropriate exergy flows, the
thermodynamic data at the component’s connectors must
be provided. As mentioned before, it is hardly manage-
able to catch the data from outside the component without
huge effort for the user. Therefore the approach of a sen-
sor model was chosen to integrate the exergy equations to
the component. To keep the usability as simple as possi-
ble, the sensor model must be dropped to the component
model and linked to the component’s connectors and some
other variables. Figure 3 shows how the StaticPipe
model looks after the exergy sensor has been integrated on
component level. The sensor model is then linked with
the component by adding standardized code to the com-
ponent model to supply the reference environment and the
WorldEx model. The following listing shows an example
of an exergy sensor integrated to a compressor model:

columnscolumns columns// Reference environment
columnscolumns columns// -----------------
columnscolumns columnsSIunits.Temperature T_ref =
columnscolumns columnsworldEx.T_ref
columnscolumns columns"Reference Temperature for Exergyflow";
columnscolumns columnsSIunits.Pressure p_ref = worldEx.p_ref
columnscolumns columns"Reference Pressure for Exergyflow";
columnscolumns columnsSIunits.MassFraction X_ref[:] =
columnscolumns columnsworldEx.X_ref;
columnscolumns columnsouter ExergyLibrary.World worldEx;
columnscolumns columns
columnscolumns columns//*************Sensors*************
columnscolumns columnsSensors.Air.ExergySensor_twoPort_turboCmp
columnscolumns columnsexergySensor_twoPort(
columnscolumns columnsairMediumA(state=AirMedium.setState_phX(
columnscolumns columnsportA.p,

Figure 3. Modelica diagram of StaticPipe model with exergy
sensor integrated.

columnscolumns columnsportA.h,
columnscolumns columnsportA.Xi),
columnscolumns columnsredeclare package AirMedium
columnscolumns columns= AirMedium),
columnscolumns columnsairMediumB(state=AirMedium.setState_phX(
columnscolumns columnsportB.p,
columnscolumns columnsportB.h,
columnscolumns columnsportB.Xi),
columnscolumns columnsredeclare package AirMedium
columnscolumns columns= AirMedium),
columnscolumns columnsm_flow=m_flow,
columnscolumns columnspower=power,
columnscolumns columnsT_ref = T_ref,

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456

60

Listing 2. Modelica code of exergy implementation in sensor models: Definition of fuel and product balances.

columnscolumns
columnscolumns columns// Calculation of fuel and product Exergy
columnscolumns columnsif m_flow <= 0 then
columnscolumns columnsE_fuel = 0;
columnscolumns columnsE_prod = 0;
columnscolumns columnscase_T = 0;
columnscolumns columnselse
columnscolumns columnsif airMediumA.T > state_ref.T then
columnscolumns columnscase_T = 1;
columnscolumns columnsE_fuel = abs(power) + E_chem_in - E_chem_out;
columnscolumns columnsE_prod = E_therm_out - E_therm_in + E_mech_out - E_mech_in;
columnscolumns columnselseif airMediumB.T >= state_ref.T and airMediumA.T <= state_ref.T then
columnscolumns columnscase_T = 2;
columnscolumns columnsE_fuel = abs(power) + E_therm_in + E_chem_in - E_chem_out;
columnscolumns columnsE_prod = E_therm_out + (E_mech_out - E_mech_in);
columnscolumns columnselseif airMediumB.T < state_ref.T then
columnscolumns columnscase_T = 3;
columnscolumns columnsE_fuel = abs(power) + (E_therm_in - E_therm_out) + E_chem_in - E_chem_out;
columnscolumns columnsE_prod = E_mech_out - E_mech_in;
columnscolumns columnselse
columnscolumns columnscase_T = 100;
columnscolumns columnsE_fuel = 0;
columnscolumns columnsE_prod = 0;
columnscolumns columnsend if;
columnscolumns columnsend if;
columnscolumns columnsE_D = E_fuel - E_prod;
columnscolumns columnsexergy_eff = E_prod / max(eps,E_fuel);
columnscolumns columns
columnscolumns

columnscolumns columnsp_ref = p_ref,
columnscolumns columnsX_ref = X_ref);

Besides the thermodynamic state at the connectors, the
flow medium, mass flow, reference environment and in
this particular case of the compressor, the power is trans-
ferred. The propagation of the thermodynamic state en-
ables to be independent from the type of connectors used
for the system modeling. The same applies for the flow
medium. Here, the same medium model that is used for
the component is propagated to the exergy sensor. As
long as the medium model provides basic equations simi-
lar to the MSL, any medium model can be used. All cal-
culations for the exergy flows and the definitions of the
exergy rates depending on the operation condition (Table
1) happen within the sensor model. First the specific ex-
ergy at the inlet and outlet of the component are calcu-
lated. Function models provide the algorithms to deter-
mine the specific exergy split into its thermal, mechanical
and chemical parts. Listing 1 shows how the function call
works. The thermodynamic states at the connector and of
the reference environment are committed to the function
and the specific exergy values are returned. Following the
exergy flows are calculated depending on the dry air and
mass flow. The exergy flows of thermal (ĖT), mechanical
(ĖM), and chemical (ĖCh) parts, and the exergy of work
(Ẇ) are then used to formulate the fuel and product bal-
ances. The Modelica code of the compressor exergy sen-

sor for the exergy rates of Table 1 is presented in Listing 2.
It must be mentioned that the thermal and mechanical ex-
ergy flows combined are regarded as physical exergy flow:
ĖT + ĖM = ĖPh. This approach allows the calculation of
the exergy destruction within each component. The user
integrates the sensor to the component level and does not
have to care about the formulation of the exergy equations.
The recent exergy library contains a sensor model for each
category listed in Table 2.

3.3 System level
A WorldEx model controls the exergy analysis on system
level. It is responsible for the definition of the reference
environment and collects the exergetic information for the
exergy balance on system level. The reference environ-
ment can be either defined with fixed values or it can be
linked to an environment model with variable conditions.

The exergy balance for the total system is formulated by
Equation (3). The exergy flows for the total fuel, product
and losses must be defined by the user as they depend on
the system architecture. For each of the exergy flows, sen-
sor models are available to integrate them to fluid flows.
Similar to mass flow sensors, they must be implemented
within the appropriate fluid stream. The exergy of the
stream is calculated without any impact on the flow. In
some cases it is not possible to use fluid sensors to catch
fuel, product or loss exergy of the system, e.g. pure power

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815456 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

61

that is supplied to or extracted from the system. For such
cases the GUI of the world model provides input boxes for
each part of the exergy balance where the variable names
can be entered. A mixed usage of sensors and entered
variable names is possible as all parts are captures and
summed up automatically.

The capability of automatically collecting the exergy
data for the system balance requires the identification of
all implemented exergy objects. Unfortunately, during
runtime, Modelica does not provide such capabilities to
screen a system model for its data structure. With the help
of the UID Library (Hellerer and Buse, 2017) all exergy
sensors are equipped with a unique identifier which can
be identified on system level and used for the system bal-
ance. The following listing shows the implementation of
the unique identifier to the exergy sensor for the imple-
mentation to the components:

columnscolumns columnsUID.UniqueID uniqueID(group="exergy") a;
columnscolumns columnsparameter String instanceName =
columnscolumns columnsgetInstanceName();
columnscolumns columnsequation
columnscolumns columnsworldEx.E_D[uniqueID.uid+1] = E_D;
columnscolumns columnsworldEx.instanceName[uniqueID.uid+1]
columnscolumns columns= instanceName;

The UniqueID model is added to the sensor model and
assigned with a group. A unique integer value uid is
then provided within the group. In this way, it is possi-
ble to propagate the exergy destruction calculated within
each sensor and the instance name of the component to
the WorldEx model. The uid value starts at 0 and is
in the range [0 . . . total[. The World model contains a
GroupTotal object that provides the total number of val-
ues assigned within a certain group:

columnscolumns columnsUID.GroupTotal groupTotal(group="
columnscolumns columnsexergy") a;
columnscolumns columnsModelica.SIunits.Power E_D[groupTotal.
columnscolumns columnstotal];
columnscolumns columnsModelica.SIunits.Power E_D_total = sum
columnscolumns columns(E_D) + E_D_user;
columnscolumns columnsString instanceName[groupTotal.total];

This allows to summarize the single values of the exergy
destruction to the total destroyed exergy within the con-
sidered system. The collection of the fuel, product and
loss exergy flows works in a similar way using additional
GroupTotal objects having different group names as-
signed.

The WorldEx model provides the list of the collected
instance names of the components that have an exergy
sensor implemented in the Dymola Message Window and
writes them into an extra text file.

3.4 Library structure
The structure of the library is shown in Figure 4. The
WorldEx model is available on the top level. Besides the
User’s Guide and Examples package there are three pack-
ages on the top layer. The Functions package includes all
functions that are necessary to calculate the exergy flows

Figure 4. Library structure of the exergy library.

and called from the exergy sensor models (Listing 1). The
Sensors package contains all sensor models. It is orga-
nized according the fluid medium. Currently there are sen-
sors available for air, liquid, refrigerant, and mixed media.
Typical applications for mixed media sensors are for ex-
ample heat exchangers with two media. All sensors are
valid for unidirectional flow. The examples package aims
at the understanding of how the sensor models are applied.
Finally, there is an additional package for advanced anal-
ysis applications that cover aircraft specific calculations
such as fuel weight penalties and the calculation of the
flow exergy of aviation jet fuel.

The sensor package is further organized in component
and system level. The component package contains the
sensors for the different component types. Currently eight
processes are covered: flow resistances and valves, heat
exchangers, power demanding and producing turbo com-
ponents, junctions such as splitter and mixer, and water
extraction and injection. The System package provides
sensor models to perform exergy analysis on system level
according Equation 3. The sensor models equal mass
flow sensors and need to be integrated in between a flow
stream. These sensors must be compatible with the in-
frastructure, i.e. have the same connectors, of the used
library. For the moment there are sensors provided that
are compatible with the Modelica standard library and a
new approach of thermo-fluid modeling that is presented

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456

62

in detail by (Zimmer et al., 2018).

4 Examples
Within this section, two examples will show how the ex-
ergy library is applied to thermo-fluid systems.

Modelica Standard Library
The simple power generation cycle with moist air as work-
ing fluid has already introduced this work in the first sec-
tion. Cold air is preheated within a heat exchanger and
then expanded while passing a turbine to produce power.
Figure 1 shows the diagram layer of the Modelica model.
On the top layer the WorldEx model and the exergy sen-
sors for the system balance, Loss and Fuel can be seen.
The produced power of the turbine states the product of the
total exergy balance. The integration of the power value
to the exergy balance works by writing the variable name
to the GUI of the WorldEx, Figure 5. The exergy sensors

Figure 5. Extract of the WorldExGUI showing the assignment
of the turbine power to the product exergy of the system balance.

for the components are integrated on component level. An
example is shown in Figure 3. Once the exergy sensors
have been implemented, the model can be simulated in
the usual way.

In the beginning of the simulation a text file "ExCompo-
nentNames_*modelName*.txt", where *modelName* is
replaced with the name of the simulated model, is created.
It lists all components of the simulated model with exergy
sensors inside (Figure 6) and a list of used exergy sensors
for the system balance, i.e. fuel, product and loss. In this
example there are four components, the turbine (HPT), the
heat exchanger (hx_HP) and two pipes, listed with their
names and paths to the exergy sensor and two fuel and loss
exergy sensors. The path to the exergy sensors show that
the naming of the sensors is the same independent of the
exergy sensor model. A default name is set for all exergy
sensor models. Taking an example from Figure 4, usu-
ally when the "ExergySensor_twoPort" model is dropped
into a pipe model, the name of the sensor model would
automatically be set to "exergySensor_twoPort". To sim-
plify an optional post processing of the results by using
the generated *.mat file, the exergy sensor name was set
to "exergySensor" per default for all models. For the ex-
ergy analysis the type of exergy sensor is not important
any more as the appropriate balances are included already.
The power generation cycle model was simulated for 50s.
It starts at steady state condition and then the mass flow
of the hot air supply is reduced between 10s and 40s. The
plots of the results are shown in Figure 7. The model is

Figure 6. Generated text file with list of components equipped
with exergy sensor and list of system exergy sensor models for
fuel, product and losses.

just an exemplary application and hence the quality of the
results is not further discussed here. But it can be cap-
tured that the exergetic values on system level are stored
and available within the WorldEx model. The results of
the fuel and product balances on component level can be
found in the variable browser at the paths listed in Fig-
ure 6.

Directed thermo-fluid flows using HEXHEX
In the beginning of this paper the requirement of generic
and library independent compatibility was emphasized.
To show this capability of the exergy library, the second
example is modeled using a new approach for robust mod-
eling of directed thermo-fluid flows. This methodology
has recently been developed at our institute (Zimmer et al.,
2018) with the aim to provide robust modeling for com-
plex networks such as aircraft environmental control sys-
tems. The example architecture is much more complex
than the example modeled with the MSL, Figure 1. Here
the exergy library shows its real advantage for the analysis
of large systems.

Figure 9 shows the diagram layer of the second exam-
ple, an electric driven vapor cycle pack (eVCP) architec-
ture. The architecture is derived from a patent publication
(Golle et al., 2016). Unlike the original architecture, the
vapor cycle was simplified. The original vapor cycle has
an additional evaporator flown through with recirculated
air from the cabin. Unlike conventional bleed air driven
air cycle packs (Bender, 2017), unconditioned outside air
instead of bleed air from the engine enters the eVCP. The
cold and low pressure air is compressed in a first stage be-
fore it passes the primary heat exchanger (PHX). A second
compressor further raises the pressure and temperature
before entering the reheater. The main heat exchanger,
mounted in the ram air channel, is passed before the evap-
orator cools the air. In case the saturation temperature is
exceeded, a water separator extracts the condensate and

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815456 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

63

Figure 7. Simulation results of the power generation cycle showing exergy values plotted.

leads it to the water injector located in the the ram air
channel upstream the vapor cycle condenser. Before the
conditioned fresh air is expanded in the turbine, it is re-
heated in the reheater. The discharged fresh air meets the
recirculated cabin air in the mixing unit downstream the
pack. The ram air channel functions as heat sink and is
feed with air from the outside. During ground operations,
the air flow is provided by a fan located near the ram air
outlet. Contrary to a bleed air driven pack which is au-
tonomously driven, all turbo-machines within the eVCP
are electrically powered. Within the electric driven va-
por cycle pack model, a total number of 30 components
with exergy sensors was identified by the exergy library.
Figure 8 shows an extract of the text file. Although there
are 30 components listed, the exergy sensor was not inte-
grated 30 times manually to the component models. The
work has to be done once for each different component
class and can then be reused without limitations. The sim-
ulation results are available in the variable browser, and
stored in the *.mat file, as presented for the MSL example
in Figure 7.

5 Conclusion
Risen from the idea to do exergy analysis for aircraft
environmental control systems within model-based de-
sign, a solution had to be found how to integrate exergy-
based methods into the model-based design environment
of Modelica. With this motivation, the presented exergy
library was developed. The exergy analysis treats every
component different, depending on its aim and particular
energy conversion process. The derived requirements for
such a library coming from both, the exergetic and model-
based design, parties resulted in the presented work. An
exergy sensor model is implemented into the component
model and linked to the entering and exiting energy flows.
The sensor then does all calculations for the component
level exergy analysis and propagates its instance name and
exergy destruction to a WorldEx model. Concurrently, the
WorldEx model provides the reference environment for

Figure 8. Generated text file of eVCP architecture with list of
components equipped with exergy sensor and list of system ex-
ergy sensor models for fuel, product and losses.

all exergy sensors. The exergy sensor model can be ap-
plied independently from the thermo-fluid modeling ap-
proach. This was achieved by linking the sensor model
not by connecting any fluid connectors but by propagating
the thermodynamic states of the entering and exiting fluid
flows. The exergy balance on system level can be per-
formed by using additional exergy sensors that work sim-
ilar to mass flow sensors and need to be connected within
the appropriate fluid stream. Unfortunately, these mod-
els have to be compatible with the fluid library, i.e. have

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456

64

Figure 9. Modelica diagram of electric driven vapor cycle pack architecture modeled using the HEXHEX library.

the same or compatible connectors. The current version
of the exergy library provides sensors that can be used
with the Modelica Standard Library and the approach of
HEXHEX (Zimmer et al., 2018). Not accessible energy
streams that should be included to the system balance can
be added by writing their variable names into the GUI of
the WorldEx model. Here a box is provided for exergy de-
struction, fuel, product and loss exergy. Additional evalu-
ation numbers such as exergy destruction rate (component
and system level) or the ratio of ED,k/ED,tot are provided
by the WorldEx model.

With the experience gained during the development of
this exergy library, one can say that there is no universal
solution as exergy-based methods by their nature, have the
individual aspect on the component’s aim. But there usu-
ally is a limited number of energy conversion processes
and components classes. The work for integrating the ex-
ergy sensors to the components, needs to be done once and
one can benefit from it any time after. The structure of the
library allows an easy extension for new energy conver-
sion processes. The advantage of this concept is that the
exergy analysis is totally detached from the component de-
velopment and behavior and allows an as individual use as
possible for the modeler.

Remarks
The current version of the exergy library uses mainly the
media models of the Modelica Standard Library. For
moist air, water and single gases that can be treated as
ideal gases, the provided models of the MSL might be suf-

ficient. The second example architecture presented here,
has a vapor cycle included that runs with refrigerant. An
additional media library was used. The linchpin of the
exergy analysis is the correct calculation of the thermody-
namic properties. The current thermodynamic state record
of the MSL or most other medium models does supply
only basic properties which are not sufficient for an exergy
analysis (i.e. specific entropy). Therefore, an extended
thermodynamic state record was created in the exergy li-
brary by using the appropriate equations from the medium
models. To further ensure a generic applicability of the
exergy library for different kinds of fluids, it is recom-
mended to provide standardized formulation and naming
of equations for the thermodynamic properties. Unfortu-
nately, this is not the case for all medium models.

References
Ansys. Ansys, 2018. URL https://www.ansys.com/.

aspentech. Aspen plus, 2018. URL https://www.
aspentech.com/products/engineering/
aspen-plus.

Adrian Bejan, George Tsatsaronis, and Michael J. Moran.
Thermal design and optimization. A Wiley-Interscience
publication. Wiley, New York, 1996. ISBN 978-0-
471-58467-4. URL http://www.loc.gov/catdir/
description/wiley032/95012071.html.

Daniel Bender. Desa - optimization of variable structure mod-
elica models using custom annotations. In Francesco Casella
and Dirk Zimmer, editors, Proceedings of the 7th Interna-
tional Workshop on Equation-Based Object-Oriented Mod-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815456 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

65

eling Languages and Tools - EOOLT ’16, pages 45–54,
New York, New York, USA, 2016. ACM Press. ISBN
9781450342025. doi:10.1145/2904081.2904088.

Daniel Bender. Integration of exergy analysis into model-
based design and evaluation of aircraft environmental con-
trol systems. Energy, 137:739–751, 2017. ISSN 0360-5442.
doi:10.1016/j.energy.2017.05.182.

Hilding Elmqvist, Hubertus Tummescheit, and Martin Otter.
Object-oriented modeling of thermo-fluid systems. In The
Modelica Association, editor, Proceedings of the 3rd Inter-
national Modelica Conference, pages 269–286, 2003.

F-Chart. Ees, 2018. URL http://www.fchart.com/
ees/.

Stefan Golle, Ullrich Hesse, Enrico Klausner, Frank Klimpel,
Hans Brunswig, and Mario Raddatz. Betriebsphasenab-
hängig steuerbare flugzeugklimaanlage und verfahren zum
betreiben einer derartigen flugzeugklimaanlage, 2016.

P. Grassmann. Zur allgemeinen definition des wirkungs-
grades. Chemie Ingenieur Technik - CIT, 22(4):77–80, 1950.
doi:10.1002/cite.330220402.

Matthias Hellerer and Fabian Buse. Compile-time dynamic
and recursive data structures in modelica. In Dirk Zim-
mer and Bernhard Bachmann, editors, Proceedings of the 8th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools - EOOLT ’17, pages 81–
86, New York, New York, USA, 2017. ACM Press. ISBN
9781450363730. doi:10.1145/3158191.3158205.

Andrea Lazzaretto and George Tsatsaronis. Speco: A system-
atic and general methodology for calculating efficiencies and
costs in thermal systems. Energy, 31(8-9):1257–1289, 2006.
ISSN 0360-5442. doi:10.1016/j.energy.2005.03.011.

Dirk Limperich, Marco Braun, Kathrin Prölß, and Gerhard
Schmitz. System simulation of automative refrigeration cy-
cles. Proceedings of the 4th International Modelica Confer-
ence, 2005.

Andreas Pfeiffer. Optimization library for interactive multi-
criteria optimization tasks. In: Proceedings of the 9th In-
ternational Modelica Conference, 2012.

Roozbeh Sanghi, Jahangiri Pooyan, Alexander Thamm, Rita
Streblow, and Dirk Müller. Dynamic exergy analysis - part i:
Modelica-based tool development. Building Simulation and
Optimization Conference, 2014.

Michael Sielemann, Tim Giese, Bettina Oehler, and Martin Ot-
ter. A flexible toolkit for the design of environmental control
system architectures. In: Proceedings of the First CEAS Eu-
ropean Air and Space Conference, 2007. Berlin.

The Modelica Association. The modelica lan-
guage specification: Version 3.3, 2013. URL
https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf.

G. Tsatsaronis and T. Morosuk. Exergy-based methods applied
to the chain natural gas – lng – natural gas. Proceedings of the
3rd International Exergy, Life Cycle Assessment, and Sus-
tainability Workshop & Symposium (ELCAS3), July 2013.

George Tsatsaronis. Definitions and nomenclature in exergy
analysis and exergoeconomics. Energy, 32(4):249–253,
2007. ISSN 0360-5442. doi:10.1016/j.energy.2006.07.002.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xiufeng
Pang. Modelica buildings library. Journal of Building Per-
formance Simulation, 7(4):253–270, 2014. ISSN 1940-1493.
doi:10.1080/19401493.2013.765506.

Stefan Wischhusen, Bruno Lüdemann, and Gerhard Schmitz.
Economical analysis of complex heating and cooling systems
with the simulation tool hksim. In: Proceedings of the 3rd
International Modelica Conference, 2003.

Dirk Zimmer and Daniel Schlabe. Implementation of a model-
ica library for energy management based on economic mod-
els. In The Modelica Association, editor, Proceedings of
the 9th International Modelica Conference, pages 133–142,
2012. doi:10.3384/ecp12076133.

Dirk Zimmer, Daniel Bender, and Alexander Pollok. Robust
modeling of directed thermofluid flows in complex networks.
In: Proceedings of the 2nd Japanese Modelica Conferences,
2018.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815456

66

On Closure Relations for
Dynamic Vapor Compression Cycle Models

Christopher R. Laughman Hongtao Qiao

Mitsubishi Electric Research Laboratories
Cambridge, MA, USA

{laughman,qiao}@merl.com

Abstract
Models of closure relations, or the expressions that re-
late the heat transfer coefficients and frictional pressure
losses to other variables of the vapor-compression cycle,
can have a significant impact on the performance on the
overall cycle behavior. We explore three different ap-
proaches that may be used in formulating these closure
models, and show that approaches that impose a nonlinear
algebraic coupling can impose significant computational
challenges. In comparison, models that incorporate low-
pass dynamics can effectively decouple this nonlinear be-
havior, resulting in simulations that are faster and demon-
strate more realistic and robust behavior.
Keywords: Modelica, heat pump, vapor compression cy-
cle, approximation

1 Introduction
At the heart of modeling lies the art of approximation.
Models of physical phenomena are always driven by a set
of requirements that may relate to an exploration of pos-
sible system architectures, designing controls, or a variety
of other possible purposes. These requirements drive the
formulation of the model, so that the complexity and com-
putational speed of the model must be balanced against the
accuracy requirements.

This tradeoff can be readily observed from even a cur-
sory survey of the two dominant methodologies for dy-
namically modeling heat exchangers: moving boundary
models and finite volume models. These methodologies
have different levels of complexity and requirements for
simulation time: finite volume models describe the heat
exchanger behavior accurately at a fine spatial and tem-
poral resolution at a large cost of simulation time, while
moving boundary models lump the spatial behavior of heat
exchangers into a limited set of up to three fluid zones, and
are correspondingly fast. Both of these methodologies are
appropriate for different purposes, and the modeling en-
gineer will usually choose the fastest approach with suf-
ficient accuracy according to the specific requirements of
the application.

The description of local heat transfer coefficients
(HTCs) and frictional pressure losses (commonly referred
to as closure relations, due to the fact that they "close" the

system of equations so that the number of equations equals
the number of variables) in these models can be particu-
larly challenging, as the correlations developed to most
accurately describe experimentally observed phenomena
are usually formulated with accuracy as the primary con-
cern, and with little regard for computational considera-
tions. Consequently, they can be difficult to incorporate
into system-level models of thermofluid systems as they
may be extremely nonlinear, tend towards infinity as mass
flow rates go to zero, or exhibit other problematic behav-
ior. These correlations are also usually defined only for
specific flow conditions or refrigerant phases, so that there
will inevitably be significant discontinuities between re-
gions of the validity for specific correlations. Moreover,
dynamic simulation presents additional difficulties as the
unknown refrigerant mass flow rates, pressures, and spe-
cific enthalpies preclude the use of any initial information
about the phase of the refrigerant (condensation, evapora-
tion, liquid, or vapor) or the flow regime (laminar or tur-
bulent), so the correlations must be defined in a manner
which encompasses a wide range of flow conditions.

A variety of different approaches have previously been
proposed to manage these closure relations both for
steady-state and dynamic simulation. Perhaps the most
straightforward of these approaches involves the creation
of simplified correlations with improved behavior that
have parameters that are tuned to approximate the orig-
inal correlations. This method is used in a wide vari-
ety of literature (Qiao et al., 2015), and results in simu-
lations that match observed experimental behavior quite
well. Cycle models, in particular, require formulations of
HTCs or frictional pressure losses that cover wide ranges
of flow conditions, and the use of interpolation methods
to smoothly stitch together correlations governing spe-
cific sets of conditions across transition regions has been
used quite successfully (Elmqvist et al., 2003). An alter-
native approach was also proposed by Laughman et al.
(2016) in which a nonparametric kernel regression method
was used to approximate heat transfer coefficients directly
from data, and the resulting simulations were shown to
work well.

Despite the general success of these methods, simu-
lations of vapor compression cycle models that employ
these approaches can still exhibit problematic dynamics

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815467 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

67

Figure 1. Oscillations in compressor outlet pressure after ini-
tialization with constant inputs.

that result in slow execution times and demonstrate non-
physical behavior. One example is provided in Figure 1,
which illustrates a periodic oscillation in the compressor
outlet pressure that can arise when the system of differen-
tial algebraic equations (DAEs) representing the cycle be-
havior is initialized and driven with constant inputs. These
oscillations, which can occur in either the presence or ab-
sence of any external forcing function, are related to in-
teractions between a simplified HTC model and the rest
of the system dynamics, and will be discussed further in
Section 3. This spurious behavior, which is not observed
in experiments, will affect many other variables in the cy-
cle and significantly increase simulation times. Because
these oscillations can be shown to be related to the clo-
sure models used, alternative approaches for describing
the heat transfer coefficient and frictional pressure drop
may be of interest to the modeling engineer.

In this work, we develop models of the vapor compres-
sion cycle in Modelica (Modelica Association, 2017) to
investigate the effect that different closure relation mod-
els have on the overall system, and demonstrate that the
addition of low-pass dynamics to the closure models can
significantly improve the performance of the cycle sim-
ulations, particularly for the heat transfer coefficient. In
Section 2, we develop models of the components used in
the vapor compression cycle, and then study the effect of
the original closure models on the overall cycle dynamics
as well as the modified closure models with the added dy-
namics in Section 3. Section 4 provides a brief treatment
of some results indicating the efficacy of these methods,
and then a brief set of concluding remarks is presented in
Section 5.

2 Component & System Models
We focus on the simulation of simple vapor compres-
sion cycles in this work, such as are used in many con-
temporary air-conditioning and heat pumping systems; a
schematic illustrating a prototype cycle that includes a
condensing tube-fin heat exchanger (HEX), an evaporat-

Figure 2. Basic vapor compression cycle.

ing tube-fin HEX, a compressor, and a linear expansion
valve (LEV) is illustrated in Figure 2. Because the tempo-
ral behavior of the cycle is dominated by the HEXs over
the time scales of interest, the system models in this work
used dynamic models of the HEXs and static (algebraic)
models of the compressor and expansion valves. Finite
volume models (Li et al., 2014) were used for the HEXs to
capture the dynamic behavior of the refrigerant pressures,
as well as the spatially-dependent characteristics of these
components. We assume 1-D refrigerant flow so that prop-
erties only vary along the length of the pipes; we also as-
sume that the refrigerant can be described as a Newtonian
fluid, negligible viscous dissipation and axial heat conduc-
tion in the direction of flow, negligible contributions to the
energy equation from the kinetic and potential energy of
the refrigerant, negligible dynamic pressure waves in the
momentum equation, and thermodynamic equilibrium in
each two-phase refrigerant volume.

Under these assumptions, the partial differential equa-
tions describing the conservation of mass, momentum,
and energy (Levy, 1999) for the refrigerant can be spa-
tially discretized for these finite volume models. A stag-
gered grid scheme, illustrated in Figure 3, is used to avoid
nonphysical pressure variations caused by numerical arti-
facts by decoupling the mass and energy equations com-
puted for the volume cells (represented by the black solid
boundary) from the momentum equations computed for
the flow cells (represented by the red dashed boundary).
Integration of these equations across these cells, as well
as the use of the upwind difference method to approxi-
mate refrigerant properties for the convection-dominated
flows from this application, results in a set of ordinary dif-
ferential equations describing the conservation equations,
as given in Equations 1, 2, and 3.

Ac∆zρi =Ṁi−1/2 − Ṁi+1/2, (1)

∆z
dṀi+1/2

dt
=İi − İi+1 −Ac(pi+1 − pi)

−P∆zτ̄w,i+1/2, (2)

Ac∆zui =Ṁi−1/2(hi−1/2 − h̄ρ,i)

− Ṁi+1/2(hi+1/2 − h̄ρ,i)+P∆zq′′i , (3)

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815467

68

Figure 3. Finite volume discretization of refrigerant pipe.

where ρ̄M represents the momentum density, h̄ρ and h̄ sig-
nify the the density-weighted and flow-weighted specific
enthalpies, the wall shear stress τ̄ = 1

2 f ρ̄u |u| and f is the
Fanning friction factor, and P is the circumference of the
flow channel. The closure model for the frictional pressure
term f will be provided in Section 3, and symbols with
overbars represent average quantities in each cell. The
dynamic states used in this model include the refrigerant
pressures p, density-weighted specific enthalpies h̄ρ , and
densities ρ (Laughman et al., 2017).

Because the fully dynamic momentum balance adds
considerable complexity to the description of the system
so that the system description consists of 3n ODEs where
there are n volumes per HEX, a number of different ap-
proximations to the momentum balance have been be de-
veloped to reduce this complexity and speed up these sim-
ulations (Qiao and Laughman, 2018). We used three vari-
ants in this study, including a friction-only formulation,
the assumption of a uniform d p/dt, and the assumption
of a linear pressure distribution. In the friction-only for-
mulation, we assume that the derivative in Equation 2 is
negligible due to the inertia term’s minor importance to
the thermal behavior of the system, and also neglect the
acceleration pressure loss and gravity effect (Brasz and
Koenig, 1983), since both of them are typically smaller
than the frictional pressure loss. This yields a momentum
balance of the form

pi+1 = pi −
P
Ac

∆zτ̄w,i+1/2. (4)

In this formulation, we assume that the number of state
variables are still 2n and the mass flow rates are the alge-
braic variables.

In the uniform d p/dt approach, the fact that the acous-
tic waves propagate with a speed of sound in the direction
of fluid flow is used to motivate the assumption that the
time derivatives of pressures are spatially invariant along
the direction of flow. As a result, the number of dynamic
pressure states is reduced to a single numerical state per
pressure level, yielding a very efficient system of equa-
tions for each control volume, since d p/dt is given as
an input. Note that the time derivative of pressure is not
treated as constant over time, but rather in space along the

direction of flow. The pressure distribution in the heat ex-
changer still depends on the selected pressure loss models,
and thus on the mass flow rates (Richter, 2008).

Since dp1
dz =

dpn+1
dz =

dpre f
dz , the equations of continuity

and energy become

Ac∆z(
∂ ρ̄i

∂ pi

dpre f

dt
+

∂ ρ̄i

∂ h̄ρ,i

dh̄ρ,i

dt
) = Ṁi−1/2 − Ṁi+1/2 (5)

Ac∆z(ρ̄i
dh̄ρ,i

dt
−

dpre f

dt
) = Ṁi−1/2(hi−1/2 − h̄ρ,i) (6)

− Ṁi+1/2(hi+1/2 − h̄ρ,i)+P∆zq′′i

In this approach, only specific enthalpies are the differen-
tial variables, and therefore the total number of dynamic
states is reduced from 3n by n−1.

In comparison, the linear pressure loss approach as-
sumes that the pressure is linearly distributed along
the heat exchanger (Jensen, 2003), i.e., pi = p1 + (i −
1) pn+1−p1

n . Therefore, one can obtain

dpi

dt
= (1− i−1

n
)

dp1

dt
+

i−1
n

dpn+1

dt
. (7)

Aggregating all local momentum balances for flow cells 1
to n results in

n∆z
d ¯̇M
dt

=İ1 − İn+1 −Ac(pn+1 − p1) (8)

−P∆z
n

∑
i=1

τ̄w,i+1/2 −gAc∆z
n

∑
i=1

ρ̄i+1/2sinθi

where ¯̇M is the average mass flow rate 1
n ∑n

i=1 Ṁi+1/2. This
variant can be further simplified by summing up the mo-
mentum equation with only frictional pressure loss instead
for all the flow cells. This variant only has n+3 dynamic
states.

The refrigerant wall is modeled as one-dimensional
heat conduction in the direction perpendicular to the re-
frigerant flow, with convective boundary conditions de-
scribed by the refrigerant-side and air-side heat transfer
coefficients, which will also be given in Section 3. This
wall element can be modeled simply by

d(Mwcw)

dt
=

kwAs(Ta −Tw)

Lw/2
+

kwAs(Tb −Tw)

Lw/2
, (9)

and the surface wall temperatures Ta and Tb are related to
the bulk temperature of the adjacent fluid by

Q = αA(Tf luid −Tsur f). (10)

A multicomponent ideal gas moist-air model was used
for the air-side of this work. The mass and energy con-
servation equations used to describe the heat transfer from
the outer surface of the tubes to the air reflected this multi-
component model, as described by Equation 12, where the

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815467 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

69

mass transfer coefficient was given by a modified Lewis
correlation.

Ṁaircp,air
dTair

dy
∆y =αair

(
Ao,tube +η f inAo, f in

)
(Tw −Tair)

(11)

Ṁair
dωair

dy
∆y =αm

(
Ao,tube +η f inAo, f in

)
×

min(0,ωwater,sat −ωair) (12)

A simple isenthalpic model of the electronic expansion
valve was also used, as described by a standard orifice flow
equation

Ṁ =Cvav
√

ρin∆P, (13)

where the mass flow rate is regularized in the neighbor-
hood of zero flow to prevent the derivative of the mass
flow rate from tending toward infinity. The flow coef-
ficient Cv is generally determined via calibration against
experimental data, while the flow area av represents the
control authority over the orifice size.

All cycle models in this work included a variable-speed
high-side rotary compressor. We used simplified 1-D
models of this component to describe the system due to the
complex nature of the heat transfer and fluid flow through
the compressor. Its performance was described by relating
the volumetric efficiency ηv and isentropic efficiency ηis
to the suction pressure Psuc, discharge pressure Pdis, and
compressor frequency f , as given by

ηv =
Ṁcomp

ρsucV f
(14)

ηis =
hdis,isen −hsuc

hdis −hsuc
. (15)

The compressor power consumption Ẇ was also related
to the compressor speed and the ratio of inlet and outlet
pressures, i.e., Ẇ (Prat ,ω). The coefficients used for the
functional forms of ηv, ηis, and Ẇ were derived from ex-
perimental data, and the expressions themselves are pro-
vided in (Laughman et al., 2017).

Standard fan laws (ASHRAE, 2008) were used to de-
scribe the behavior of the heat exchanger fans, in which
the volumetric flow rate was assumed to be directly pro-
portional to the fan speed, while the power consumed by
the fan was assumed to be proportional to the cube of the
fan speed. These simple algebraic models were scaled by
experimentally measured values of fan speed, flow rate,
and power for a representative system; to minimize the
error in these fits, linear and quadratic terms were also
included in the power model to account for observed vari-
ations in the data.

A simple room model was also used to study the dy-
namics of the different cycle models on the idealized
model of an occupied space. A lumped model of the room
air was used to describe the sensible and latent dynam-
ics of the space, and the room model was coupled to the

Parameter Value
Refrigerant R134A
Total refrigerant mass (kg) 1.65
condensing HEX tube diameter (mm) 7.9
evaporating HEX tube diameter (mm) 6.3
condensing HEX tube length (m) 0.5
evaporating HEX tube length (m) 2.5
condensing HEX number of tubes 27
evaporating HEX number of tubes 10

Table 1. Geometric parameters of the vapor compression cycle
under consideration.

ambient environment through a simple RC circuit model
of a building envelope with convective heat transfer on
both the outside and inside interfaces of the envelope. Se-
lected information about some of the important geometric
parameters of the system is provided in Table 1.

3 Closure Models
In the previous section, we described the component-
based models of the conservation equations that describe
the behavior of all of the components: the heat exchang-
ers, the expansion valve, and the compressor. As sug-
gested in the introduction, however, the closure models
used to relate the heat transfer coefficient and the frictional
pressure loss to other variables in the cycle can play an
important role in the overall cycle dynamics. We there-
fore study three types of closure models in this section:
full algebraic models that are developed directly from cor-
relations published in the literature, simplified algebraic
models that are related to the previous correlation-based
models but have a much simpler mathematical form, and
dynamic models that also include time-dependent effects.
These methods will each be described in turn, and then
the results of implementing each of them in a complete
vapor-compression cycle will be discussed in Section 4.

3.1 Full algebraic models
The most straightforward approach to describing closure
models involves the direct implementation of the original
HTC and frictional pressure loss correlations from the lit-
erature. Because these variables are dominated by mi-
croscopic phenomena, first principles-based models are
generally either too analytically difficult to formulate or
too computationally difficult to simulate, so there is a
strong tradition of measuring these phenomena experi-
mentally and fitting mathematical formulas to the result-
ing data. Because the parametric dependence of these rela-
tions changes depending on the nature of the flow and the
refrigerant, these correlations are usually formulated for
specific flow conditions, such as single-phase, two-phase,
laminar, and/or turbulent conditions, and are only valid for
that type of flow. We used a variety of these correlations
to describe the flow, as described in Table 2.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815467

70

Correlation Type Correlation
1φ liquid HTC Dittus and Boelter (1930)
Condensing HTC Dobson and Chato (1998)
Boiling HTC Gungor and Winterton (1987)
1φ vapor HTC Dittus and Boelter (1930)
1φ laminar ∆Pf Blasius (Stephan, 2010)
1φ turbulent ∆Pf Hagen-Poiseuille (Stephan, 2010)
Condensing ∆Pf Lockhart and Martinelli (1949)
Boiling ∆Pf Jung and Radermacher (1989)

Table 2. Correlations used to describe heat transfer coefficients
and frictional pressure losses.

The nature of dynamic simulation makes it very diffi-
cult to ensure that a specific set of conditions will always
be met, due to the challenges of initializing large systems
of DAEs and the fact that the flow conditions may change
dynamically so that a given cell in the finite volume HEX
model sometimes experiences single-phase conditions and
sometimes experiences two-phase conditions. In addition,
it is computationally beneficial if the correlations are at
least C1 continuous over a wide range of operation, to al-
low the integrators to function efficiently. Discontinuities
in the closure models may also require the integrator to do
event iteration or generate nonlinear sets of equations to
solve.

We therefore blend these correlations together via a
univariate trigonometric interpolation method (Richter,
2008). In this method, the user defines transition zones
between regions of validity for the individual correlations
according to some given variable that will be used to deter-
mine which correlation to use. The output of the method
is a C2 continuous function that smoothly transitions be-
tween different correlations, depending on the value of
the transition variable. For example, the condensing and
boiling heat transfer coefficients are combined into a uni-
fied two-phase HTC that uses the value of the tempera-
ture difference between the refrigerant and the pipe wall
to smoothly transition between these two flow regimes.
If ∆T is greater than Tc degrees C, then the condensing
heat transfer coefficient is used, while if ∆T is less than
Tb degrees C, the boiling heat transfer coefficient is used.
These values are smoothly interpolated in a transition re-
gion from Tb < 0 < Tc.

This unified two-phase HTC is then itself blended with
the liquid and vapor heat transfer coefficients by using the
flow quality x as the transition variable and transition re-
gions on either side of the two-phase region. If x < 0 the
liquid heat transfer coefficient is used, while if 0 < x < x1
then there is a smooth transition from the liquid heat trans-
fer coefficient to the two-phase heat transfer coefficient.
Similarly, if x2 < x < 1 there is a smooth transition be-
tween the two-phase heat transfer coefficient and the va-
por heat transfer coefficient, and the vapor heat transfer
coefficient is used if x > 1. The resulting blended heat
transfer coefficient then is able to accurately describe the

Figure 4. Blended HTC as a function of the wall temperature
difference ∆T and the flow quality x.

flow over all flow regimes. A similar approach is also used
to unify the different frictional pressure loss correlations
into a blended correlation covering a wide range of flow
regimes.

The efficacy of this approach can be seen in Figure 4,
which illustrates the HTC as a function of the temperature
difference ∆T between the refrigerant and the tube wall
as well as the flow quality x of the refrigerant. This sur-
face was mapped out by using the correlations provided in
Table 2; the temperature transition region between boiling
and condensation was set to −0.025 K ≤ ∆T ≤ 0.025 K,
and the transition regions between both single-phase re-
gions and the two-phase region were set to 0.05 kg/kg.
These transitions can be clearly seen by considering slices
parallel to the quality axis: the HTC increases at the tran-
sition from the subcooled liquid to the two-phase regions,
gradually continues to increase as the flow quality in-
creases, and then rapidly decreases at the transition be-
tween the two-phase and superheated vapor region. Note
the large slope of the transition between the two-phase and
vapor regions, which will be discussed in more detail in
the following sections.

While these somewhat Frankenstein-like equations
might be said to most accurately represent the relation
αi = f (·) according to the literature, the algebraic relations
between the system inputs and the heat transfer coefficient
αi can be extremely nonlinear. When these functions are
then compiled into a system model, these sets of equations
are often solved using a nonlinear solver such as the multi-
variate Newton-Raphson method, which can be both time-
consuming and fragile. Moreover, each volume in the heat
exchanger will incorporate these nonlinear blocks, adding
further complexity to the overall description of the system.

3.2 Simplified algebraic models
One alternative approach that has been successfully used
to mitigate these nonlinearities has been the creation of
simplified algebraic closure models that capture the gen-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815467 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

71

eral trends of the detailed heat transfer coefficient and fric-
tional pressure loss relations without implementing their
complexity. A wide variety of forms can be used for these
relations, depending on the required parametric depen-
dence or level of fidelity to the behavior of the original
correlations. For example, we used a simplified heat trans-
fer relation for each phase according to

α = α0

(
Ṁ
Ṁ0

)b

. (16)

The constants α0 for the liquid, two-phase, and vapor flow
regions were calculated by coarsely approximating the be-
havior of the full correlations over their regions of validity,
and the same trigonometric interpolation method was used
to smoothly transition between phases.

This method is powerful because it provides a small
number of parameters to tune to the original correlations,
as well as the widths of the transition regions, but the num-
ber of state variables that are coupled in these models is
much smaller than is the case with the original correla-
tions. This makes it possible to significantly improve the
performance of the simulations by eliminating the large
number of blocks of nonlinear equations. It is important
to note that these simplified correlations still manifest very
large changes in the heat transfer coefficient, due to the
fact that the two-phase heat transfer coefficients can be
more than an order of magnitude greater than the single-
phase heat transfer coefficients. These large changes result
in very large magnitudes in dα/dx, which can also affect
the system simulations.

Similar simplified formulations were also constructed
for the frictional pressure loss, which was expressed as

∆p f = K∆p0

(
Ṁ
Ṁ0

)b

, (17)

where b = 2 for these models. The Colebrook correlation
for the single-phase friction factor and the Friedel correla-
tion for two-phase multipliers were used to determine the
nominal values of K, ∆p0, and Ṁ0. This relation is not
only less nonlinear than the original correlation-based re-
lations, but it is also easily invertible and can allow the
pressure loss to be calculated as a function of the mass
flow rate, or vice versa. As such, the resulting systems
simulations had much faster performance, since the non-
linear dependence on the variety of input variables was
removed from the relation and the integrator could take
much larger steps.

3.3 Dynamic models
The main challenges posed by the algebraic approaches
used to formulate closure models in the previous section
are the nonlinear sets of algebraic equations, which may
couple together multiple state variables, and the potential
effect of large gradients in the transition regions. The sets
of nonlinear equations can present a particular problem

for the solvers, as the successful simulation of a model
depends on the quality of nonlinear solvers used by a par-
ticular Modelica tool, as well as the initial guesses used
by that method. This tool-dependent aspect of these mod-
els can potentially cause simulations of the same model in
different tools to yield different answers, which is rather
problematic.

Rather than implement these nonlinear algebraic rela-
tions, we propose the incorporation of dynamics into the
closure models to decouple the HTC or frictional pressure
loss from the other state variables. This will make the clo-
sure variables into state variables of the system, and will
decouple the value of the closure variable in the fluid com-
putations with the value of the closure variable calculated
from the other state variables. In the case of the heat trans-
fer coefficient, this may be calculated by

α̂ = f (Ṁ, p,h) (18)
dα
dt

=
1
τ
(α̂ −α) , (19)

where f denotes the algebraic HTC correlation, α̂ rep-
resents the algebraic HTC, and α represents the low-
passed version of the HTC. Since this heat transfer co-
efficient is now a state variable, it needs to be initialized
to an initial value α0 at t = 0. We expect that this will
eliminate many of the nonlinear equation blocks and also
reduce the sensitivity of the system to the large gradients,
as the changes in the heat transfer coefficient will now also
depend on its previous values. The parameter τ should be
tuned to be substantially faster than other time constants
of the system in order to ensure that it will not change the
system response.

These low-pass dynamics are often reasonable to in-
clude because the bandwidth of experimental vapor com-
pression cycles is often much lower than is observed in
simulations. Many potential sources of modeling error
could potentially contribute to this discrepancy. For ex-
ample, the working fluid in many practical cycles is a
mixture of both refrigerant and oil, which is needed for
lubrication of the compressor. The presence of this oil
in heat exchangers will damp sudden changes in the re-
frigerant state, as refrigerant must diffuse into or out of
the oil in response to changes in the refrigerant properties.
In addition, these systems often have many time delays
and couplings, such as axial heat conduction and diffu-
sion, that are often not incorporated into dynamic models
but are inherently low-pass in nature. In general, we do
not advocate blindly adding dynamics to existing system
models because these added dynamics will be convolved
with original dynamics, but the tradeoff between inaccu-
racies of the added dynamics and the inaccuracies of sim-
plified methods, not to mention the improvement in com-
putational speed, may motivate the use of these approxi-
mations in some cases.

The implementation in Modelica is exceedingly simple,
and is attractive from an object-oriented design perspec-

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815467
72

Figure 5. Refrigerant flow quality x in volumes 6 and 7 for
simple algebraic HTCs and detailed dynamic HTCs.

tive. The code in the original correlation function that as-
signs the closure variable,

alphas[k] = simpleHTC_FullRegion(xs[k],
alpha_vap,alpha_2ph,alpha_liq,
xdot_1,xdot_2);

need only be changed to incorporate these dynamics in the
output, e.g.,

alphaHat[k] = simpleHTC_FullRegion(xs[k],
alpha_vap,alpha_2ph,alpha_liq,
xdot_1,xdot_2);

der(alphas[k]) = (alphaHat[k]-alphas[k])
/tau;

and the additional state equations will be incorporated into
the model. This type of modification would be much
more difficult to implement in a non equation-oriented
language, as it would necessitate the complete rearrange-
ment of the state vector.

4 Results
The effect of these different closure relations was studied
by implementing the full vapor-compression cycle model
in the Modelica language and comparing the resulting cy-
cle behavior when different closure models were incorpo-
rated into the complete cycle model. These simulations
were performed on a desktop with an Intel i7 processor
with 32 Gb of RAM using the Dymola 2018 FD01 com-
piler (Dassault Systemes, AB, 2018), and the differen-
tial algebraic equations were integrated with the DASSL
solver with the tolerance set to 10−5. All of the models
for this application were developed by the authors with the
exception of the refrigerant property models, which were
obtained from the commercial Vapor Cycle Library (Mod-
elon AB, 2018).

As the cycle behavior with the alternate heat transfer
coefficient models differs from the behavior with the al-
ternate frictional pressure drop models, we discuss each of

Figure 6. Refrigerant-side heat transfer coefficients αi for vol-
umes 6 and 7 for simple algebraic HTCs and detailed dynamic
HTCs.

these types of closure models in their own respective sub-
sections. While the base cycle model was identical in all
of these experiments, the friction-only momentum balance
was implemented with the simplified algebraic pressure
drop model when heat transfer coefficient models were
studied, while the simplified dynamic heat transfer coef-
ficient model was used when the different pressure drop
models were studied.

4.1 Heat transfer coefficient models
We first investigated the use of the heat transfer coefficient
model based upon the algebraic correlations from the liter-
ature, as described in the beginning of Section 3.1. While
the Modelica tool was able to compile these models, it was
unable to initialize or run simulations of these models due
to failure of convergence for the nonlinear equation solver.
While detailed information about the flattened model from
dsmodel.mof is unavailable due to the use of encrypted
refrigerant property models, statistics from the compila-
tion process provide some indication of the cause of this
failure: this information indicates that 37 numerical Ja-
cobians are generated, which corresponds to the number
of refrigerant volumes included in the cycle (27 volumes
for the condensing heat exchanger and 10 volumes for the
evaporating heat exchanger, corresponding to the number
of tubes in each). As suggested in Section 3, the alge-
braic equations that couple the heat transfer coefficient to
the pressure, specific enthalpy, and mass flow rate in each
volumes are quite nonlinear and difficult to solve. While it
may be possible to customize this correlation or otherwise
provide sufficient information to the compiler (e.g., an-
alytical derivatives via annotations or external functions)
for the nonlinear solver to function correctly, the extra ef-
fort to do so for a specific set of correlations could be sub-
stantial, and would have to be replicated for every new
correlation.

As the cycle models incorporating the correlation-based
HTC models did not produce any viable simulations, we

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815467 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

73

turned our attention to the use of the simplified HTC mod-
els. While the reduced nonlinearity of these closure mod-
els enabled the successful simulation of the cycle behav-
ior, oscillations in the cycle behavior as seen in Figure 1
can occur due to either an input forcing function or simply
the selection of an unlucky operating point. These oscilla-
tions are caused by the high gain of dα/dx in the transition
region; small changes in the state variables are coupled to
large changes in the heat transfer coefficient, which in turn
has a measurable effect on the mass flow rate, pressures,
and specific enthalpies. In this situation, these interactions
can act to drive the system towards an unstable steady-
state manifold and result in limit cycle behavior.

This behavior can be seen in Figures 5 and 6, which
illustrate the flow quality and local refrigerant-side heat
transfer coefficient in volumes 6 and 7 in the condenser
for both the simplified algebraic HTC and the simplified
dynamic HTC. For this heat exchanger, the HTC model is
configured to have a liquid heat transfer coefficient of 378
W/m2K below a flow quality of 0, a two-phase heat trans-
fer coefficient of 4600 W/m2K between a flow quality of
0.1 and 0.9, and a vapor heat transfer coefficient of 369
W/m2K above a flow quality of 1, all at a mass flow rate
of 36 g/s. It is evident that the algebraic HTCs in Figure 6
change abruptly when the flow quality illustrated in Fig-
ure 5 for either volume moves into the transition region.
More specifically, the large spikes in the heat transfer co-
efficient for volume 6 are directly associated with the ex-
cursions in the transition region. These large gradients in
the heat transfer coefficient are directly coupled to many
other aspects of the flow. As the heat transfer coefficients
change rapidly, the flow itself changes in such a way to
reduce the flow quality and form this periodic behavior.

These oscillations in the heat transfer coefficient and
flow quality can affect the overall cycle simulation in a
variety of ways. Aside from the corresponding oscilla-
tions in other variables that are coupled to the heat trans-
fer coefficient, these large gradients will also prevent the
integration routines from taking large time steps, resulting
in long simulation times. These effects can be mitigated
somewhat for these simplified algebraic closure models in
many circumstances by increasing the width of the transi-
tion regions, but the resulting gradual changes in the heat
transfer coefficients can pose problems when linearizing
models for control design (due to the high gains from the
derivatives of the heat transfer coefficients) and also may
not be justified by experimental data.

In this context of challenges posed by these algebraic
heat transfer coefficients, we evaluated the performance of
the vapor compression cycle with the dynamic heat trans-
fer coefficient models. This study was performed by di-
rectly replacing the heat transfer model in the previous
set of cycle models using the redeclare keyword, thus
enabling a direct comparison of the performance of the
method. The time constant τ of the dynamic heat trans-
fer coefficient models was set to 3 seconds, though other
values were also used successfully; in general, this time

Figure 7. Compressor discharge pressure using simple heat
transfer coefficient model with and without low-pass dynamics.

constant should be set to a relatively small value to mini-
mize its affect on other cycle dynamics.

These new cycle simulations did not exhibit any oscil-
lations, as can be seen in Figures 5 and 6, and also did
not have any of the numerical Jacobians seen in the first
set of algebraic heat transfer coefficient models. The low-
pass behavior of the heat transfer coefficient has the ef-
fect of damping out these oscillations, allowing the sys-
tem to converge to a steady-state operating point. Com-
paring both the flow quality and the local heat transfer co-
efficients for both volumes 6 and 7, the filtered value of
these variables can be seen to be within the range of val-
ues for the previous simulations, suggesting that the cycle
behavior with the dynamic closure model is not affected
significantly. Moreover, Figure 7 illustrates behavior of
the compressor discharge pressure both with and without
the dynamic HTC model, confirming both that the oscilla-
tions in this pressure signal were caused by the heat trans-
fer coefficient and that the dynamic HTC can successfully
eliminate these oscillations. The addition of these dynam-
ics had a minimal effect on the overall cycle simulations;
the RMSE between the cycles with and without the dy-
namic HTCs was only 2.7 W out of a total cooling capac-
ity of 1190 W.

Table 3 illustrates the significant benefits that these dy-
namic HTC models can have on the cycle simulation time.
While the correlation-based algebraic models were unable
to simulate, a 1000 second simulation of the cycle with
simplified algebraic models took 228 seconds to run due
to the oscillations caused by the heat transfer coefficient
model. Use of the dynamic HTC models reduced this
computational time significantly; the dynamic version of
the correlation model could be used and had a CPU time
of 146 seconds, while the dynamic version of the simpli-
fied HTC model was able to simulate the entire 1000 sec-
ond duration in 39 seconds, representing an 83% reduction
in CPU time. These results suggest that multiple HTC
models could be used profitably in simulating the cycle;
the simplified models could be used first to quickly study
large-scale dynamics, and the more detailed correlations

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815467
74

HTC Formulation CPU Time (s)
Algebraic, correlation-based –
Algebraic, simplified 228
Dynamic, correlation-based 146
Dynamic, simplified 39

Table 3. CPU time for alternate HTC formulations.

could then be used to obtain more accurate results.

4.2 Pressure loss models
The models of the pressure drop were tested in an anal-
ogous manner to those of the heat transfer coefficient.
The base vapor-compression cycle model was used with
the simplified dynamic heat transfer coefficient model,
and the performance of the system with the friction-only,
d p/dt, and linear pressure drop momentum balances was
evaluated with both algebraic and dynamic closure mod-
els. Although the d p/dt and linear pressure drop models
neglect the frictional pressure loss term, the method de-
scribed in Section 3 was used to decouple the mass flow
rate from the pressure drop in each volume.

In general, frictional pressure drop correlations are
written as d p = f (Ṁ), so that the mass flow rate must be
known to calculate the effective pressure drop. In correla-
tions where d p is a function of both Ṁ and other thermo-
dynamic variables (e.g., d p = f (Re,σ , . . .)), these correla-
tions will result in a set of nonlinear equations, and the ad-
dition of dynamics into the frictional pressure drop model
will improve their performance in much the same way that
the heat transfer coefficient models were improved. In
these cases, we have found that the value of the time con-
stant τ must be relatively small to avoid influencing the
system dynamics because the mass flow rate exhibits rel-
atively high frequency behavior with respect to the fastest
dynamics of the cycle. Unfortunately, the dynamics of the
modified system approach those of the unmodified sys-
tem as τ is reduced, so that the simulation speed of a cy-
cle model with very fast dynamic closure models will be
nearly identical to the simulation speed of a cycle model
with algebraic closure models.

Unlike the heat transfer coefficient models, there are
many frictional pressure drop correlations available in
which this relationship can be analytically inverted, so that
Ṁ = f (d p). In these correlations, the mass flow rate can
be directly calculated from the frictional pressure drop,
and there is no need to solve a nonlinear set of equations.
This is the case for many of the correlations commonly
used to describe frictional pressure drop, and is also the
case for the correlations used in this paper. As a result,
the addition of dynamics to the frictional pressure drop
models does not improve the performance for many stan-
dard formulations of the momentum balance, including
the friction-only momentum balance used in this work.

In contrast to the friction-only momentum balance, the
d p/dt and linear pressure drop models described in Sec-

Model type CPU time (s)
Standard 2855
Friction only 111
d p/dt 214
Linear pressure 175

Table 4. CPU time for variants of momentum balance with dy-
namic frictional pressure drops.

tion 2 have a tight algebraic coupling between the pres-
sure drop between consecutive volumes and the mass flow
rate through these volumes. A set of nonlinear algebraic
equations that couple the pressures, specific enthalpies,
and mass flow rates thus result, with the rather predictable
consequence (at this point) that the system becomes very
difficult to solve. Experiments with these momentum bal-
ances resulted in the same behavior observed with the
correlation-based algebraic heat transfer coefficient mod-
els, in which there were 37 numerical Jacobians and the
Modelica tool was unable to simulate the model. With
the addition of dynamics to the pressure drop terms, the
cycle behavior could be simulated in the same conditions
used to evaluate the heat transfer coefficient models; Ta-
ble 4 shows that the d p/dt and linear pressure drop ap-
proximations of the momentum balance are significantly
faster than the transient momentum balance, though they
are roughly comparable to the friction-only momentum
balance.

5 Concluding Remarks
In this work, we explored some of the computational con-
siderations that relate to the implementation of heat trans-
fer coefficient and frictional pressure drop models that are
included in vapor-compression cycle simulations, and de-
scribed three different modeling approaches that can po-
tentially improve the speed of the overall cycle simula-
tions at a low cost to physical accuracy. On the basis of
our experience, we would recommend that heat transfer
coefficient models include some simple dynamics, as this
enables the direct use of correlation-based models, and the
reduction in computational time is significant. In compar-
ison, these methods do not improve the frictional pressure
drop models dramatically except when simplified momen-
tum balances such as the d p/dt or linear pressure drop
methods are used.

There are a variety of directions in which this work
could continue. These methods could conceivably be ap-
plied to off-cycle simulation, as the small mass flow rates
and pressure variations tend to cause high-frequency os-
cillations in these cases that are difficult to simulate. In
addition, it would also be valuable to consider the exper-
imental characterization of the dynamics of heat transfer,
rather than solely characterizing the steady-state behavior.
This could potentially be correlated with other relevant
phenomena for practical vapor-compression cycles, such
as the effect of the oil circulating with the refrigerant.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815467 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

75

References
ASHRAE. HVAC Systems and Equipment Handbook.

ASHRAE, Atlanta, GA, 2008.

J.J. Brasz and K. Koenig. Numerical methods for the tran-
sient behavior of two-phase flow heat transfer in evaporators
and condensers. Numerical Properties and Methodologies in
Heat Transfer, pages 461–476, 1983.

Dassault Systemes, AB. Dymola 2018 FD01, 2018.

F.W. Dittus and L.M.K. Boelter. Heat transfer in automobile
radiators of the tubular type. University of California Publi-
cations in Engineering, 2(13):443–461, 1930.

M.K. Dobson and J.C. Chato. Condensation in smooth horizaon-
tal tubes. Journal of Heat Transfer, 120:193–213, Feb 1998.

H. Elmqvist, H. Tummescheit, and M. Otter. Object-oriented
modeling of thermo-fluid systems. In 3rd International Mod-
elica Conference. Linkoping, Sweden, 2003.

K.E. Gungor and R.H.S. Winterton. Simplified general corre-
lation for saturated flow boiling and comparisons of correla-
tions with data. Chem. Eng. Res. Des., 65:148–156, 1987.

J.M. Jensen. Dynamic modeling of thermo-fluid systems with fo-
cus on evaporators for refrigeration. PhD thesis, Technical
University of Denmark, Department of Mechanical Engineer-
ing, 2003.

D.S. Jung and R. Radermacher. Prediction of pressure drop dur-
ing horizontal annular flow boiling of pure and mixed refrig-
erants. International Journal of Heat and Mass Transfer, 32
(12):2435–2446, 1989.

C. Laughman, H. Qiao, and D. Nikovski. Kernel regression for
the approximation of heat transfer coefficients. In Gustav
Lorentzen Natural Working Fluids Conference, 2016.

C. Laughman, H. Qiao, S.A. Bortoff, and D.J. Burns. Simulation
and optimization of integrated air-conditioning and ventila-
tion systems. In Proceedings of the 15th IBPSA Conference,
pages 1824–1833, 2017.

S. Levy. Two-phase flow in complex systems. New York: John
Wiley & Sons, 1999.

P. Li, H. Qiao, Y. Li, J.E. Seem, J. Winkler, and X. Li. Recent
advances in dynamic modeling of HVAC equipment. Part 1:
Equipment modeling. HVAC&R Research, 20(1):136–149,
2014.

R.W. Lockhart and R.C. Martinelli. Proposed correlation of
data for isothermal two-phase, two-component flow in pipes.
Chemical Engineering Progress Symposium Series, 45:39–
48, 1949.

Modelica Association. Modelica specification, Version 3.4,
2017. URL www.modelica.org.

Modelon AB. Vapor Cycle Library User Guide, 2018. v2.1.

H. Qiao and C. Laughman. Comparison of approximate momen-
tum equations in dynamic models of vapor compression sys-
tems. In Proceedings of the 16th International Heat Transfer
Conference, 2018.

H. Qiao, V. Aute, and R. Radermacher. Transient modeling of
a flash tank vapor injection heat pump system - part I: Model
development. Int. J. Refrigeration, 49:169–182, 2015.

C.C. Richter. Proposal of new object-oriented equation-based
model libraries for thermodynamic systems. PhD thesis,
Technische Universität Braunschweig, Institut für Thermo-
dynamik, 2008.

Peter Stephan, editor. VDI Heat Atlas. Springer-Verlag, 2010.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815467
76

Fast Calculation of Refrigerant Properties in Vapor Compression
Cycles Using Spline-Based Table Look-Up Method (SBTL)

Lixiang Li1 Jesse Gohl1 John Batteh1 Christopher Greiner2 Kai Wang2
1Modelon Inc, USA, {lixiang.li, jesse.gohl, john.batteh}@modelon.com

2Ford Motor Company, USA, {cgreiner, kwang37}@ford.com

Abstract
Refrigerant property calculation has a significant
impact on the computational performance of vapor
compression cycle simulations. This paper summarizes
a Modelica implementation of Spline-Based Table
Look-Up Method (SBTL) for fast calculation of
refrigerant properties. External C functions are used for
faster spline evaluation and inversion. Significant
improvement in computation speed was observed
without sacrificing accuracy. An SBTL property model
of R134a is first validated against a highly accurate
Helmholtz energy equation of state (EOS) model. Then
the new model was tested rigorously from single
function calls, to heat exchanger test bench, to system
models of the vapor compression cycle in Modelon’s
Air Conditioning Library. Finally, an SBTL property
model of R1234yf was used in a drive cycle simulation
and a shutdown-startup test of two complex air
conditioning system models developed at the Ford
Motor Company. These system models are running
more than twice the speed of the ones using Helmholtz
energy EOS.
Keywords: Refrigerant Properties, Equation of State
(EOS), Thermodynamic Modeling, Vapor Compression
Cycle, Air Conditioning, Spline Interpolation,
Computational Performance

1 Introduction
Dynamic simulations of vapor compression cycles
often involve significant numbers of function calls to
calculate properties of the working fluid. These
calculations are typically performed using reference
Helmholtz energy (multi-parameter) equation of state
(EOS) (Tillner-Roth et al, 1994; Richter et al, 2011) to
achieve high accuracy. Short formulation (Span et al,
2003) of Helmholtz energy EOS improves the
computational performance, but it does not cover all
popular refrigerants, e.g. R1234yf. In Modelon’s Air
Conditioning Library, both the reference Helmholtz
EOS and short Helmholtz EOS are implemented for a
wide range of refrigerants.

The two approaches mentioned above have a large
impact on the vapor compression cycle simulation

speed. First, they have a complicated multi-parameter
functional form, which is very costly to evaluate.
Moreover, Helmholtz energy EOS uses density and
temperature to determine the thermodynamic state, but
the system models are usually described by pressure
and enthalpy as dynamic states. As a result, internal
iteration is needed when the property calculations are
performed in a vapor compression cycle simulation.

To address these performance issues, different
interpolation methods have been used to approximate
refrigerant properties. Extensive literature reviews can
be found in the reference (Laughman et al, 2012;
Schulze, 2013; Aute et al, 2014) and thus not repeated
in this paper. The Spline-Based Table Look-Up
Method (Kunick et al, 2015) is chosen to approximate
different refrigerant properties in this work because it
possesses the following unique features:

• Equidistant grid
• Continuous first derivatives
• Analytic inverse
• Consistent phase boundary definition

The first three features are guaranteed by a specific
type of quadratic/biquadratic spline (Späth, 1995).
Equidistant grid eliminates the need for searching
when evaluating the spline. C1 continuity is a necessity
since some thermodynamic properties are expressed as
derivatives, e.g. specific heat capacity, isobaric
expansion coefficient, etc. Analytic inverse provides
consistent forward and backward calculations without
numerical iterations. The last feature avoids chattering
around the phase boundary during dynamic simulations.
To summarize, the SBTL method takes both function
evaluations and system modeling requirements into
account, which makes it stand out among different
spline interpolation methods for refrigerant property
calculation.

Three features in our implementation are tailored for
modeling of vapor compression cycle in Modelica: (1)
One overall fit over the whole domain is used for 2D
splines, instead of fitting several sub-domains. This is
to balance data size (hence, loading time) and accuracy.
(2) Minimum use of grid transformation. While
transforming the grid can improve accuracy, it adds
complexity to the implementation and increase the
computational cost when taking derivatives and

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815477 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

77

inverting functions. (3) The use of external C functions
for the spline evaluation, inversion and derivatives.
These calculations are repeated many times in different
property functions. Implementing them in C further
accelerates the simulations.

The methodology and implementation of the SBTL
are further discussed in Section 2. The formulation of
the spline interpolation, the data generation process,
and the Modelica model structure are covered. The test
results of the SBTL property models of R134a and
R1234yf are summarized in Section 3. We first
compare function calls of the STBL model of R134a to
short Helmholtz R134a model in the Air Conditioning
Library. The comparisons are then carried out on a heat
exchanger testbench and system models. Finally, we
tested the SBTL model of R1234yf in a vapor
compression cycle model in the Air Conditioning
Library before we used it in complex AC system
models from Ford described in Section 3.5. The results
and performance are compared against the reference
Helmholtz R1234yf model (for which short
formulation is not available).

2 Methodology and Implementation
of Spline-Based Table Look-Up
Method (SBTL)

The key concepts of the SBTL method are illustrated in
this section using an example of 1D spline. A complete
description of the method can be found in the reference
(Kunick et al, 2015). The data generation process is
also covered here followed by the explanation of the
property model structure.

2.1 Overall scheme of the spline functions
The SBTL method uses piece-wise quadratic/bi-
quadratic splines to approximate the refrigerant
properties. Equidistant gird is used for the spline. So,
when evaluating the spline, the interpolating cell is
easily known without searching in the whole domain.
To enhance the accuracy of the interpolation,
transformation can be used on both the independent
and dependent variables. In this case, chain rule must
be applied properly when calculating derivatives for
the transformed variables.

2.1.1 Example of 1D spline and its inverse
The SBTL method distinguishes “node” from “knot”.
A node is where we have raw data and where the spline
intersects with the raw data points. A knot is where two
adjacent pieces of splines meet, i.e. the first derivative
of the splines are equal. Moreover, a node is the mid-
point of two neighboring knots, as shown in Figure 1.
For an equidistant series of nodes (or knots) and a
given point of evaluation �̅�𝑥, the interval number where
it is located is given by

𝑖𝑖 = floor (�̅�𝑥 − �̅�𝑥1𝐾𝐾
∆�̅�𝑥) (1)

where �̅�𝑥1𝐾𝐾 is the first knot of the whole spline and ∆�̅�𝑥 is
the distant between neighboring nodes (or knots). The
spline function can then be expressed as:

�̅�𝑧{𝑖𝑖}(�̅�𝑥) = ∑𝑎𝑎𝑖𝑖𝑖𝑖
3

𝑖𝑖=1
(�̅�𝑥 − �̅�𝑥𝑖𝑖)𝑖𝑖−1 (2)

where �̅�𝑥𝑖𝑖 is the node in the ith interval and 𝑎𝑎𝑖𝑖𝑖𝑖 are the
spline coefficients in the ith interval. The bar over the
independent variable 𝑥𝑥 and dependent variable 𝑧𝑧
indicate that they are transformed variables, which will
be discussed in more details in Section 2.1.2. Note that
the grid is equidistant in terms of the transformed
independent variable �̅�𝑥.

Figure 1. Illustration of the spline interpolation. Knots are
represented by solid dots and node by hollow ones.

For a monotonic spline polynomial 𝑧𝑧{̅𝑖𝑖}(�̅�𝑥) in the ith
interval, the inverse function of the spline is given as:

�̅�𝑥{𝑖𝑖}𝐼𝐼𝐼𝐼𝐼𝐼(�̅�𝑧)

= �̅�𝑥𝑖𝑖 +
−𝑎𝑎𝑖𝑖2 ± √𝑎𝑎𝑖𝑖22 − 4𝑎𝑎𝑖𝑖3(𝑎𝑎𝑖𝑖1 − �̅�𝑧)

2𝑎𝑎𝑖𝑖3

(3)

where the sign (±) equals to sign(𝑎𝑎𝑖𝑖2). An auxiliary
spline function �̅�𝑥{𝑖𝑖}𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧̅) is also needed to estimate �̅�𝑥,
so that we can locate the interval number i.

Spline interpolation in 2D is just an extension of the
1D example. The detailed formulation can be found in
the reference (Kunick et al, 2015). The solution
algorithm for the spline coefficients are given in the
book (Späth, 1995).

2.1.2 Transformations and Derivatives
The equidistant grid enables us to calculate the interval
number according to Equation 1, which removes the
computational overhead of searching through the
whole domain. However, when the function is highly
non-linear, as shown in the left plot of Figure 2, we
need to increase the number of nodes substantially to
better approximate the function by a quadratic spline.
This would end up in larger data files, especially for

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815477
78

2D splines (data file size ~𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2)), and it would
take more time to load the spline coefficient data at
initialization.

To balance accuracy and data file size, proper
transformations can be applied on both independent
and dependent variables. For example, we transformed
the pressure coordinate with (base 10) logarithmic
function to get better resolution at low pressures.

Figure 2. Illustration of coordinate transformation to
enhance accuracy with equidistant nodes.

Chain rule must be used for calculation of
derivatives. For example, if both the dependent and
independent variables are transformed, i.e. �̅�𝑥 =
�̅�𝑥(𝑥𝑥) and 𝑧𝑧̅ = 𝑧𝑧̅(𝑧𝑧, �̅�𝑥) , then the derivative in the ith
interval is given as:

𝑑𝑑𝑧𝑧{𝑖𝑖}
𝑑𝑑𝑥𝑥 = 𝑑𝑑�̅�𝑧{𝑖𝑖}

𝑑𝑑�̅�𝑥 (𝜕𝜕𝑧𝑧𝜕𝜕�̅�𝑧)�̅�𝑥
𝑑𝑑�̅�𝑥
𝑑𝑑𝑥𝑥 (4)

where
𝑑𝑑�̅�𝑧{𝑖𝑖}
𝑑𝑑�̅�𝑥 = 𝑎𝑎𝑖𝑖2 + 2𝑎𝑎𝑖𝑖3(�̅�𝑥 − �̅�𝑥𝑖𝑖) (5)

2.2 Data Generation
The property (raw) data is generated using property
models in the Air Conditioning Library, more
specifically, short Helmholtz model for R134a and
reference Helmholtz model for R1234yf. The data is
fed to a Python script that solves for the spline
coefficients. The coefficient data is then stored as
MAT files for later use in the Modelica property
model.

The phase boundary of the refrigerant is defined by
a 1D spline T(ps). We have five 2D splines for different
properties: temperature 𝑇𝑇(𝑝𝑝, ℎ) , density 𝜌𝜌(𝑝𝑝, ℎ) ,
entropy 𝑠𝑠(𝑝𝑝, ℎ) , dynamic viscosity 𝜇𝜇(𝑝𝑝, ℎ) , and
thermal conductivity 𝜆𝜆(𝑝𝑝, ℎ) . For consistency, the
bubble and dew enthalpy are expressed as inverse of
the 2D temperature spline: ℎ𝑙𝑙𝑖𝑖𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼(𝑝𝑝𝑛𝑛, 𝑇𝑇(𝑝𝑝𝑛𝑛)) and
ℎ𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼(𝑝𝑝𝑛𝑛, 𝑇𝑇(𝑝𝑝𝑛𝑛)). Other properties like specific heat
capacity can derived from the 1D and 2D splines
(Tummescheit, 2002; Thorade & Saadat, 2013).

We used 100 nodes for the 1D spline and about
120×120 nodes for the 2D splines. For 2D splines,
global interpolation is performed for the whole (𝑝𝑝, ℎ)
domain. To ensure the spline interpolation is accurate
in the single phase region up to the phase boundary, the
raw data was extrapolated from the single phase region
into the 2-phase region. Furthermore, the pressure

nodes of the 1D spline T(ps) overlap with those of the
2D splines (up to the critical point).

2.3 Property Model Structure
The spline coefficient data in the MAT files is loaded
once into the memory at initialization of the
simulation, so the size of the data file only affects the
CPU time at initialization but not during time
integration. The structure of the model is shown in
Figure 3. The top-level functions for different
refrigerant properties are implemented in Modelica.
These Modelica functions call the C functions (as
external object) that evaluate, invert, and take
derivative of the spline.

Figure 3. Structure of a thermodynamic property function
call in the SBTL model in Modelica.

3 Verification and validation of SBTL
for refrigerant property
calculations

In this section, comparisons are made between a short
formulation of Helmholtz energy EOS (short
Helmholtz) model and the SBTL model for R134a. We
first look at the CPU time of single function calls and
then progress to a heat exchanger test bench and a full
system model of vapor compression cycle in the Air
Conditioning Library. Finally, we tested an SBTL
model of R1234yf in several complex AC system
models developed at the Ford Motor Company to
evaluate its accuracy and performance in drive cycle
simulations. The computer configuration for our tests
is shown in Table 1.

Table 1. Configuration of the computer used for testing

Model Dell Precision M2800 Laptop
Processor Intel® Core™ i7-4810MQ CPU
RAM 16.0 GB
System 64-bit, x64 based, Windows 10 Pro
Software Dymola 2018
C compiler Visual Studio 2012 Express Edition
Solver Euler (functions), Dassl(systems)
Tolerance 1e-6 (to ensure mass conservation)

3.1 Comparison of function call test results
and performance

All the property functions of R134a were tested in the
validity range and compared to the short Helmholtz
model. Some of the results are listed in Table 2. In the
dew enthalpy test, pressure ramped from 0.3 to 39.5

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815477 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

79

bar. For temperature and density derivative tests, the
enthalpy ramped from 150kJ/kg to 500KJ/kg with
pressure fixed at 0.3, 0.5, 1, 2, 5, 10, 20 and 39.5 bar.
Each test ran for 1s with a fixed step size of 1e-4s,
resulting in 1e4 evaluations. CPU time per evaluation
was obtained by advanced profiling feature in Dymola.

Table 2. Comparisons of individual function calls

Property
Relative

error
in %

CPU time
short

Helmholtz

CPU
time

SBTL

CPU
Time

reduced

hvap <0.5% 1.4e-6s 7e-7s 50%
T <0.03% >1.2e-5s <2.0e-6s >83.3%

𝜕𝜕𝜕𝜕
𝜕𝜕ℎ|𝑝𝑝

 N/A1 >2.8e-5s <3.5e-6s >87.5%

Each row above represents a certain type of property
functions. The dew enthalpy test is representative of
saturation properties. The Helmholtz energy EOS uses
a cubic spline while the SBTL method inverts the bi-
quadratic spline of temperature to obtain saturation
enthalpy. The temperature test shows the speed of
calculating density, entropy, etc., i.e. evaluation of a
2D spline. The test for partial derivative of density
demonstrates the speed-up of calculating partial
derivatives, e.g. specific heat capacity, isobaric
expansion coefficient, etc. The speed of temperature
and the partial derivative functions varies because the
computational costs for evaluation in the single-phase
region and the two-phase region are different.

The SBTL method is significantly faster with only
small deviations in the results. This is partially due to
the use of lower order splines. Moreover, the
Helmholtz energy EOS uses density and temperature as
states, which requires iteration when calling property
functions from pressure and enthalpy, while SBTL
method simply evaluates spline or its derivatives.

A contour plot of percentage error in density spline
evaluation (300×300 points) is shown in Figure 4.
White color means the error is below 0.001%. The
spline is very accurate in most of the region. Deviation
from the reference value locates mainly in the
surrounding of the critical point. The maximum error is
about 2.4%, which appears inside the two-phase region
close to the critical point.

1Phase boundary locations are slightly different in the two models,
making it hard to compare the results in terms of percentage deviation.

Figure 4. Contour plot of the % deviation of density.
Enlarged plot in p = 30-51 bar, h = 330-440 kJ/kg.

3.2 Comparison of heat exchanger test
results and performance

System models of vapor compression cycles usually
consist of thousands of equations with complicated
numerical structures produced by symbolic
manipulations. Hence, further proof of concept, beyond
property function tests, is required to evaluate the
performance of the SBTL model in system level
simulations. In a full cycle, the discretized heat
exchangers usually have the highest number of
property function calls and comprise a large part of the
computational cost. Hence, a heat exchanger
simulation is a great test case before jumping to a
complete vapor compression cycle simulation. An
evaporator test bench from the Air Conditioning
Library, shown in Figure 5, is used for the test of the
SBTL model for R134a. The test bench was simulated
for 20s with a ramp in refrigerant mass flow rate
increasing from 0.02 to 0.03 kg/s at t = 5s to 7s. Other
boundary conditions are kept at constant.

Figure 5. Evaporator test bench in ACL.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815477

80

Comparisons of the cooling power and air outlet
temperature between the SBTL model and the short
Helmholtz model can be found in Figure 6. The air
outlet temperatures from the two medium models
overlap completely and the cooling powers only have
small deviations.

Figure 6. Comparison of cooling power and air outlet
temperature. Blue – short Helmholtz, Red – SBTL.

Figure 7 shows the CPU time comparisons. The red
curves are CPU time after initialization while the blue
curves include CPU time of initialization of the model.
Dotted curves are for short Helmholtz model while
solid ones are for SBTL model. As we can see, the
SBTL model was running twice the speed both at
initialization and during the transient run.

Figure 7. Comparison of CPU time. Dotted – short
Helmholtz, Solid – SBTL; Red – CPU time after
initialization, Blue – Total CPU time.

The heat exchanger test results demonstrate the
speed-up provided the SBTL model beyond single
function calls, and they serve as good indicators of the
performance improvement in a full vapor compression
cycle, as discuss in the later sections.

3.3 Comparison of system models in the Air
Conditioning Library results and
performance

The pull-down test from the Air Conditioning Library,
depicted in Figure 8, is used to evaluate the
performance of the SBTL model of R134a. The model
is run for 4000s to get to a steady state. Results and

CPU time are benchmarked against the short
Helmholtz R134a model.

Figure 8. Pull-down test from ACL for an air
conditioning cycle connection with vehicle cabin.

Deviations of some key results (trajectory during the
whole simulation) from the short Helmholtz R134a
model are listed in Table 3. The SBTL model
replicated the result of the benchmark model very
accurately.

Table 3. Deviations of key results in the pull-down test

Key results Deviation in %
Cooling Power < 0.4
Refrigerant mass flow rate < 0.2
Cabin temperature < 0.002

The CPU time plots are shown in Figure 9. The

upper one is for the entire 4000s simulation and the
lower one zooms into the first 100s when most of the
dynamics happened. The SBTL model reduced the
CPU time by about 33%.

Figure 9. CPU time comparison of the pull-down test.
Upper - entire simulations, Lower - first 100s.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815477 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

81

All the tests discussed so far compare the SBTL
model to the short Helmholtz model which is faster
than reference state Helmholtz EOS. However, not
every refrigerant in Air Conditioning Library has a
short formulation. For example, R1234yf, proposed as
a replacement for R1234a in automotive air
conditioning systems, only has reference state
Helmholtz EOS. Hence, we expected a larger
performance improvement when using the SBTL
method for R1234yf systems. The orifice cycle model
from the Air Conditioning Library (Figure 10) was
simulated for 180s to further study the performance
improvement by SBTL model for R1234yf.

Table 4. Deviations of key results in the R1234yf orifice
cycle simulations

Key results Deviation in %
Cooling Power < 0.1
Refrigerant mass flow rate < 0.02
Cabin temperature < 0.001

The accuracy of the model is verified by comparing

the dynamic trajectory of some key results, as listed in
Table 4.As shown in the CPU time plot in Figure 12,
the orifice cycle model with SBTL R1234yf ran twice
as fast as the reference.

Figure 10. Orifice cycle model using R1234yf in ACL.

Figure 12. CPU time comparison of the orifice cycle
simulations. Blue - Reference Helmholtz, Red – SBTL.

Figure 11. A part of the ACL regression test report. SBTL property model was used in the tests and the results were compared

against reference results obtained by the Helmholtz property models.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815477
82

3.4 Some comparisons from our full suite of
the Air Conditioning Library
regression tests

To ensure the robustness and accuracy of the SBTL
property models, we used them in our existing
regression tests of the Air Conditioning Library and
compared to the reference results generated by the
Helmholtz property model. A test was considered
“pass” only if it compiled, simulated and produced
results within a tight tolerance of the references. A
small portion of the full regression test suite is shown
in Figure 11.

3.5 Comparison of Ford AC system models
results and performance

In this section, simulations are performed on two
complex AC system models developed at Ford Motor
Company R1234yf is used in both systems. Figure 13
depicts an AC system with two evaporators and one
chiller connected in parallel in the loop. Simulations of
the SC03 drive cycle were performed on this model.
The cooling power of the evaporators and the chiller
can be found in Figure 14. The SBTL model replicates
the results from the Helmholtz model very closely.
Figure 15 shows the comparison of CPU time. The
SBTL model took only 509s to run, which is 85% of
the real-time (598s), and it saves more than 60% of
CPU time compared to the Helmholtz model.

Figure 13. AC system with two evaporators and one
chiller connected in parallel in the loop.

Figure 14. Cooling power of the evaporators and the
chiller using Helmholtz property model and SBTL model.

Figure 15. CPU time comparison of the AC system
model shown in Figure 13.

Figure 16 is a vapor compression cycle with a
chiller connected to a battery cooling loop. In the
simulation, the compressor was off at t = 0s, and the
refrigerant loop was initialized with a certain mass
flow rate, i.e. the simulation started at the moment
when the compressor was turned off. The compressor
was turned on again when the battery temperature
(cooled by the cooling loop) is above a certain
threshold. This shut down and startup test is
challenging because of low refrigerant flowrate when
the compressor is off and the fast dynamics when it
restarts.

The compressor speed and refrigerant mass flow
rate are plotted in Figure 17. The SBTL model predicts
the mass flow well even during the fast transients after
the compressor restarted. CPU time comparison can be
found in Figure 18. The SBTL model saves more than
70% of the CPU time.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815477 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

83

Figure 16. R1234yf vapor compression cycle with a
chiller connected to a battery cooling loop.

Figure 17. Compressor speed and refrigerant mass flow
rate.

Figure 18. CPU time comparison for the model shown in
Figure 16.

4 Conclusions
This paper summarizes an implementation of the SBTL
method in Air Conditioning Library for fast calculation
of refrigerant properties using Modelica language. The
SBTL method, the data generation process, and the
property model structure are explained. The SBTL
refrigerant property models demonstrate significant
improvement in computational speed in single function
calls. In system simulations of AC cycle with R134a,
the SBTL model cut the CPU time by 33% compared
to the short Helmholtz model. The complex AC system
models from Ford Motor Company run twice the speed
with SBTL model of R1234yf than with reference
Helmholtz model. The SBTL models for R134a and
R1234yf will be available in the upcoming 2018.2
release (version 1.17) of Modelon’s Air Conditioning
Library.

References
Tillner-Roth, R. and Baehr, H.D. An international standard

formulation of the thermodynamic properties of 1,1,1,2-
tetrafluoroethane (HFC-134a) for temperatures from 170
K to 455 K at pressures up to 70 Mpa. Journal of Physical
and Chemical Reference Data, 23(5), 657-729, 1994.

Span, R. and Wagner, W. Equations of state for technical
applications. I. Simultaneously optimized functional forms
for nonpolar and polar fluids. International journal of
thermophysics, 24(1), 1-39, 2003.

Richter, M., McLinden, M.O., and Lemmon, E. W.
Thermodynamic Properties of 2, 3, 3, 3-Tetrafluoroprop-1-
ene (R1234yf): Vapor Pressure and p–ρ–T Measurements
and an Equation of State. Journal of Chemical &
Engineering Data, 56(7), 3254-3264, 2011.

Laughman, C., Zhao, Y., and Nikovski, D. Fast Refrigerant
Property Calculations Using Interpolation-Based Methods.
International Refrigeration and Air Conditioning
Conference. Paper 1344, 2012.

Schulze, C. W. A contribution to numerically efficient
modelling of thermodynamic systems. PhD Theses, 2013.

Aute, V. and Radermacher, R. Standardized Polynomials for
Fast Evaluation of Refrigerant Thermophysical Properties.
International Refrigeration and Air Conditioning
Conference. Paper 1499, 2014.

Kunick, M., and H. J. Kretzschmar. Guideline on the fast
calculation of steam and water properties with the spline-
based table look-up method (SBTL). Technical report, The
International Association for the Properties of Water and
Steam, Moscow, Russia, 2015.

Späth, H. One dimensional spline interpolation algorithms.
AK Peters/CRC Press, 1995.

Späth, H. Two dimensional spline interpolation algorithms.
AK Peters, Ltd., 1995.

Tummescheit, H. Design and implementation of object-
oriented model libraries using Modelica. PhD Theses,
2002

Thorade, M. and Saadat, A Partial derivatives of
thermodynamic state properties for dynamic simulation.
Environmental earth sciences, 70(8), pp.3497-3503, 2013.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815477

84

Modelica-Based Dynamic Modeling of a Solar-Powered Ground
Source Heat Pump System: A Preliminary Case Study

Defeng Qian1 Zheng O’Neill1
1 Department of Mechanical Engineering, the University of Alabama, Tuscaloosa, AL, the United States

dqian@crimson.ua.edu, zoneill@eng.ua.edu

Abstract
This paper presents preliminary simulation results from
a Modelica – based dynamic model of a solar-powered
ground source heat pump (GSHP) system. The model is
calibrated and tested using the data collected from a test
rig in the laboratory. The preliminary data collected
from the test rig includes temperatures for water and air
loops, solar heat radiation flux, solar panel output
power, and power consumption of the GSHP. This
preliminary study is focusing on the comparisons
between Modelica model outputs and experimental data,
which includes the power consumption of the GSHP
unit, unit cooling capacity, and unit coefficient of
performance (COP).
Keywords: Ground source heat pump, Solar-

Powered, Modelica

1 Introduction and Background
According to the recent research (Berardi, 2015), from
2007 to 2035, the global demand for oil will increase by
30%, while the demand for coal and natural gas will
increase by 50%. Those data inform us that energy-
related carbon emissions will increase significantly if
there are no radical changes in the energy structure.
According to the annual energy outlook report, the
building sector consumed 40% of the energy and 70%
of the electricity in the U.S. in 2017. (EIA, 2017). About
24% of all energy used in the nation was for space
heating, cooling, and water heating in the buildings
(DOE, 2010). Besides the system safety and occupants’
thermal comfort, improving energy efficiency and
reducing energy consumption in buildings is one of the
most important priorities during the operation stages of
buildings.

Enhancing building efficiency is one of the simplest,
most immediate and most cost-effective ways to reduce
the carbon emissions (Li and Colombier, 2009). In
addition, integrating renewable energy sources into an
efficient Heating, Ventilation, and Air-Conditioning
(HVAC) would make a net-zero energy building
(NZEB) possible. Theoretically, the goal of NZEB is to
reduce the energy consumption (and demand) through
efficient designs and operations, and utilize the
renewable energy as a major energy source while the
conventional energy sources play a backup role in the
buildings. The key enablers for the NZEB include: 1) a

highly efficient building envelope, 2) high-performance
HVAC systems with the advanced control strategy, and
3) a balance between the building energy consumption
and onsite power generation (Besant, Dumont et al.,
1979, Hayter, Torcellini et al., 2000, Marszal,
Heiselberg et al., 2011, Marszal, Heiselberg et al., 2012,
Attia, Hamdy et al., 2013).

1.1 Ground Source Heat Pump (GSHP)
As one of the most efficient systems on the market, the
GSHP system has been proved as one of the most
energy-efficient solutions for the building HVAC
system for a wide variety of geology conditions
(ASHRAE, 2007). GSHP system combines the heat
pump and a ground loop heat exchanger for transferring
the heat between the building and the ground source.

Compared to the air-source heat pump that utilizes
the environmental air as the heat source/sink, the GSHP
utilizes the earth such as groundwater or soil as the heat
source/sink. Since ground maintains at a relatively
constant temperature over the year, the GSHP system is
about 45% more efficient than conventional air source
heat pumps (EnergyStar, 2018).

In general, open-loop system, closed-loop system,
and semi-open-loop system are the most common
design for the GSHP system. According to Huttrer
(Huttrer, 1997), an open-loop system uses the
groundwater directly. The groundwater passes through
the heat pump unit and is discharged back to the source.
In a closed-loop system, the water or the water-
antifreeze solution circulates in a continuous buried
pipe, which acts as a ground heat exchanger between the
ground source and the circulating fluid. Compared to the
closed-loop system, an open-loop system is inexpensive
and efficient; however, additional maintenance is
required to prevent fouling of loops by organic matter,
etc. In addition, discharge of water from an open loop
system to a surface waterbody may require a permit. In
the U.S., Environmental Protection Agency (EPA)
requires reporting any injection of the water to a return
well for groundwater heat pump systems. The semi-
open-loop system (i.e., standing column well system)
combines the advantage of both open-loop system and
closed-loop system. The focus of this study is an open-
loop GSHP system as shown in Figure 1. Due to the low
pH value of the groundwater in the test location, a plate
heat exchanger was introduced between the heat pump

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815485 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

85

condenser and the groundwater loop to avoid the
potential corrosion of the condenser.

Figure 1. The open-loop GSHP system in this study

1.2 Renewable/Sustainable Energy (Solar
Energy)

Growing population and technology evolutions caused
the energy demand increased significantly in the past
decades. Currently, as the primary source of the energy
demand, fossil fuel shortage can be predicted while the
energy demand is increasing continuously (Pérez-
Lombard, Ortiz et al., 2008, Shafiee and Topal, 2009).
The fossil fuel is a type of finite resource and
responsible for significant carbon emissions (Ediger,
Hoşgör et al., 2007). Back in 2007, the World Energy
Outlook predicted that 84% of the energy demand would
depend on the fossil fuels in 2030 (Shafiee and Topal,
2009). This type of situation motivates people to explore
an alternative way to satisfy the energy demand.

Meanwhile, renewable energy can be obtained from
the natural sources, including solar, wind, biomass, etc.
It is considered as an unlimited and environment-
friendly energy source (Twidell and Weir, 2015). As one
of the most widely used renewable sources, solar energy
has been widely used for solar thermal and solar power
applications. It is not only a promising source but also
abundant energy. Kannan and Vakeesan’s recently did a
review study about the solar energy and its future, and
their study listed the situation, potential applications,
and barriers to the solar industry. The study was a
valuable reference for solar-related manufacturers,
researchers, and decision-makers to take further actions
(Kannan and Vakeesan, 2016). Figure 2 shows a map of
global horizontal irradiation (GHI). The map shows the
potential solar energy is at a range of 1,500 to 2,200
kWh/m2 in the United States.

Figure 2. Maps of global horizontal irradiation (GHI)

(Kannan and Vakeesan, 2016)

1.3 Modeling with Modelica
As the mathematical modeling and simulation became
the key factors in engineering, computational tools were
developed to satisfy the needs of efficient engineering.
Modelica-based models (Modelica, 2018) complied
using Dymola (Dymola, 2018) are used in this study.
Modelica is an equation-based and object-oriented
modeling language for complex multi-physics systems.
The use of Modelica for the built environment is
promising as buildings involve multiple physical
phenomena (e.g., heat transfer, fluid dynamics,
electricity, etc.) and are complex in terms of their
dynamics (e.g., the coupling of continuous time physics
with discrete time and discrete event control). In
addition, the problem size can be varied from equipment
to buildings and communities with electrical
distribution grids. An advantage of Modelica is the
modularity of the language that allows modification of
the code according to the specific needs of the
application. The object-orientation enables extension
and reuse of components, and the use of standardized
interfaces enables collaboration across physical
domains and disparate developer groups. Modelica has
been used to model the complex physical system, e.g.,
mechanical, electrical, electronic, hydraulic, thermal,
control, electric power systems or process-oriented
subcomponents (Modelica, 2018).

In general, a high-performance component and
system could be less efficient without the appropriated
and robust control strategies. Model-based control has
been widely used in automobile, aerospace, and industry
processes, and starts to emerge in the building industry.
The dynamic modeling capability offered by Modelica
provides a good framework for such model-based
control design.

In this study, a Modelica-based dynamic model is
developed to simulate the dynamics of solar-powered
GSHP system. The commercial Modelica library –
Vapor Cycle library was adopted (Modelon, 2018) for
steady-state and transient simulation of a refrigeration
cycle in the ground source heat pump. It is compatible
with some Modelica libraries such as Liquid Cooling
Library, Heat Exchanger Library, etc. (Modelon, 2018).

This paper presents the simulation results from the
Modelica model of the GSHP unit, together with
comparisons between simulation results and
measurements from a test rig. The performance analysis
and comparisons were conducted for the cooling mode
only since the test rig was only operated in such mode.
Only modeling and validations of the heat pump
component of the test rig are included in this paper. The
performance comparison covers the power consumption
of the heat pump unit, unit cooling capacity, and unit
COP.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815485

86

2 Methodology
2.1 Test Rig Physical System Setup
As shown in Figure 3, a solar-powered GSHP system
was the focus of this research to explore the benefits of
integrating GSHP and the solar panels. In this test rig, a
¾-ton water-to-air GSHP is connected to two 60-feet
deep walls. A group of Solar PV panels of 1.12 kW is
connected to two 800 Ah battery banks, which are used
to power the GSHP system and a 270 Watts DC powered
well pump. During the daytime, solar PV panels convert
solar photons into electrical energy, which will be stored
in battery banks. Whenever the system is on demand, the
battery banks can provide the electrical power.
Meanwhile, a comprehensive performance monitoring
and data acquisition system is installed. Figure 4 shows
the GSHP unit with measurement points. Table 1 lists
the major sensors deployed in the test rig. A three-hour
testing data is used in this study.

Figure 3. Overall system schematics of the studied solar-

powered GSHP system

Figure 4. The heat pump unit with measurement points

A comprehensive performance monitoring and data
acquisition system was installed (Figure 5). The data
acquisition is combined with a chassis system which has
five hybrid slots, three PXI Express slots (up to
250MB/s per-slot bandwidth and 1.75 GB/s system
bandwidth) and two input modules. The thermocouple

input module has 32-channel, eight built-in cold
junction compensation channels and a 0.3 ˚C accuracy.
The voltage module has 16 analog inputs, two analog
outputs, 16-bit resolution and a range of +10V.

Table 1. Major Sensors Deployed in the Test Rig
Position Sensor*
Ground Water Inlet (from
the well)

Temperature Sensor 1

Ground Water Outlet (to
the well)

Temperature Sensor 2

Circulate Water Inlet (to
the GSHP)

Temperature Sensor 3

Circulate Water Outlet
(from the GSHP)

Temperature Sensor 4

Air Intake (to the GSHP) Temperature Sensor 5
Air Outlet (from the
GSHP)

Temperature Sensor 6

Power Sensor (GSHP) Power Transducer
Solar Panel Input Voltage Voltage Divider
Solar Panel Input Current Current Shunt

*The temperature sensor is a T-type thermocouple.

Figure 5. Data acquisition system in the test rig

2.1.1 Supply Side
The supply side for the studies system includes solar
panels, battery banks, and a charge controller. Two sets
of solar panels were used to charge the battery banks.
The first set has 20 panels in two groups, and 16 of them
were connected in four series loops (48 Volt). Each
panel has a rated 50 Watts output. Thus, the total output
from 16 panels would be 800 Watts. The second set has
four panels with a rated output of 80 Watts per panel.
The second set has a maximum output 320 Watts.
However, since the first set was installed more than 20
years ago, a certain amount of performance degradation
can be expected for these solar panels, while the second
set is expected to operate close to the rated condition.
Two battery banks are introduced as the energy storage
devices, as one battery bank serves the GSHP, another
one provides electricity to the well pumps in the system.
Whenever the GSHP system is on demand, the battery
banks will provide the electricity to maintain the system
in operation.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815485 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

87

2.1.2 Demand Side
The demand side of the studied system includes a GSHP
unit, a circulation pump, and well pumps. The heat
pump adopted in this study has a rotary type compressor,
rated cooling capacity is 2,638 Watts. The unit uses R-
410a as the refrigerant, with charging weight of 0.751
Kg. Under the normal operating condition, the
refrigerant pressure is 3,103 kPa at the condenser side,
and 1,724 kPa at the evaporator side. For the air side, the
maximum external static pressure is 17,436 Pa. The
rated operating voltage is 208 Volts, and the short-
circuit current rating is 5 kA at 600V.

2.2 Modelica Model
A Modelica – based dynamic model is used to study the
behaviors of the GSHP system. Only the modeling of
the GSHP unit is included in this paper. The GSHP unit
component (e.g., compressor, condenser, evaporator,
expansion valve) were modeled using the existing
Modelica library-Vapor Cycle Library (Modelon,
2018). The initial conditions were adjusted based on the
test conditions and the manufacturer’s specifications.
The working fluid in the studied GSHP is R410a, and
the secondary side fluid is water at the condenser side
and air at the evaporator side. The well is not directly
modeled in this paper, heat source and heat sink with
constant temperatures was specified using the data from
measurements. More details of this assumption are
provided in the next section.

Simulation models were created and compiled by
using the multi-engineering dynamic simulation tool
Dymola (version 2017 FD01) (Dymola, 2018). Table 2
lists the major components used in this model.

Figure 6 shows the Dyamloa model of the studied
GSHP unit. System status data such as the power
consumption of the compressor, heating/cooling rate,
and the COP are pulled out and can be directly read from
the main panel.

Table 2. Major Components in the Modelica model
Component Model Descriptions
Condenser Heat exchanger;

Counterflow;
R410a as working fluid;
Water as liquid

Evaporator Heat exchanger;
Counterflow;
R410a as working fluid;
Air as liquid

Expansion Valve Simplified Thermal
Expansion Valve model,
based on compressible flow
valve in IEC 534/ISA S.75
standards

Compressor Fixed displacement
compressor with speed and
pressure ratio dependency

Liquid Source Modelon.Media.PreDefined.L
iquids.IncompressibleWater is
the Medium on condenser
side;
VaporCycle.Media.Air.Moist
AirNoFreezing is the medium
on evaporator side.

Liquid Sink Modelon.Media.PreDefined.L
iquids.IncompressibleWater is
the Medium on condenser
side;
VaporCycle.Media.Air.Moist
AirNoFreezing is the medium
on evaporator side.

Figure 6. A Dymola model of the GSHP unit

2.2.1 Assumptions of the current Modelica model of
GSHP unit

In this preliminary study, the following assumptions are
used:

1. Constant temperatures were used in the
Modelica model for the heat sink (i.e., the water
inlet temperature on the condenser side) and the
heat source (i.e., the air inlet temperature on the
evaporator side). This assumption is a close
approximation as observed from the actual
testing data. Figure 7 shows that both the water
inlet temperature and the air inlet temperature
were relatively constant after the system went
into the steady state (roughly 20 °C and 22 °C
respectively).

2. The current Modelica model didn’t include the
blower fan, which is another major component

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815485
88

of the GSHP unit in the test rig. The current
test rig only measured the total power
consumption of the GSHP unit, which is the
sum of the power consumption of the
compressor and the fan. To have a fair
comparison between the measurements and the
model predictions, in this paper, a constant fan
power consumption was assumed to get the
total power consumption of the GHSP unit
from the Modelica model.

Figure 7. Water inlet and air inlet temperatures from

measurements

2.3 System Performance Analysis

2.3.1 The Coefficient of Performance (COP)
The COP is a dimensionless parameter which is used to
measure the efficiency of the heat pump. A higher value
of COP corresponds to the better performance of the
heat pump. In this study, the COP of the GSHP unit was
calculated by using the following equation:

𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 =
𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐻𝐻𝐻𝐻
 (1)

Where COPHP is the COP of the heat pump; qcooling is
the cooling capacity (W); PHP is the power consumption
of the heat pump (W).

In a heat pump unit, there are multiple components
consumes electrical energy during the operation. This
study assumes only the compressor and the blower fan
consume the energy, while the energy consumptions
from other components are negligible during the
operation. Therefore, the power consumption for the
GSHP unit is defined as follow:

𝐶𝐶𝐻𝐻𝐻𝐻 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑓𝑓𝑓𝑓𝑐𝑐 (2)
Where Pcompressor is the power consumption of the

compressor (W); Pfan is the rated power for the blower
fan (W). Currently, only PHP is measured in the test rig.

2.3.2 Heat Pump Energy Balance
The energy balance on the heat pump represents the
system performance in either the cooling or heating
mode. The energy balance is based on the energy
consumption of the heat pump, the heat exchange rate
between the water-side and airside of the heat pump, and
the cooling or heating rate of the heat pump. In this
paper, all the tests were conducted for the cooling mode.
The following equation is used to calculate the cooling

rate and check the total energy balance (Qian, Niu et al.,
2016):

𝐶𝐶𝐻𝐻𝐻𝐻 + 𝑞𝑞𝑐𝑐𝑐𝑐𝑟𝑟 + 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 (3)
Where qrej is the heat rejection rate (W) from the heat

pump to the water loop; qcooling is the cooling capacity
(W) of the GSHP unit.

2.3.3 Heat Rejection
The heat rejection of a water-to-air heat pump counts the
energy transfer from the air to the water loop. In this
study, the heat rejection rate was calculated according to
the flow rate of the circulation groundwater and
temperature difference of the circulation groundwater
loop. Equation (4) is used to calculate the heat rejection
of the GSHP unit in this study:

𝑞𝑞𝑐𝑐𝑐𝑐𝑟𝑟 = �̇�𝑚𝑤𝑤𝑓𝑓𝑤𝑤𝑐𝑐𝑐𝑐 × 𝐶𝐶𝑐𝑐 × ∆𝑇𝑇𝐶𝐶𝐶𝐶 (4)
Where �̇�𝑚𝑤𝑤𝑓𝑓𝑤𝑤𝑐𝑐𝑐𝑐 is the mass flow rate (kg/s) of the

circulating groundwater; 𝐶𝐶𝑐𝑐 is the specific heat of water
(J/kg-K); ∆𝑇𝑇𝐶𝐶𝐶𝐶 is the temperature difference (K)
between the condenser water inlet and outlet of the heat
pump unit. This temperature difference is measured in
the test rig.

2.3.4 Measure of Goodness
Statistic performance metrics help to determine how
well a model can predict the performance of the system
compared to the measurements. In this study, the
coefficient of variation of the root mean square error
(CVRMSE) and normalized mean bias error (NMBE)
were used to determine the model accuracy (ASHRAE,
2002).

Root mean square error (RMSE) is a frequently used
metric to measure the errors between model predictions
and actual measurements, s shown in Equation 5:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑(𝑦𝑦𝑓𝑓𝑐𝑐𝑤𝑤 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑚𝑚)2

(𝑛𝑛 − 𝑝𝑝) (5)

CVRMSE is the coefficient of variation of the root
mean square error, as shown in Equation 6.

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
�̅�𝑦𝑓𝑓𝑐𝑐𝑤𝑤

× 100% (6)

NMBE is the ratio of the differences between actual
measurements and simulated results to the degrees of
freedom and mean value of the actual measurement.

𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅 =
∑(𝑦𝑦𝑓𝑓𝑐𝑐𝑤𝑤 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑚𝑚)
(𝑛𝑛 − 𝑝𝑝) × �̅�𝑦𝑓𝑓𝑐𝑐𝑤𝑤

× 100% (7)

Where 𝑦𝑦𝑓𝑓𝑐𝑐𝑤𝑤 and 𝑦𝑦𝑐𝑐𝑐𝑐𝑚𝑚 are the actual measured and
model predicted result; �̅�𝑦𝑓𝑓𝑐𝑐𝑤𝑤 is the average of the actual
measured data; 𝑛𝑛 is the number of observation; 𝑝𝑝 is the
number of parameters in the regression model.

3 Results and Discussions
After the Modelica model was developed, a data set
which was collected from the test rig was used to test

0 2000 4000 6000 8000 10000 12000

15

20

25

30

35

Te
m

pe
ra

tu
re

 (C
)

Time Step (s)

 Water Temperature
 Air Temperature

Temperature Measurements

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815485 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

89

and evaluate the accuracy of the model. The Modelica
model was built and simulated under the same operating
conditions of the testing. The testing condition was as
follows:

1) The comparisons between the actual
measurements and simulation results were
based on a three-hour testing.

2) The GSHP system was operating in a cooling
mode.

3) The environment temperature was controlled at
22 °C, while the discharge air temperature set
point of the GSHP system was 16 °C. The
GSHP system maintained in operation during
the three-hour test.

4) The flow rate of circulation groundwater was
measured at 0.454 m3/hr, while the air flow rate
was maintained at 0.134 m3/sec.

5) The measured temperature values include inlet
water temperature at the condenser side and
inlet air temperature at the evaporators side was
used as the inputs to the Modelica model.

6) Other settings were referred to the
manufacturer’s specifications.

3.1 Power Consumption of the GSHP Unit
In the testing setup, the compressor is one of the major
energy consumers in the system, the energy
consumption of the compressor determines the
performance of the GSHP system. Meanwhile, the
testing unit was operating as a fixed air flow rate, the
power consumption of the blower fan was assumed to
operate in a rated condition (248 Watts) in this paper for
the simplicity.

Figure 8 shows a comparison of the unit power
comparison. After the system reached a steady state, the
actual measurement was about 600 Watts, while the
simulated power consumption of the unit was averaged
at 670 Watts. The difference for the average power
consumption during the three-hour testing period was
approximately 11.67%.

0 2000 4000 6000 8000 10000 12000
400

450

500

550

600

650

700

750

800

850

P
ow

er
 C

on
su

m
pt

io
n(

W
)

Time Step (s)

 Simulated Power Consumption
 Tested Power Consumption

Power Consumption Comparison

Figure 8. Comparisons of power consumption of the

GSHP unit

As mentioned in section 2.2.1, a constant fan power
consumption was assumed to get the total power
consumption of the GHSP unit in the Modelica model
since the fan was not included in the model. However,
the fan power consumption most likely will not be
maintained at the rated condition during the testing. This
could explain why the simulated unit power
consumption was consistently larger than the
measurements. A fan model will be included into the
Modelica model, and an additional measurement point
for actual fan power consumption will be added as well.

3.2 Cooling Capacity
As mentioned in the previous section, the testing unit
was a ¾-ton water-to-air GSHP system, which has a
rated cooling capacity at 2,638 Watts. The actual
cooling capacity was calculated by using Equation 3 in
this paper.

Figure 9 shows the comparisons of the measured and
simulated cooling capacity. According to the testing
result, the actual cooling rate was maintained around
2,300 Watts after the system went into a steady state. As
the simulation result was around 2,100 Watts, there was
roughly 8.69% difference for the average cooling
capacity between the test measurement and the
simulation result.

In the current test rig, although the indoor air
temperature was controlled and measured, the humidity
in the lab was not controlled and measured. The moist
air medium used in the Modelica model probably has the
different humidity ratio compared to actual conditions
in the test rig. This certainly would cause a different
latent load between the simulation and the test cases.
Theoretically speaking, more moist air could lead to a
larger latent load for the heat pump unit, then result in a
higher cooling capacity.

0 2000 4000 6000 8000 10000 12000
0

1000

2000

3000

4000

C
oo

lin
g

C
ap

ac
ity

 (W
)

Time Step (s)

 Simulated Cooling Capacity
 Tested Cooling Capacity

Cooling Capacity Comparison

Figure 9. Comparisons of the GSHP unit cooling capacity

3.3 COP
The testing rig was operating under the cooling mode,
only the cooling COP is discussed in this paper. The
cooling COP from the testing was calculated using
Equation 1.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815485

90

Figure 10 shows the comparisons of the cooling COP
for the three-hour testing period. After the test went into
a steady state, the measured COP was about 3.8, while
the simulation result was around 3.2. The comparison
indicated 15.79% difference on mean on the COP.

As shown in the previous sections, actual test
measurements indicate a higher cooling capacity and a
lower power consumption Thus, the COP from the
testing was higher compared to the simulated COP from
the Modelica model.

0 2000 4000 6000 8000 10000 12000
-4

-2

0

2

4

6

8

C
O

P

Time Step (s)

 Simulated COP
 Tested COP

COP Comparison

Figure 10. Cooling COP during the simulation.

3.4 Model Evaluation Metrics
Table 3 shows the measures of goodness for the model
accuracy in this study. The CVRMSE were around 12.29%,
12.92%, and 19.69% for power consumption, cooling
capacity, and COP respectively. The NMBE for these three
outputs was 12.85%, 7.42%, and 17.98% respectively.

Table 3. Performance evaluation of the Modelica model
Category CVRMSE NMBE

Power
Consumption

12.92% 12.86%

Cooling Capacity 12.29% 7.42%
COP 19.69% 17.99%

4 Conclusions and Future Work
This study presents the preliminary results from the
Modelica-based modeling of a GSHP unit. The model
predictions were compared with measurements from the
test rig. The current Modelica-based model can simulate
the performances of the GSHP unit. The output trends
for the Modelica simulation match with those from
measurements well.

This Modelica model will be extended to a full scale
of the solar-powered GSHP system that includes solar
panels, battery banks, charge controller, and
groundwater wells. Some of the ongoing and future
work are listed as follows:

1) Modelica model of the supply side of solar panels,
which will use the actual weather data as the

input to estimate the power generation of the
solar panels.

2) On the groundwater side, a Modelica model of
the groundwater well will be developed so the
impact of ground (e.g., thermal conductivity and
hydraulic conductivity) can be further analyzed.

3) A comprehensive system model of solar-
powered ground source heat pump system will be
validated using the measurement from the test
rig. Testing data will be collected for a longer
period for both heating and cooling modes.

4) Dynamic inputs such as weather information,
room air and groundwater temperature profiles
will be used as inputs in the full scaled model to
study the dynamic performance of the system.

5) After the system model is developed and
validated, this dynamic model will be used for
the following applications:
 Model-based control of the solar power

generation system and ground source heat
pump system, and the combination of these
systems for a better building to grid
integration.

 Local heat pump controller design using this
dynamic model in the Hardware-in-the-loop
testing.

Nomenclature
ASHRAE: American Society of Heating, Refrigerating and
Air-Conditioning Engineers
COP: Coefficient of Performance
CVRMSE: coefficient of variation of the root mean square
error
EPA: Environmental Protection Agency
GHI: global horizontal irradiation
GSHP: Ground Source Heat Pump
HVAC: Heating, Ventilation, and Air-Conditioning
NZEB: Net Zero Energy Building
NMBE: normalized mean bias error
RMSE: Root mean square error

References
ASHRAE (2002). "ASHRAE guideline 14-2002.

Measurement of energy and demand savings." American
Society of Heating, Refrigerating and Air-Conditioning
Engineers, Inc., Atlanta, GA.

ASHRAE (2007). "HVAC Applications Handbook."
American Society of Heating, Refrigerating and Air-
Conditioning Engineers, Inc., Atlanta, GA.

Attia, S., M. Hamdy, W. O’Brien and S. Carlucci (2013).
"Assessing gaps and needs for integrating building
performance optimization tools in net zero energy buildings
design." Energy and Buildings, 60: 110-124.

Berardi, U. (2015). "Building energy consumption in US, EU,
and BRIC countries." Procedia Engineering, 118: 128-136.

Besant, R. W., R. S. Dumont and G. Schoenau (1979). "The
Saskatchewan conservation house: some preliminary
performance results." Energy and Buildings, 2(2): 163-174.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815485 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

91

DOE (2010). Buildings Energy Data Book, 2011.
Dymola (2018). "DYMOLA Systems Engineering." from

https://www.3ds.com/products-
services/catia/products/dymola/.

Ediger, V. Ş., E. Hoşgör, A. N. Sürmeli and H. Tatlıdil (2007).
"Fossil fuel sustainability index: An application of resource
management." Energy Policy, 35(5): 2969-2977.

EIA (2017). Annual Energy Outlook, U.S. Energy
Information Administration. U. S. Department of Energy.

EnergyStar (2018). "Geothermal Heat Pumps." from
https://www.energystar.gov/products/heating_cooling/heat
_pumps_geothermal.

Hayter, S., P. Torcellini, R. B. Hayter and R. Judkoff (2001).
The energy design process for designing and constructing
high-performance buildings, Clima 2000/Napoli 2001
World Congress.

Huttrer, G. W. (1997). "Geothermal heat pumps: an
increasingly successful technology." Renewable Energy,
10(2-3): 481-488.

Kannan, N. and D. Vakeesan (2016). "Solar energy for future
world:-A review." Renewable and Sustainable Energy
Reviews, 62: 1092-1105.

Li, J. and M. Colombier (2009). "Managing carbon emissions
in China through building energy efficiency." Journal of
Environmental Management, 90(8): 2436-2447.

Marszal, A. J., P. Heiselberg, J. S. Bourrelle, E. Musall, K.
Voss, I. Sartori and A. Napolitano (2011). "Zero Energy
Building–A review of definitions and calculation
methodologies." Energy and Buildings, 43(4): 971-979.

Marszal, A. J., P. Heiselberg, R. L. Jensen and J. Nørgaard
(2012). "On-site or off-site renewable energy supply
options? Life cycle cost analysis of a Net Zero Energy
Building in Denmark." Renewable Energy, 44: 154-165.

Modelica (2018). "Modelica and the Modelica Association."
from https://www.modelica.org/.

Modelon (2018). "Vapor Cycle Library." from
http://www.modelon.com/products/modelon-library-
suite/vapor-cycle-library.

Pérez-Lombard, L., J. Ortiz and C. Pout (2008). "A review on
buildings energy consumption information." Energy and
Buildings, 40(3): 394-398.

Qian, D., F. Niu, S. Kavanaugh and Z. O'Neill (2016).
"Investigation on A Ground Source Heat Pump System
Integrated With Renewable Sources." International
Compressor Engineering, Refrigeration and Air
Conditioning, and High Performance Buildings
Conferences. West Lafayette, IN. July 11 - 14, 2016.

Shafiee, S. and E. Topal (2009). "When will fossil fuel
reserves be diminished?" Energy Policy 37(1): 181-189.

Twidell, J. and T. Weir (2015). Renewable energy resources,
Routledge.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815485
92

The work of F. Gómez was supported in part by the European ITEA3 openCPS project.
The work of L. Vanfretti was supported in part by the Engineering Research Center Program of the National Science Foundation and the Department of
Energy under Award EEC-1041877 and in part by the CURENT Industry Partnership Program.

Coalesced Gas Turbine and Power System
Modeling and Simulation using Modelica

Miguel Aguilera1 Luigi Vanfretti2 Tetiana Bogodorova3 Francisco Gómez4
1Instituto Costarricense de Electricidad (ICE), Costa Rica, maguilerach@ice.go.cr

2Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute (RPI), USA, vanfrl@rpi.edu
3Ukrainian Catholic University, Faculty of Applied Sciences, Lviv, Ukraine, tetiana.bogodorova@gmail.com

4KTH Royal Institute of Technology, Stockholm, Sweden, fragom@kth.se

Abstract
This work reports how the multi-domain physical
modeling and simulation Modelica language has been
employed to create a benchmark power grid and gas
turbine model within the ITEA3 OpenCPS project. The
modeling approach is not only shown to be useful to test
the functionalities of the OpenCPS toolchains, but it also
could give rise to potential applications in power system
domain studies where the widely-accepted turbine-
governor models are not rich enough to represent the
multi-domain system dynamics.
Keywords: Gas turbine modeling, Modelica, Multi-
domain modeling and simulation, Power systems,
OpenIPSL, ThermoPower

1 Introduction
1.1 Motivation
Variable energy resources, like wind and solar power,
require a special attention due to the challenges that its
intermittent nature poses to the power grid operation. To
safely integrate these energy sources to power systems,
acceptable levels of reliability and security and
affordable prices are required (Carnegie Mellon
University, 2013).
The operational flexibility of gas power plants makes
them a good complement to variable renewable sources.
It is very likely that policies will promote the increase of
gas power, at least in the next decade, especially because
they produce less emissions than coal power plants
(IEA, 2016).
The variability of wind and solar power can be
expressed as slow or fast fluctuations. Both, the less
environment-friendly coal power plants and, combined
cycle gas plants can be used to compensate slow power
intermittency. On the other hand, power
increase/reduction required to deal with fast power
fluctuations can be achieved by means of fast response
sources like gas natural turbines (Carnegie Mellon
University, 2013).
Resilient operation of power systems with high
penetration of variable energy resources (VERs)

depends, among other factors, on more trustable
forecasts and accurate models that can be tailored to the
several kinds of power system simulations and analysis.
Existing gas turbine models, such as GGOV1, IEEE (De
Mello & Ahner, 1994) and Rowen (Rowen, 1983,
1992), have different levels of complexity and accuracy.
Simplicity was a desired property for the first proposed
models, primarily due to computer power and turbine
modeling data availability limitations of the time when
they were proposed, the 1980s or early 1990s (De Mello
& Ahner, 1994; Hannett & Khan, 1993). Such was the
case of the GAST model which was widely used in the
United States, but was demonstrated to be inaccurate
and thus replaced by the somewhat more complex
GGOV1 model (Pereira, Undrill, Kosterev, Davies, &
Patterson, 2003). The widely-accepted models GGOV1,
IEEE and Rowen do not employ a detailed physical
representation of the gas turbine dynamics; instead, they
model dynamics using abstractions in the form of logic
and transfer functions which results in loss of
information of non-linear physical dynamics. In fact, it
has been recently shown (Yee, Milanovic, & Hughes,
2008) that more detailed models are required to include
the grid frequency dependency behavior of gas turbines
with the aim of undertaking power system stability
studies when the turbines are exposed to abnormal
system frequency behavior (e.g. black start, islanded
operation, etc.). On the other hand, the correctness of the
more complex physical models of gas turbines relies on
the availability of turbine modeling data from the
manufacturers, who create and then share such models
with turbine owners, but are rarely available to most grid
analysts due to IP concerns (Yee et al., 2008).
The CEN-CENELEC-ETSI Group recommends the use
of the IEC CIM (Common Information Model) for
information exchange, which has been mandated at the
EU level (CEN-CENELEC-ETSI Smart Grid
Coordination Group, 2012). The information exchange
required to meet the needs of coordination of
transmission system operators (TSOs) operation under
any conditions, should comprise both steady-state and
dynamic models that can be used for power system
simulation. Although the CIM is currently addressing
the requirement of dynamic information exchange

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815493 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

93

through IEC-61970-302 and IEC 61970-457, this still
might lead to the exchange of ambiguous models as it is
explained in a previous work (Vanfretti, Li,
Bogodorova, & Panciatici, 2013). The use of Modelica
for dynamic model exchange may help in addressing the
challenges as described next.

1.2 Previous Work
Specialized tools that allow the modeling and simulation
of multi-domain systems for power system analysis
have been created (Nicolet, Sapin, Simond, Prenat, &
Avellan, 2001; Sapin, 1995), however they do not
support power grid modeling for stability-analysis or the
capability to simulate large grids.

The authors of (Vanfretti et al., 2013) and (Gómez,
Vanfretti, & Olsen, 2015) have shown that Modelica
language is able to cope with the exposed ambiguous
model sharing issue while facilitating the access and/or
modification of models at the "equation-level". Some
additional advantages of Modelica are the open
distribution of several libraries meant to represent
physical systems, and the fact that models are
independent from IDEs and solvers (Gómez et al.,
2015). In addition, Modelica tools are now supporting
the required numerical techniques to simulate large
power grids (Braun, Casella, & Bachmann, 2017;
Casella, Leva, & Bartolini, 2017; Dassault Systemes,
2018).

In addition, because turbine manufacturers already
make extensive use of Modelica for thermo-mechanical
and control modeling of gas turbines (Johansson, 2016),
it becomes attractive to adopt a multi-domain modeling
approach using Modelica in order to enhance dynamic
characteristics of gas turbines and the power system..

1.3 Contributions
The work reported in this paper was carried out

within the ITEA3 OpenCPS (Open Cyber-Physical
System Model-Driven Certified Development) project.
The project aims to develop modeling and simulation
toolchains that can be applied to cyber-physical and
multi-domain systems (ITEA3, 2017).

In the second use case of the work package D5.3B,
the benchmark case corresponds to multi-domain
models of improved gas turbines coupled to the power
grid to meet European standardization requirements for
grid connection.

This paper presents the development of a multi-
domain gas turbine and power grid equation-based
model, required to test the functionalities of the
OpenCPS toolchains. In more detail, first a Modelica
multi-domain model comprising the physical model of
the gas turbine, the governor and a Single Machine
Infinite Bus (SMIB) power network was generated.
Then, an analysis of the multi-domain system that
includes a comparison with the GGOV1-based
equivalent system was performed.

The modeling approach shown through the example
of the integration of a multi-domain model of a gas
turbine with the electric grid can be adopted in future
scenarios of multi-domain power plant-to-network
integration where more complex models of geothermal,
combined-cycle or wind power plants, among other
resources are being used. Power systems analysts will
benefit from the availability of more accurate models as
high penetration of intermittent renewable resources
continues to challenge traditional power system
operations, making their study difficult with traditional
power system tools.

The paper is organized as follows: Section 1 provides
a motivation to the problem, along with the previous
work and contributions from this work. Section 2 starts
with a description of the Modelica libraries used to
develop the models. Subsequently, it continues with the
presentation of the turbo-machinery and power system
domain models, as well as the multi-domain model that
is obtained by combining the models of the two previous
domains. Section 3 explains the studies and simulations
that have been carried out on the power system-only
model and the multi-domain model for comparison
purposes. Finally, Sections 4 and 5 present the results
obtained and provide the conclusions, respectively.

2 Equation-Based Models
2.1 Modeling Background

2.1.1 Package Structure
The equation based models were built or/and modified
inside of a package structure in the Dymola F2016
Modelica IDE. The adopted package structure was
conceived to classify the models in terms of the domain
they belong to. The first two packages, namely
TurboMachineryDomain and PowerSystemDomain,
contain the physical gas turbine models and the electric
power system models, respectively. A third package,
called MultiDomain, comprises the results of merging
components from the two former packages to obtain the
multi-domain equation based models. In
PowerSystemDomain only components from the
OpenIPSL library are included. In addition to the SMIB
network models, new stochastic variable load model and
the gas turbine controls based on the GGOV1 model are
provided. On the other hand, the
TurboMachineryDomain package was developed to
comprise only elements from libraries specialized in gas
turbines and other thermal power generation
technologies such as ThermoPower (Casella & Leva,
2003), ThermoSysPro (El-Hefni, Bouskela, & Lebreton,
2011), ThermoFluid (Idebrant et al., 2003) or the
ThermalPower library (Hübel et al., 2014). In this work
only ThermoPower has been used.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815493

94

2.1.2 OpenIPSL Library
OpenIPSL is an open-source Modelica library that

can be used to create power system networks and then
perform dynamic time-domain simulation. The
Modelica language provides to this library the flexibility
that is not common to find in other power system
modeling and simulation tools (Baudette et al., 2018).

2.1.3 ThermoPower Library
ThermoPower is an open-source Modelica library
developed at Politecnico di Milano. It provides
components that can be used to model thermal power
plants (Casella & Leva, 2003) (Casella, 2009).

The library has a package called Gas which contains
the models of the gas turbine compressor, expansion
turbine and combustion chamber. Their modeling
description is based on DAE that are widely accepted in
the turbine technology domain (Razak, 2007; Walsh &
Fletcher, 2004).

More information about the library can be found in
the official website (see URL:
https://casella.github.io/ThermoPower).

2.2 Turbo-Machinery Domain Modelling
The TurboMachineryDomain package contains models
which employ ThermoPower components. Its contents
are organized in 3 sub-packages, namely
GTArrangements, GTModels and Tests.

2.2.1 The GTArrangements package
As the name implies, the first package aimed to include
the elementary gas turbine topologies. The
SingleShaftGT model represents a single shaft gas
turbine and it is based on the Plant model of the Brayton
Cycle examples of ThermoPower. The Brayton Cycle is
the thermodynamic cycle that describes the operation of
a gas turbine. It is composed of at least four processes,
three of which are associated with the components of a
gas turbine, namely: compressor, combustion chamber
and expansion turbine. The model only focuses on the
internal components of the gas turbine. The parameters
of the compressor, combustion chamber and turbine are
propagated and therefore, the SingleShaftGT can be
used as a generic block in the representation of gas
power plants.

2.2.2 The GTModels package
The second package has the models that result from
combining the basic parametrized gas turbine
arrangement with given boundary conditions, sensors
and actuators. The only example included to date is the
complete ThermoPower Single Shaft Gas Turbine
ThPowerSSGT model, which can be seen in Figure 1.

Due to unavailability of data, the design parameters
and component characteristics of the ThPowerSSGT gas
turbine model were not modified with respect to the
ones of the original ThermoPower example. However, a

still simple but complete model of the fuel inlet valve
that takes valve position as input instead of fuel mass
flow reference was added. This change was needed to
harmonize the physical model of the turbine with the
simplified power system GGOV1-based turbine model.

Figure 1. The Single Shaft Gas Turbine model built using
ThermoPower components.

In order to build a valve model compatible to the
simplified representations used in power system
analysis, in particular the GGOV1 model, the fuel mass
flow rate 𝑚𝑚𝑚 ���� values required to obtain mechanical
power from 0 to the maximum value of 10 MW were
obtained through simulations and are shown in Table 1.
In power system simulations, 𝑃𝑃����, is used as the output
of the turbine. Hence, to relate the output mechanical
power 𝑃𝑃���� (in per unit) with the fuel inlet valve
position 𝜃𝜃���� ����� (also in per unit), the following
expression was used:

𝜃𝜃���� ����� = 𝑃𝑃����/𝐾𝐾���� + 𝑊𝑊��� (1)
where 𝐾𝐾���� is the gas turbine gain and 𝑊𝑊��� is the fuel
mass flow rate at no load conditions (in per unit).
Evaluating the parameters for a range of 0-10 MW gives
a look-up table whose values are shown in Table 1.

Table 1. Fuel inlet valve model design data with 𝑲𝑲𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =
1.5 and 𝑾𝑾𝒇𝒇𝒇𝒇𝒇𝒇 = 0.15.

𝑃𝑃����
(MW)

𝑃𝑃����
(pu)

𝜃𝜃���� ����� (pu) 𝑚𝑚𝑚 ����
(kg/s)

0 0 0.150 1.845
1 0.1 0.217 1.919
2 0.2 0.283 1.989
3 0.3 0.350 2.059
4 0.4 0.417 2.129
5 0.5 0.483 2.199
6 0.6 0.550 2.270
7 0.7 0.617 2.341
8 0.8 0.683 2.413
9 0.9 0.750 2.485

10 1.0 0.817 2.558

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815493 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

95

Finally, the curve 𝑚𝑚𝑚 ���� = 𝑓𝑓𝑓𝑓𝑓���� �����) from Table 1
was specified in the model as the look-up table that is
shown in Figure 1 (see combiTable1D).

2.3 Power System Domain Modelling
This section provides an overview of the grid, load and
control models which are based on OpenIPSL library
components.

2.3.1 Generation Groups
The benchmark multi-domain model of use case 2 of the
OpenCPS project work package (i.e. improved gas
turbines coupled to the power grid) required different
modeling and simulation scenarios for the SMIB
network model. Two examples of these scenarios are a
SMIB model without controls and a SMIB model with
only excitation system. They were made available inside
the sub-package Generation_Groups of the
PowerSystemDomain package. This sub-package also
includes a model of the “infinite bus” modeling
construct which is typically used in power systems to
represent a strong external system.

2.3.2 Controls
The GGOV1 is one of the so-called turbine-governor
models that analysts use in power system dynamic
studies. This is a generic model with blocks to represent
thermal turbines that are controlled by a PID governor
(proportional, integral, derivative). It also includes
blocks that represent the dynamics of the fuel system,
acceleration limiter, load limiter by exhaust temperature
control, valve position and supervisory load controller.

Figure 2. Modified GGOV1 Turbine Governor model.

The GGOV1 model implementation of the OpenIPSL
library was refactored (i.e. modularized functions into
internal blocks) so to fit the needs of the studies of this
work.

As shown in Figure 2, refactoring was applied on the
GGOV1 model to explicitly show its internal
functionalities using internal blocks. This means that a
separate model was created for each of the three controls
logics that are inside of the GGOV1 model, namely the
load limiter, the acceleration limiter and the main
governor. Another model was developed to represent
only the turbine, thus obtaining a convenient way to re-

use the models when a certain study requires to modify
an internal block (e.g. only the turbine or the governor)
instead of the entire model.

2.3.3 Network Models

A SMIB network model was developed for each of the
generation groups described in Section 2.3.1. Figure 3
shows the SMIB network case where the generation
group has no controls.

Figure 3. SMIB network model with no turbine governor
model.

The initial voltage magnitude, voltage angle, active
power and reactive power values of the generators, the
load and the buses are specified by means of the record
pf_results, which were obtained using and identical
representation of the network using PSS/E, a domain
specific tool (Siemens AG, 2018).

2.3.4 Variable Load Model

As it can be noticed from Figure 3, the SMIB network
model also includes a variable load component. It can
behave deterministically or stochastically, where the
latter requires a stochastic signal as an input.

This model has now been included in the OpenIPSL
library as OpenIPSL.Electrical.PSSE.Load_ExtInput. It
is similar to the ./Load_variation model, with the main
difference being that it has a real input for modulation
Error! Reference source not found.. Therefore, the new
model has a component that allows for active power
modulation in addition to the component that represents
the physical load variability. The second component is
adjusted by the parameters d_P (active load variation),
d_t and t1 (start time and time duration of load
variation), while the former relies on the noise injection
source that is connected to this model (through input u).
Noise injections have also been included in OpenIPSL,
and are available under
OpenIPSL.Electrical.Loads.PSSE.NoiseInjections The
simulation results where the load models exhibit a
stochastic behavior driven at u are out of the scope of
this paper, (see (Aguilera, Vanfretti, & Gómez, 2018)).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815493

96

2.4 Multi-Domain Model
A SMIB network model and a governor block model
from the PowerSystemDomain package was combined
with the physical model of a gas turbine from the
TurboMachineryDomain package. The result of this
procedure gives the so-called multi-domain model that
can be appraised in Figure 4.

Figure 4. Multi-domain SMIB model.

New generation group sets have been created to allow
the connection between the generator and the detailed
gas turbine model. Even though these groups still rely
on the previously defined groups of the
PowerSystemDomain package (see Section 2.3.1), they
also include an interface block. The function of this new
block is to relate the rotational mechanics (flange
internal variables) of the gas turbine model with the
generator mechanical power and speed.

3 Simulation Studies
In this section, the simulations and studies that were
applied on the equation-based models will be described.
They include the identification of a GGOV1 turbine
model, a frequency-domain analysis of the gas turbine
models and simulations of the models when they are
subject to a load change. An emphasis has been placed
on the comparative analysis between the multi-domain
model and the model that uses GGOV1 model that is a
power system domain aggregate turbine-governor
representation.

3.1 Study and Simulation Cases
This section begins with a description of the
identification process of the GGOV1-based turbine
model that fits the response of the ThermoPower
detailed model. The results are necessary to carry out
comparative studies on the resulting SMIB network
models, namely a frequency domain analysis and the
response to a load change event.

3.1.1 GGOV1-based Turbine Model Identification
The first step in the analysis to be done on the SMIB
network models is the identification of the GGOV1
turbine model that is equivalent, in terms of its open-
loop time response, to the ThermoPower model. An

open-loop test has been applied to the multi-domain
SMIB model for that purpose.

The governor has been removed from the multi-
domain SMIB model to apply a step change on the fuel
mass flow rate in the gas turbine model. This can be
observed in the box with dotted line of Figure 4, that
replaces the box with solid line. Table 1 was employed
to find the fuel mass flow rate values that give an output
mechanical power change from 5 to 8 MW.
Subsequently, a simulation was carried out in Dymola
with a duration of 100 seconds, where the step change
occurred after 30 seconds. The results were saved to
proceed with the identification of the GGOV1-based
turbine model.

The simulation output data has been imported in
MATLAB as a .mat file. Then the system identification
ident tool has been used to fit a GGOV1-turbine
model that suits the reference model. The values of
turbine gain 𝐾𝐾���� and the no load fuel flow 𝑊𝑊��� were
set to 1.5 and 0.15, respectively, as explained in Section
2.2.2. Additionally, the damping factor 𝐷𝐷� was set to
the typical value of 0. The decision to not consider this
parameter is also based on the argument of (Pourbeik,
2013) that states: “A speed damping factor can be
modeled to influence the temperature limit as a rather
gross approximation of the speed dependence of the
turbine rating. This is, however, not very accurate”.
Thus, it has only been required to obtain the values of
the parameters of the lead-lag transfer function 𝑇𝑇� and
𝑇𝑇�, together with the delay transport time 𝑇𝑇���.

From now on, the SMIB model that contains the
physical model of the turbine will be referred to as
multi-domain model. On the other hand, the SMIB
network model using the GGOV1-based turbine model
will be referred to as power system-only model.

3.1.2 Gas Turbine Models Frequency Domain
Analysis

A first inspection of the differences between the
expected response of the multi-domain model and the
power system-only model can be carried out through
pole/zero analysis. This study requires the linearization
of the physical turbine model around a given operating
point, which can be performed automatically from
Dymola using the Modelica Linear Systems 2 library
(Baur, Otter, & Thiele, 2009).

To understand the impact of the eigenvalues on the
response of each model, the contribution of the poles in
the states obtained after linearization has been
identified. The results are discussed in Section 3.2.2.

3.1.3 Load Change Event Simulations
The next step is to verify the time-domain response of
the models under a load change.
A simulation of 100 seconds was performed on both the
multi-domain and power-system model (using the
identified parameters as described in Section 3.1.1),

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815493 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

97

with the same governor model. The active power of the
load was increased by 0.2 pu after 30 seconds of
simulation, and was set back again to the original value
after 20 seconds, in order to evaluate the turbine
response to a sudden load change.

Successive simulations were carried out with the
objective of evaluating the performance of the models at
different operating points. Specifically, the load active
power as well as the dispatched power from the
generator were increased from 5 to 9.8 MW, in steps of
0.1 MW.

The load active power and dispatched generator
power parameter sweep required the computation of 49
power flow solutions for the initialization of the network
models. The solution sets were supplied in the form of
records to conform with the description of Section 2.3.3.
Python scripts were used to automatically generate the
Modelica records. The scripts consist of a modified
version of the toolset used to get the Nordic 44-bus
system simulation results published in (Vanfretti,
Rabuzin, Baudette, & Murad, 2016) and (Vanfretti et al.,
2017).

In order to better quantify the time domain response
differences of the two models, the settling times were
computed. This was performed for the first simulation
scenario, when the load model did not include the noise.
Results are presented in Section 3.2.3 and discussed in
Section 4.

3.2 Results
The results of the studies and simulations performed on
the models are presented in this section.

3.2.1 Model Identification
A GGOV1-based turbine model with one pole and one
zero with no time delay was identified. The resulting
transfer function is:

𝑔𝑔�(𝑠𝑠) = 𝐾𝐾����
1 + 𝑇𝑇�𝑠𝑠
1 + 𝑇𝑇�𝑠𝑠

= 1.5 ∙
1 + 0.115𝑠𝑠
1 + 0.141𝑠𝑠

 (2)

The same step change on the fuel mass flow rate was
applied on both the reference multi-domain model and
the power system-only model without the governor.
Figure 5 shows the output mechanical power plots from
the turbine components of the models.

3.2.2 Eigenanalysis
The gas turbine models can be described in state space
form as:

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵
𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵 (3)

In the case of the GGOV1-based turbine system of
the Power System-only model, the system vectors and
matrices are defined as:

𝐵𝐵: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒�������� 𝑦𝑦: 𝑃𝑃���� (4)

𝑥𝑥 = �
𝑔𝑔�(𝑠𝑠). 𝑥𝑥

𝑔𝑔𝑣𝑣𝑠𝑠𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐵𝐵𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔. 𝑦𝑦
�

𝑨𝑨 = �−7.092 11.123
0 −0.25 � 𝑩𝑩 = �

0
0.25

�
��

(5)

𝑪𝑪 = �
1.835 × 10�

12.807 × 10�� 𝑫𝑫 = 0

It can be easily found from the system state space
equation that there are only real eigenvalues. They are
shown on Table 2 together with their contribution on the
identified systems states.

Figure 5. Open-Loop test to verify the response of the
identified model, w.r.t. the multi-domain model.

Table 2. Real eigenvalues of gas turbine in the power
system-only model.

Eigenvalue T(s)
Contribution to states

State Contribution
(%)

𝑝𝑝� = −7.092 0.141 𝑔𝑔�(𝑠𝑠). 𝑥𝑥 100

𝑝𝑝� = −0.25 4.0 𝑔𝑔�(𝑠𝑠). 𝑥𝑥 61.9
𝑔𝑔𝑣𝑣𝑠𝑠𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐵𝐵𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔. 𝑦𝑦 38.1

The system has only a zero 𝑧𝑧� = −8.685 with 𝑇𝑇(𝑠𝑠) =
0.115.

Linearization was performed on the detailed gas
turbine system of the multi-domain model at t=0. The
state vector is as follows:

𝑥𝑥 = [𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑝𝑝, 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑇𝑇,

(6)
𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑋𝑋�, 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑋𝑋�,
𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑋𝑋�, 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑋𝑋�,

𝐶𝐶𝐶𝐶. 𝑓𝑓𝑣𝑣𝐵𝐵𝑒𝑒𝑔𝑔𝑣𝑣𝑠𝑠. 𝑋𝑋�, 𝐶𝐶𝐶𝐶. 𝑇𝑇�,
𝑔𝑔𝑣𝑣𝑠𝑠𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐵𝐵𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔. 𝑦𝑦, 𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑔𝑔𝐵𝐵𝑔𝑔𝑔𝑔𝑒𝑒. 𝜙𝜙

𝑔𝑔𝑣𝑣𝑠𝑠𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔𝐴𝐴𝑔𝑔𝑔𝑔𝐵𝐵𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔. 𝑦𝑦, 𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑔𝑔𝐵𝐵𝑔𝑔𝑔𝑔𝑒𝑒. 𝜙𝜙]�

As can be seen in equation 6, most system states are
associated with the combustion chamber of the turbine
(CC). These states are the chamber wall temperature
(Tm) and the pressure (𝑝𝑝), temperature (T) and molar
composition (𝑋𝑋�-𝑋𝑋�) of the gases at the chamber outlet
(i.e. flue gases).

System vectors B and C are now defined as follows:

𝑩𝑩 = [0 0 0 0 0 0 0 0 0.25 0]�

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815493

98

𝑪𝑪 = [78.860, 20707.3, 3.939 × 10�,
 2.918 × 10�, 7.291 × 10�,
 3.163 × 10�, 4.456 × 10�,

0, 0, 0]

(7)

Matrix A is given by:
𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−1.2 × 10�� −3.98 × 10� −8.6 × 10� −6.9 × 10� −1.5 × 10� −6.3 × 10� −9.9 × 10� 0.31 2.6 × 10� 0

−0.36 −1.1 × 10� −3.2 × 10� −2.5 × 10� −5.6 × 10� −2.3 × 10� −3.6 × 10� 0.5 × 10�� 3.9 × 10� 0
−5.2 × 10�� 1.5 × 10��� −0.96 × 10� 2.2 × 10�� 4.9 × 10��� 1.99 × 10�� 3.1 × 10��� 0 −39.10 0
−6.3 × 10�� 1.3 × 10��� 6.1 × 10��� −0.96 × 10� 1.1 × 10��� 4.5 × 10��� 7.03 × 10��� 0 −0.048 0
2.7 × 10�� 4.9 × 10��� −1.6 × 10�� −1.3 × 10��� −963.17 −1.2 × 10��� −1.9 × 10��� 0 20.63 0
3.4 × 10�� −2.6 × 10��� −1.5 × 10��� −1.2 × 10��� −2.7 × 10��� −963.17 −1.7 × 10��� 0 25.49 0
9.3 × 10�� −3.6 × 10��� −1.5 × 10��� −1.2 × 10��� −2.7 × 10��� −1.1 × 10��� −963.17 0 −6.97 0

0 0.05 0 0 0 0 0 −0.05 0 0
0 0 0 0 0 0 0 0 −0.25 0
0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The system has also only real eigenvalues as it is
shown in Table 3.

Table 3. Real eigenvalues of gas turbine in the multi-
domain model.

Eigenvalue T(s)

Relevant contribution to
states

State Contribution
(%)

𝑝𝑝� = −1.56 × 10� 6 x10�� 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑝𝑝 99.9
𝑝𝑝� = −9.63 × 10� 0.001 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑇𝑇 97.2

𝑝𝑝� = −9.63 × 10� 0.001
𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑇𝑇 75

𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑋𝑋� 12.2

𝑝𝑝� = −9.63 × 10� 0.001 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑇𝑇 94.8

𝑝𝑝� = −9.63 × 10� 0.001
𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑇𝑇 86.4

𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑋𝑋� 5.5

𝑝𝑝� = −9.63 × 10� 0.001 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑇𝑇 99.4

𝑝𝑝� = −7.98 × 10�
1.3 ×
10��

𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑝𝑝 99.9

𝑝𝑝� = −0.25 4.000 𝐶𝐶𝐶𝐶. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑝𝑝 99.6

𝑝𝑝� = −0.05 20.00 𝐶𝐶𝐶𝐶. 𝑇𝑇� 100

𝑝𝑝�� = 0 --- 𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓. 𝜙𝜙 100

Finally, the gas turbine of the multi-domain model
has the zeroes shown in Table 4. The poles and zeros
plots of the gas turbine systems from both models can
be observed in Figures 6 and 7.

Table 4. Zeros of the gas turbine in the multi-domain
model.

Zero Amount T(s)
𝑧𝑧� = −9.644 × 10� 1 0.001
𝑧𝑧� = −9.632 × 10� 4 0.001
𝑧𝑧� = −6.441 × 10� 1 1.6 × 10��

𝑧𝑧� = −0.050 1 20.000
𝑧𝑧� = −6.651 × 10��� 1 1.503 × 10��

Table 5. Branch data of the SMIB network model (𝑽𝑽𝒃𝒃 =
13.8 kV).

From bus To bus R (pu) X (pu)
GEN1 BUS1 0 0.150
BUS1 GEN2 1 × 10�� 0.200
BUS1 LOAD 3 × 10�� 0.060
LOAD BUS2 3,5 × 10�� 0.070
BUS2 GEN2 3,5 × 10�� 0.070
LOAD BUS3 0 1 𝑥𝑥10��

Figure 6. Poles and zeros of the gas turbine in the power
system-only model.

Figure 7. Poles and zeros of the gas turbine in the multi-
domain model.

3.2.3 Time Response to Load Change
The governor was added to the multi-domain and

power system-only models to evaluate their time
response to a load change. The applied test was
presented in Section 3.1.3 and the model parameters can
be found in Tables 5-7. This section shows the results of
the time response simulations. The simulations were
performed with the variable step DASSL solver and a
tolerance of 1𝑥𝑥10��.

Table 6. Parameters of generated at BUS1 (𝑽𝑽𝒃𝒃 = 13.8 kV).
Parameter Gen-1 Parameter Gen-1

Capacity 𝑀𝑀� 10 MVA 𝑋𝑋� 1.35
𝑇𝑇��

� 5.00 𝑋𝑋�
� 0.30

𝑇𝑇��
�� 0.05 𝑋𝑋�

� 0.60
𝑇𝑇��

� 0.70 𝑋𝑋�
�� = 𝑋𝑋�

�� 0.20
𝑇𝑇��

�� 0.10 𝑋𝑋� 0.12
Inertia H 4.00 𝑠𝑠�.� 0.10

Damping D 0 𝑠𝑠�.� 0.50
𝑋𝑋� 1.41 𝑅𝑅� 0

Figure 8 shows a plot of the mechanical power
delivered by the gas turbine components. Special
attention was also given to the response of the system
frequency and the electrical power of the generator. The
corresponding plots can be seen in Figures 9 and 10,
respectively.

-1600 -1200 -800 -400 0

-0.8

-0.4

0.0

0.4

0.8

Im
ag

in
ar

y
pa

rt

Real part

Eigenvalues (x) and invariant zeros (o)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815493 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

99

Then the simulation was repeated several times to
measure the settling times, at different operating points
of the generator. Figure 11 first shows a plot of the
calculated settling times in both multi-domain and
power system-only models as a function of the
load/generator active power. The plot at the bottom of
the figure shows the difference between the settling
times obtained for the power system-only model and the
settling times of the multi-domain model.
Table 7. GGOV1 governor-only parameters.

Parameter Value Parameter Value
𝑅𝑅 (pu) 0.04 𝐾𝐾���� (pu) 1.50

𝑇𝑇����� (sec) 1.00 𝐷𝐷� (pu) 0.00
𝑚𝑚𝑚𝑚𝑚𝑚��� (pu) 0.05 𝐾𝐾���, 𝑑𝑑𝑑𝑑 (pu) 0.00
𝑚𝑚𝑚𝑚𝑚𝑚��� (pu) -0.05 𝑉𝑉��� (pu) 1.00
𝐾𝐾���� (pu) 10.00 𝑉𝑉��� (pu) 0.10
𝐾𝐾���� (pu) 5.00 𝑊𝑊��� (pu) 0.15
𝐾𝐾���� (pu) 0.00 FLAG 0
𝑇𝑇���� (sec) 1.00

Figure 8. Mechanical power response comparison.

Figure 9. Frequency response comparison.

4 Discussion
The first evidence of the differences between the power
system-only model and the multi-domain models can be
found in the frequency analysis results from Section 3.2.
The higher number of poles and states identified in the

linearized multi-domain model shows that the GGOV1
model used in the power system-only model will lead to
loss of information about the physical dynamics of the
turbine.

The information reported in Table 3 is particularly
useful when it comes to giving a better physical
explanation to the behavior of the model. First, the list
of states allows to appreciate the relevance of the
heating process in the gas turbine dynamics. Seven out
of nine states were related to thermodynamic properties
in the boundaries of the combustion chamber (denoted
as CC in the state vector). However, six poles are
cancelled with zeros, and thus only three poles deserve
special attention.

Figure 10. Electrical power response comparison.

Figure 11. Calculated settling times in the electrical power
response.

One of those poles is related to the fuel system
actuator transfer function, which is also present in the
simpler GGOV1-based model. As it can be seen in Table
3, the other two poles have a high contribution in the
pressure of the flue gases at the exhaust of the
combustion chamber. From theory, thermodynamic
state of a gas is determined by two properties such as
pressure and temperature, in addition to the molecular
composition. The pressure of the flue gases (i.e. the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815493

100

relevant state in the detailed gas turbine model) is
directly linked to the Brayton Cycle and to the turbine’s
operation characteristics.

Figures 6 and 7 together with Tables 2 and 3 lead to
another significant finding. In general, the explicit
model from ThermoPower provides a higher bandwidth
resolution in behavior modeling that is not possible with
the GGOV1-based model. Therefore, this shows how a
multi-domain model will be more suitable for transient
stability studies (e.g. fault analysis, control design, etc.)

The effects on the time response of the models can be
first examined in Figures 8 to 10. The load change event
influences the system frequency, which is measured
closed to the load bus, and is shown in Figurex9. Even
if it is for a short time (around 2 sec), the frequency
experiences a maximum deviation of up to 1 Hz. Such
frequency excursions are unacceptable in practice as
protective over/under frequency protection systems can
be triggered. Observe that the power system-only model
results give an over-estimation of the expected
frequency, and thus, any control/protection system
design using such model may give unexpected results in
practice. In Figure 9, the frequency of the power system-
only model goes beyond 49.6 Hz which is typically the
limit for under-frequency protections, while the multi-
domain model is below it, making the latter more
suitable for model-based design.

The GGOV1 turbine model is not dependent on the
shaft speed and therefore, the changes on the mechanical
power of Figure 8 are due to the governor’s response.
However, this is not in the case of the multi-domain
turbine model. That explains why the model produces
an additional oscillatory behavior on the mechanical
power that cannot be observed in the GGOV1-based
turbine model response. Also, note that the output
mechanical power is grossly under-estimated by the
power system-only model w.r.t the multi-domain model.

The electrical power can be used to examine the
impact of the gas turbine model response on the
generator’s electric power output (see Figure 10).
Nevertheless, it is important to keep in mind that the
electrical power is also directly influenced by the speed.
The settling times of this variable were calculated for
different values of the load/generator power and then
plotted in Figure 11. The results show a higher
amplitude in the frequency response when the GGOV1-
based turbine model is employed. Although the settling
times difference between the two models’ response keep
fairly constant, an increase is obtained for active power
values greater or equal than 0.85 pu. It has been found
that the cause of this performance is the saturation of the
fuel actuator limiter in the GGOV1-based turbine
model.

5 Conclusions
The following conclusions and recommendations can be
drawn from this work:

 A multi-domain model has been derived to allow
simulations of detailed representations of gas
turbines and the electric power grid. Although the
models are simple (due to the lack of available
modeling information) the methodology provides a
framework for future studies with multi-domain
models in power systems.

 Differences in the simple turbine model (GGOV1)
and the multi-domain explicit turbine model have
been shown. A relevant source of that difference is
the representation of the speed influence on the gas
turbine dynamics. The study was, however, limited
by the lack of measurements that could have served
as a reference for the model’s tuning and validation.
It would also be of value to analyze the differences
between the models in other power network
variables and not only in the generator response.

This work gives a proof-of-concept on the use of
Modelica for joint modeling of complex energy sources
without the loss of information that traditional power
system approaches incur in. The multi-domain approach
is thus valuable for power system analysts, especially
those dealing with controller design and dynamic
performance analysis.

Acknowledgement
The authors would like to thank Francesco Casella for
his assistance with questions regarding ThermoPower.
In the same way, they would like to acknowledge the
contributions of Tin Rabuzin in initial stage of this work.

References
Aguilera, M., Vanfretti, L., & Gómez, F. (2018).

Experiences in power system multi-domain
modeling and simulation with modelica & FMI: The
case of gas power turbines and power systems. In
2018 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES) (pp. 1–
6). IEEE.
https://doi.org/10.1109/MSCPES.2018.8405397

Baudette, M., Castro, M., Rabuzin, T., Lavenius, J.,
Bogodorova, T., & Vanfretti, L. (2018). Open-
Instance Power System Library Update 1.5 to "iTesla
Power Systems Library (iPSL): A Modelica library
for phasor time-domain simulations. SoftwareX.
https://doi.org/10.1016/j.softx.2018.01.002

Baur, M., Otter, M., & Thiele, B. (2009). Modelica
Libraries for Linear Control Systems LinearSystems
library. Proceedings of the 7th International
Modelica Conference, 20–22.

Braun, W., Casella, F., & Bachmann, B. (2017). Solving
large-scale Modelica models: new approaches and
experimental results using OpenModelica. In
Proceedings of the 12th International Modelica
Conference, Prague, Czech Republic, May 15-17,
2017 (pp. 557–563).

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815493 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

101

Carnegie Mellon University. (2013). Managing Variable
Energy Resources to Increase Renewable
Electricity’s Contribution to the Grid.

Casella, F. (2009). Object-oriented modelling of power
plants: a structured approach. IFAC Proceedings
Volumes, 42(9), 249–254.

Casella, F., & Leva, A. (2003). Modelica open library for
power plant simulation: design and experimental
validation. In Proceeding of the 2003 Modelica
conference, Linkoping, Sweden.

Casella, F., Leva, A., & Bartolini, A. (2017). Simulation of
Large Grids in OpenModelica: reflections and
perspectives, 227–233.

CEN-CENELEC-ETSI Smart Grid Coordination Group.
(2012). Smart Grid Reference Architecture,
(November), 1–46. Retrieved from
ftp://ftp.cencenelec.eu/EN/EuropeanStandardization
/HotTopics/SmartGrids/Reference_Architecture_fin
al.pdf

Dassault Systemes. (2018). Dymola Sparse Solvers for
Large-Scale Simulations.

De Mello, F. P., & Ahner, D. J. (1994). Dynamic models
for combined cycle plants in power system studies.
IEEE Transactions on Power Systems, 9(3).

El-Hefni, B., Bouskela, D., & Lebreton, G. (2011).
Dynamic Modelling of a Combined Cycle Power
Plant with ThermoSysPro. Proceedings of the 9th
Modelica Conference, 365–375.

Gómez, F. J., Vanfretti, L., & Olsen, S. H. (2015). Binding
cim and modelica for consistent power system
dynamic model exchange and simulation. In Power
& Energy Society General Meeting, 2015 IEEE (pp.
1–5).

Gomez, F., Vanfretti, L., & Olsen, S. H. (2018). CIM-
Compliant Power System Dynamic Model-to-Model
Transformation and Modelica Simulation. IEEE
Transactions on Industrial Informatics, 3203(c), 1–
1. https://doi.org/10.1109/TII.2017.2785439

Hannett, L. N., & Khan, A. H. (1993). Combustion turbine
dynamic model validation from tests. IEEE
Transactions on Power Systems, 8(1), 152–158.

Hübel, M., Berndt, A., Meinke, S., Richter, M., Mutschler,
P., Hassel, E., … Funkquist, J. (2014). Modelling a
lignite power plant in modelica to evaluate the
effects of dynamic operation and offering grid
services. In Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund;
Sweden (pp. 1037–1046).

Idebrant, A., Näs, L., Ab, M. E., Industrial, A., Ab, T.,
Bachmann, B., … Fritzson, P. (2003). Gas Turbine
Applications using ThermoFluid. Proceedings of the
3rd International Modelica Conference.

IEA. (2016). Energy, Climate Change & Environment -
2016 Insights.

ITEA3. (2017). OpenCPS - Open Cyber-Physical System
Model-Drive Certified Development. Retrieved June
19, 2017, from

https://itea3.org/project/opencps.html
Johansson, T. (2016). Simulation of gas channel

temperatures during transients for SGT-800.
Nicolet, C., Sapin, A., Simond, J. J., Prenat, J. E., &

Avellan, F. (2001). A new tool for the simulation of
dynamic behaviour of hydroelectric power plants. In
Proceedings of the 10th International Meeting of
WG1, IAHR, Trondheim, Norway.

Pereira, L., Undrill, J., Kosterev, D., Davies, D., &
Patterson, S. (2003). A new thermal governor
modeling approach in the WECC. IEEE
Transactions on Power Systems, 18(2), 819–829.

Pourbeik, P. (2013). Dynamic models for turbine-
governors in power system studies. IEEE Task Force
on Turbine-Governor Modeling.

Razak, A. M. Y. (2007). Industrial gas turbines:
performance and operability. Elsevier.

Rowen, W. I. (1983). Simplified mathematical
representations of heavy-duty gas turbines. Journal
of Engineering for Power, 105(4), 865–869.

Rowen, W. I. (1992). Simplified mathematical
representations of single shaft gas turbines in
mechanical drive service. In ASME 1992
International Gas Turbine and Aeroengine Congress
and Exposition (p. V005T15A001--V005T15A001).

Sapin, A. (1995). Logiciel modulaire pour la simulation et
l" étude des systèmes d’entraînement et des réseaux
électriques.

Siemens AG. (2018). PSS®E – high-performance
transmission planning and analysis software.
Retrieved from https://www.siemens.com/l

Vanfretti, L., Li, W., Bogodorova, T., & Panciatici, P.
(2013). Unambiguous power system dynamic
modeling and simulation using modelica tools. In
Power and Energy Society General Meeting (PES),
2013 IEEE (pp. 1–5).

Vanfretti, L., Olsen, S. H., Arava, V. S. N., Laera, G.,
Bidadfar, A., Rabuzin, T., … Gómez-López, F. J.
(2017). An open data repository and a data
processing software toolset of an equivalent Nordic
grid model matched to historical electricity market
data. Data in Brief, 11, 349–357.
https://doi.org/10.1016/j.dib.2017.02.021

Vanfretti, L., Rabuzin, T., Baudette, M., & Murad, M.
(2016). iTesla Power Systems Library (iPSL): A
Modelica library for phasor time-domain
simulations. SoftwareX, 5, 84–88.

Walsh, P. P., & Fletcher, P. (2004). Gas turbine
performance. John Wiley & Sons.

Yee, S. K., Milanovic, J. V, & Hughes, F. M. (2008).
Overview and comparative analysis of gas turbine
models for system stability studies. IEEE
Transactions on Power Systems, 23(1), 108–118.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815493

102

Analysing the stability of an islanded hydro-electric power system

Dietmar Winkler

University of South-Eastern Norway, Norway, dietmar.winkler@usn.no

Abstract
Power system simulation is a large arena especially in con-
nection with the large European power system. The chal-
lenges of large interconnected electrical power systems
call for a sophisticated system modelling solution that
can give comparable results. This lead to project “iTesla
– Innovative Tools for Electrical System Security within
Large Areas” (iTesla 2016) which was funded by the Eu-
ropean Commission. One result of that project was the
open-source modelling library called “iTesla Power Sys-
tem Library - iPSL” (Vanfretti et al. 2016) which then later
was forked and called “Open Instance Power System Li-
brary - OpenIPSL” (ALSETLab 2018). Those libraries
are based on the open-source modelling language “Mod-
elica” (Modelica Association 2017).

This paper presents the results of a Master’s the-
sis where Modelica was used in combination of the
“OpenIPSL” library to model a small local distribution
grid that is islanded.

It describes how to build the power system model using
Modelica of a grid that is located in the Westfjord area
of Iceland. That area of Iceland is only connected to the
national grid by one transmission line. The reliability of
the power supply is poor due to harsh weather conditions
during winter.

Two models of the transmission system of the West-
fjords were build. One is a base model with three gener-
ating units and one is an extended model with four gener-
ating units. Two different load scenarios were simulated.
The result of which could give indicators as to what ac-
tions would help to keep the islanded grid stable.
Keywords: hydroelectric systems, electric power systems,
modelling, modelica, open-source

1 Introduction
Iceland’s electrical energy sector has a strong focus on re-
newable energy and nearly all electrical energy produced
is from renewable resources. Hydro power accounts for
72 % of the production. Iceland is the largest electrical
power producer per capita in the world.

Being connected to the Icelandic power grid with only
one transmission line makes the Westfords dependent on
the internal production of the region in cases where the
connection to the national grid is lost. To improve the con-
ditions the power production inside the area needs to be
increased. The largest power station in the area is Mjólká.
This power station consists of 3 generating units with a ca-

Figure 1. Overview of the transmission system with
voltage levels: 132kV 66kV 33kV 11kV

pacity of approximately 13.2MVA. The area is dependent
on hydro power as renewable energy source for produc-
tion of electrical energy as the area has little natural hot
water resources for geothermal energy production.

The parts of the Westfjord transmission system in-
cluding generating units, transmission lines, transform-
ers, busses and loads were modelled using “OpenIPSL”
(Open-Instance Power System Library) (ALSETLab
2018). The transmission system is simulated when the
connection to the national grid is lost. As the frequency
drops the individual loads are partly disconnected. It is of
interest to find the disconnection sequence that gives the
fastest stabilisation of frequency and voltage and what ef-
fect an additional production of a fourth generating unit,
Hvesta, has on the stabilisation of the frequency and volt-
age.

The quality of the electricity, should be according to
Regulation No. 1048/2004 on the quality of electricity
and security of supply. This regulation states that the fre-
quency shall be within 47−52Hz all the time, and within
49.5− 50.5Hz 95% of the time. An internal goal of the
transmission line operator Landsnet is that the frequency
is within 49.8− 50.2Hz 95% of the time. The measure-
ment used for assessing the frequency is the average fre-
quency over a 10s period. The regulation states the sup-
plied voltage shall be within ±10% of the rated bus volt-
age. An exception is when supplied to power-intensive
industries, where the limits are +5/− 9%. This is only
applicable when assessing voltage quality of 220kV lines,
(Landsnet 2015).

2 System description
2.1 Transmission system
Figure 1 shows an part of the transmission system of the
Westfjords in the northwestern part of Iceland.

This part of the transmission system consists of:

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154103 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

103

Figure 2. Power house of Mjólká 1 and Mjólká 2
(Westfjord Power Company 2018)

• Six transmission lines with different voltage levels.

• Four generating units, three at Mjólká (3.4MVA,
8.5MVA, 1.35MVA) and one in Hvesta (1.7MVA).

• Three loads located in Talknafjordur, Patreksfjordur
and Bildudalur.

The Westfjords are connected to the national grid via
the Geiradalur substation. This connection is essential
for the area as the internal production of all of the West-
fjords only covers about 60 % of the consumed power.
The remaining 40 % of the consumed power is imported
to the area by the national transmission system from the
Geiradalur substation which in turn is connected to the na-
tional high-voltage ring line.

2.2 Mjólká power station
The Mjólká power station, located in Arnafjordur and is
the largest power station in the Westfjords, with an aver-
age yearly production of 54GWh. The Westfjords Power
Company owns and operates the power station, which
consist of three separate generating units. The first unit
Mjólká 1 was built in 1956 and put into operation in 1958.
Mjólká 2 was put into operation in 1975. Mjólká 1 and
Mjólká 2 have a common power house, which can be seen
in Figure 2.

Until 1980, when the Westfjords were connected to the
national grid, Mjólká was the main power supply of the
area. Mjólká 3 was constructed in 2010, and is located
upstream of Mjólká 1. The recent years Mjólká 1 and
Mjólká 2 have undergone turbine and generator upgrades.
This led to an increased capacity of the power station by
a total of 2.1MW . All units have separate pressure shaft
and utilise water from three different reservoirs. Mjólká 3
uses the reservoir of Mjólká 1 as tail water.

3 Modelling
3.1 Modelica
Modelica is an open-source high-level object-oriented,
equation based modelling language for modelling of phys-
ical systems developed by the non-profit Modelica As-
sociation. The background for the development was the
need for a standardised modelling language for reusable
and exchangeable models. The Modelica Association has

also developed a standard library which consists of more
than 1600 model components within several domains. In
order to utilise the language, a modelling and simulation
environment is needed. There exists both open-source and
commercial tools like OpenModelica (OSMC 2018) and
Dymola (Dassault Systèmes 2018), respectively.

3.2 OpenIPSL
The OpenIPSL (ALSETLab 2018) is an open-source li-
brary for modelling of electrical power systems. It is a
developed as an continuation of the iTesla project and is
maintained by the ALSETLab research group. The library
was used to model the following components:

• Generator

• Transformer

• Bus

• Power line

• Automatic Voltage Regulator (AVR)

• Power System Stabiliser (PSS)

• Turbine governor

The library also includes a tutorial and several appli-
cation examples in addition to single components. The
models are built in a drag and drop manner, setting up the
models is fast and intuitive. The components are based
on and validated against models from the existing power
system software such as “Power System Simulator for En-
gineering (PSS/E)” (Siemens 2018) and “Power System
Analysis Toolbox (PSAT)” (Milano 2018).

3.3 Model of transmission system
The model of the transmission system from Mjólká to
Keldeyri consists of the four generating units Mjólká 1,
2, 3 and Hvesta, the transmission lines, the transformers
and three loads. At Keldeyri the power is distributed to
the loads which are located in Talknafjordur, Bildudalur
and Patreksfjordur. The generating units consist of a PSS,
an AVR, a turbine governor and a generator model. The
Icelandic national grid is modelled as an infinite bus which
is connected to the transmission line at Geiradalur. The in-
finite bus is a source which provides a constant voltage at
a constant frequency and can provide and consume infi-
nite amounts of active and reactive power. The model of
the transmission system is made reusable so that it can be
used as basis for future simulations of similar systems. All
important parameters can be changed through a parameter
record.

Two models of the transmission system were made, one
model with the three Mjólká generating units and one
extended model with an additional production from the
Hvesta power station. Both are shown in shown in Fig-
ure 3 and Figure 4, respectively.

The system consists of:

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154103

104

Figure 3. Three-generator model

Figure 4. Four-generator model

• The transmission line from Geiradalur to Mjólká
is a 132kV line which is stepped down to 66kV
at the Mjólká substation and connected to the
“MJO_66kV” bus where Mjólká 1, 2 and 3 are con-
nected via a 6.3kV to 66kV transformer.

• Mjólká 3 generates at 0.4kV which is stepped up to
11kV and is then connected to the “MJO_11kV” bus
which are transformed down to 6.3kV and is con-
nected with Mjólká 1 and 2.

• The Mjólká substation and Keldeyri are connected
by a 66kV line. At Keldeyri the power is distributed
to the load centres at Bildudalur, Talknafjordur and
Patreksfjordur. Talknafjordur is supplied by a 11kV
line, Patreksfjordur is connected through a 66kV line
and Bildudalur is supplied by a 33kV line.

In the extended model Hvesta power station is con-
nected to Bildudalur via a 11kV line.

The parameters used in the model stem from a PSS/E

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154103 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

105

model of the Icelandic transmission system and were pro-
vided by the power company. These were used as basis
for parameterisation of the models.

3.3.1 Generating units

The model used for the generating units consists of:

• PSAT 2nd order generator

• PSAT Turbine governor type 2

• PSAT AVR type 3

• PSAT PSS type 2

The structure of the model is shown in Figure 5.

pwr_ref

vf

pm

vf0

pm0

delta
w
v

gen
P
Q

Order II

TGtype2

pm0
Wpm

v
vs

vf
AVRTypeIII

vf0

pss

Figure 5. Generating unit model

3.3.2 Transmission lines

Five transmission lines are modelled in the base model and
six lines in the extended model. Details and line names
used in the models are given in Table 1.

Table 1. Overview of transmission lines in model

Model From To Voltage Length
name [kV] [km]

GEI2MJO Geiradalur Mjólká 132 81
MJO2KEL Mjólká Keldeyri 66 50
KEL2TAL Keldeyri Talknafjordur 11 9
KEL2BIL Keldeyri Bildudalur 33 13
KEL2PAT Keldeyri Patreksfjordur 66 10
HVE2BIL Hvesta Bildudalur 11 4

The parameters from the PSS/E model used a differ-
ent per-unit base of SBPSSE = 100MVA. The models in
OpenIPSL on the other hand used SBOpenIPSL = 10MVA.
So all impedances needed to be corrected using (1).

zOpenIPSL = zPSSE
SBOpenIPSL

SBPSSE

(1)

The line parameters for HVE2BIL and KEL2TAL were
estimated and were based on parameters for KEL2BIL
(taken from the PSS/E reference). The reactance for
KEL2BIL was calculated in Ω

km·MW in order to serve for
a better estimation base for the calculation of HVE2BIL
and KEL2TAL.

3.3.3 Transformers

The PSAT two-winding transformer models were used for
all transformers.

3.3.4 Loads

The loads used a modified version of the PSAT LOADPQ
model. This is a constant load where the load amount is
entered as active load in MW and reactive load in Mvar.

The modifications done were:

• The system frequency and size of active and reactive
loads are provided as inputs through connectors.

• A specified amount of the loads is automatically dis-
connected when system frequency drops below a
user specified limit. Disconnected loads remain dis-
connected until the system frequency rises above a
specified limit.

4 Simulation of the islanded grid
This section contains the results of simulations when the
Westfjord area loses the connection to the national grid.
As this happens the simulated grid operates as an islanded
grid where all power consumed must be produced within
the grid. It is known that the consumption of the area is
larger than the production and therefore the frequency will
drop after the disconnection. The voltage levels through-
out the system will also be affected by less available re-
active power. As the frequency drops, parts of loads in
the area will automatically be disconnected at specified
frequencies to maintain a balance in the consumption and
production. It is of interest to see what sequence in which
the loads are disconnected will give the fastest stabilisa-
tion of voltage and frequency. It is also of interest to see
if the voltages and frequency are within the quality limits
presented in the introduction.

Two main load scenarios have been simulated, one sce-
nario with active and reactive loads, and one scenario with
only active loads. Each scenario is simulated using both
the model with three generation units and four generation
units. This is done to examine what effect the additional
production from Hvesta has on the stability of the system
frequency and voltages compared to the model with only
the Mjólká generating units. The two main scenarios are
divided into sub-scenarios where different loads are dis-
connected to see which load gives the fastest stabilisation
of system frequency and voltages. The voltages are mea-
sured at seven busses for the three generator model and
nine busses for the four generator model.

All plots can be found in the appendix.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154103

106

4.1 Scenario 1: Active and reactive loads
The initial loads used for simulation of Scenario 1 is given
in Table 2.

Table 2. Initial loads for Scenario 1

Load name Active load Reactive load
[MW] [Mvar]

LoadTAL 2.5 0.1
LoadBIL 6.85 1.5
LoadPAT 2.16 0.54

Total loads 11.51 2.14

After the disconnection from the national grid the loads
will be partially disconnected if the frequency drops be-
low a specified limit. The disconnected loads remain dis-
connected throughout the simulation. For all simulations
of Scenario 1 the connection to the national grid is lost
at t = 20s. All generating units are running at maximum
production from the start of the simulations.

4.1.1 Scenario 1.1: Disconnection of LoadPAT and
LoadTAL

Figure 6 shows the resulting voltage and frequency plots
for Scenario 1.1 simulated with the three generator model.
The frequency starts to drop at 20 s when the connection to
the national grid is lost. At 48Hz, 50% of the active and
reactive load of LoadPAT is disconnected and at 47Hz,
50% of the active and reactive load of LoadTAL. The fre-
quency and voltages stabilises after 105 s, this gives a sta-
bilisation time, measured from time of disconnection, of
85s. All voltages and the frequency stabilises within the
quality limits except the voltage at BIL_33kV bus which
stabilises at 0.88 pu. From 20s to 26s all voltage levels
except MJO_66kV are below the quality limit.

4.1.2 Scenario 1.2: Disconnection of LoadBIL

Figure 7 shows the resulting voltage and frequency plots
for Scenario 1.2 simulated with the three-generator model.
The frequency drops down to 48Hz, where 50% of the ac-
tive and reactive load of LoadBIL is disconnected. The
frequency and voltages stabilise after 55s, this gives a sta-
bilisation time from the disconnection of 35s. All voltages
and frequency stabilise within the quality limits. From 20s
to 31s the voltages at all busses except MJO_66kV are be-
low the quality limits.

4.1.3 Scenario 1 for four-generator model

For the four generator model, the loads of load Scenario 1
are not large enough to overload the transmission system.
From Figure 8 it can be seen that the voltages and fre-
quency are stabilised 8s after the disconnection from the
national grid. All voltages and frequency are within the
quality limits for the voltage and the frequency except the
very instance when the connection is lost.

4.2 Scenario 2: Active loads
The initial loads used for Scenario 2 are given in Table 3.
In this scenario, the reactive parts of the loads have been
neglected and the active power has been increased com-
pared to Scenario 1. The power lines and transformers
will still consume reactive power in this scenario.

Table 3. Initial loads for Scenario 2

Load name Active load [MW]
LoadTAL 3.3
LoadBIL 6.85
LoadPAT 2.16

Total loads 12.28

After the disconnection from the national grid, the loads
will be partially disconnected if the frequency drops below
a specified limit. The disconnected loads remain discon-
nected throughout the simulation. For all simulations of
Scenario 2 the connection to the national grid is lost at
t = 20s. All generating units are running at maximum
production from the start of the simulations.

4.2.1 Scenario 2.1: Disconnection of LoadPAT and
LoadTAL

Figure 9 shows the resulting voltage and frequency plots
for Scenario 2.1 simulated with the three-generator model.
At 48Hz, 50% of the active load of LoadPAT is discon-
nected and at 47Hz, 50% of the active load of LoadTAL.
The frequency and voltages stabilises after 75s, this gives
a stabilisation time from the disconnection of 55s. All
voltages and frequency stabilises within the quality lim-
its. From 20s to 34s the voltages of TAL_11kV and
BIL_33kV busses are below the voltage limits.

Figure 10 shows the resulting voltage and frequency
plots for Scenario 2.1 simulated with the four-generator
model. At 48Hz, 50% of the active load of LoadPAT is
disconnected.

For this simulation LoadTAL does not need to be dis-
connected to stabilise the frequency and voltages. The fre-
quency and voltages stabilises after 90s, which gives a sta-
bilisation time from the disconnection of 70s. All voltages
and the frequency are within the quality limits, the voltage
levels are higher than for the three-generator model

4.2.2 Scenario 2.2: Disconnection of LoadBIL

Figure 11 shows the resulting voltage and frequency plots
for Scenario 2.2 simulated with the three-generator model.
The frequency drops down to 48Hz, where 50% of the
active load of LoadBIL is disconnected.

The frequency and voltages stabilises after 50s. This
gives a stabilisation time from the disconnection of 30s.
All voltages and the frequency stabilise within the quality
limits. All voltage levels except MJO_66kV are below
limits in the time between 20s to 27s.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154103 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

107

Figure 12 shows the resulting voltage and frequency
plots for Scenario 2.2 simulated with the four-generator
model. The frequency drops until 48Hz, where 50% of
the active load of LoadBIL is disconnected. The frequency
and voltages stabilises after 70s. This this gives a stabil-
isation time from the disconnection of 50s. All voltages
and frequency stabilise within the quality limits. The volt-
ages at MJO_66kV and HVE_11kV bus are above limits
in the time between 47s to 51s and TAL_11kV is below
the limits at 54s.

5 Discussion

5.1 Summary Scenario 1

The additional production of Hvesta, manages to keep the
system stable after the disconnection. For the three gen-
erator model the disconnection of LoadBIL gives the best
results. The system stabilises faster, and all voltages sta-
bilises within ±10% of the rated voltage. At steady state
before the disconnection it can be seen from both sim-
ulations of the three generator model that the voltage at
BIL_33kV is too low, this can be regulated locally for ex-
ample by a tap changing transformer.

5.2 Summary Scenario 2

The additional production of Hvesta, causes the four-
generator model to stabilise slower than the three gener-
ator model, as the frequency will drop slower. The four-
generator model gives more stable voltage at the busses
compared to the three generator model. The disconnection
of LoadBIL gives the fastest stabilisation for both models.

5.3 Modelling challenges

Due to difficulties simulating the transmission system af-
ter losing the connection to the main grid using the load
parameters as used in the PSS/E model, the size of the re-
active load had been reduced in the simulations. For the
same numerical reason the transformers reactance is as-
sumed to be less than what is used in PSS/E. This can lead
to inaccuracies in the simulation results of voltage levels
at the busses compared to reality, where the voltage levels
probably will be somewhat lower than what is shown in
the simulations of Scenario 1. Still the simulations will
give a good indication of the time it will take for the volt-
age levels to stabilise.

For the active power and the frequency this will give
more accurate results, as the parameters used are equal to
the PSS/E model for the active loads. The assumed turbine
governor parameters are not good enough in cases where a
large amount of the load is removed. The governor strug-
gles with decreasing the production enough to allow the
frequency to stabilise at 50Hz. It can be assumed that
with correctly tuned controls the frequency would settle at
50Hz not at 50.2Hz.

Acknowledgement
This paper is based on the Master’s thesis by Kim Aars
with the title “Simulation of load and fault scenarios in
a hydro power system with island grid” (Aars 2017) fin-
ished in May 2017 at the University College of Southeast
Norway.

This project was carried out in collaboration with
Verkís Consultant Engineers, Iceland.

References
Aars, Kim (May 31, 2017). “Simulation of load and fault

scenarios in a hydro power system with island grid”.
Master’s thesis. University College of Southeast Nor-
way.

ALSETLab (2018). OpenIPSL. URL: http : / /
openipsl.org.

Dassault Systèmes (2018). Dymola. Modelon. URL:
http : / / www . dymola . com (visited on
05/28/2016).

iTesla (2016). iTesla - Innovative Tools for Electrical Sys-
tem Security within Large Areas. URL: http://www.
itesla-project.eu/.

Landsnet (2015). Landsnet Performance Report 2015.
URL: http : / / 2015 . landsnet . is / wp -
content / uploads / 2016 / 05 / Landsnet _
USE_performance_report_2015_english-
FINAL_26-5-2016.pdf (visited on 08/31/2018).

Milano, Federico (Aug. 31, 2018). PSAT. URL: http:
//faraday1.ucd.ie/psat.html.

Modelica Association (Apr. 2017). Modelica – A Uni-
fied Object-Oriented Language for Systems Model-
ing. Language Specification Version 3.4. Tech. rep.
Linköping: Modelica Association. URL: https :
/ / www . modelica . org / documents /
ModelicaSpec34.pdf.

OSMC (Aug. 31, 2018). OpenModelica – open-source
Modelica-based modeling and simulation environment.
Ed. by Open Source Modelica Consortium. URL:
https://openmodelica.org/.

Siemens (Aug. 31, 2018). PSS/E. URL: http : / /
siemens . com / power - technologies /
software.

Vanfretti, L. et al. (2016). “iTesla Power Systems Library
(iPSL): A Modelica library for phasor time-domain
simulations”. In: SoftwareX 5, pp. 84–88. DOI: 10.
1016/j.softx.2016.05.001.

Westfjord Power Company (Aug. 31, 2018). Mjolka
(Milk) River Power Station. URL: https://ov.is/
en.

A Appendix

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154103

108

Figure 6. Voltage and frequency plots for Scenario 1.1 for the three-generator model

Figure 7. Voltage and frequency plots for Scenario 1.2 for the three-generator model

Figure 8. Voltage and frequency plots for Scenario 1 for the four-generator model

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154103 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

109

Figure 9. Voltage and frequency plots for Scenario 2.1 for the three-generator model

Figure 10. Voltage and frequency plots for Scenario 2.1 for the four-generator model

Figure 11. Voltage and frequency plots for Scenario 2.2 for the three-generator model

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154103

110

Figure 12. Voltage and frequency plots for Scenario 2.2 for the four-generator model

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154103 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

111

Modeling of PMU-Based Islanded Operation Controls for
Power Distribution Networks using Modelica and OpenIPSL

Biswarup Mukherjee1 Luigi Vanfretti2

1Indian Institute of Technology Bombay, India, bismuk.ece@gmail.com
2Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute (RPI), USA, vanfrl@rpi.edu

Abstract
This paper describes the modeling of a frequency
controller that can be applied when islanding occurs at
a power distribution network with a single distributed
generator. The controller function requires bus
frequency measurements which, for design purposes,
need to be derived (computed) during dynamic
simulations. Therefore, this paper also proposes a
simple new frequency computation technique that can
be used during dynamic simulations. The paper also
addresses a technique for stochastic modeling of load
uncertainties in the time-domain using the Modelica
Noise library‟s features. The performance of the
islanded controller is evaluated under load
uncertainties, different PMU (phasor measurement
unit) reporting rates and communication latencies.
Keywords: frequency computation, islanded controller,
random load variation, PMU, distribution network,
synchrophasors,Modelica, OpenIPSL

1 Introduction
1.1 Motivations
Islanded operation in power systems is required when a
part of the network consisting of both loads and
generation is isolated from the rest of the power grid,
and generators continue to energize that isolated
network (Almas &Vanfretti, 2016). Controlling the
frequency in an islanded power system is a very
challenging task after an islanding occurs because it
requires at least one generator in the island to restore
the power/frequency balance in the island while at the
same time restoring its mechanical speed before being
re-synchronized to the main grid (Taranto & Assis,
2012). Alternatively, if there are enough available
generators in the islanded network, the generators
could be used to operate the islanded portion
autonomously, which is commonly referred to as a
“microgrid” (Lasseter, 2002).

Other than having enough generation capacity to
match the load in the island, at least one of the
generators would need to be equipped with an

isochronous controller to restore the frequency of the
island to normal operating frequencies. However, this
would require prior knowledge on how the microgrid
will be formed and to equip all potential generators
both with the traditional droop function and the
isochronous function; and to know when to de-activate
it. This paper explores an alternative supplementary
controller that could provide the same functionalities
and demonstrates this concept in the simplest case,
when there is only one generator present in the island.

1.2 Literature Review
It is reported in (Franc, Taranto, & Giusto, 2013) that
synchrophasor-based islanding detection schemes may
be able to provide fast and reliable islanding detection.
To measure the frequency PMUs are proposed in
(Kirkham et al, 2014), and controls for re-
synchronization using the PMU/phasor data have been
studied in (Taranto & Assis, 2012). For islanded
operation, alternatively it would be equally attractive to
propose a controller capable of using the frequency
estimated by PMUs. This paper proposes to use PMU
measurements in both transmission and distribution
networks to achieve similar goals.

For simulation, authors in (Milano, 2017) have
proposed that the system frequency can be estimated
from the center of inertia (COI) concept and a washout
filter (WF) on the phase angle of bus voltage. The COI
is an artificial modeling construct and in practice it
cannot be used (Diez-Marotoet al, 2001). In this paper,
an alternative new frequency computation technique is
proposed.

A synchronous islanding control scheme is proposed
in (Jacobsen et al, 2016). It uses a load sharing
concept, frequency deviation and phase angle deviation
from the islanded network. The measurements from a
PMU are used to calculate the active power imbalance
with respect to the main grid‟s frequency and the phase
angle. However, correction in the frequency‟s DC bias
in the islanded network was not addressed.

For islanded operation, different governor
configurations for frequency control have been
proposed (Mahatet al, 2009). Such an approach
requires an additional isochronous controller to bring

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154112

112

the frequency back to its nominal value when the
system is islanded. Instead, this paper proposes an
alternative supplementary controller that is cascaded to
the speed control loop.

1.3 Contributions
The main contributions of this paper are as follows:
 Proposing a simple frequency computation

technique that uses bus voltage angles within the
simulated model, which is attractive for controller
simulations when using the positive-sequence
power systems dynamic modeling framework.

 A new supplementary islanded operation
controller is proposed. The controller uses a PI
function and it is modeled using a centralized
control architecture that receives data from PMUs,
thereby complementing existing generator control
systems instead of replacing the existing ones.
When activated it will retain a frequency
deviation of zero when the distribution side is
islanded from the main transmission grid.

 A technique to simulate random load variations
using Modelica Noise library1 (which is also
integrated in Modelica Standard Library (MSL)
3.2.22) features is proposed. The performance of
the islanded controller is evaluated under time-
domain load uncertainties in the distribution side
of the test network.

 The performance of the proposed controller is
studied considering different PMU reporting rates
and data transmission delays.

The remainder of this paper is organized as follows. In
Section 2 the proposed frequency computation
technique is presented. Sections 3, 4 and 5 explain the
modeling of the islanded operation controller,
stochastic load model, and a model to implement the
PMU reporting rate with data transmission delay,
respectively. Section 6 describes the power system and
simulation execution models. Finally, case studies are
analyzed in Section 7 and conclusions are drawn in
Section 8.

2 Frequency Computation
2.1 Theory
When the distribution grid is disconnected from the
bulk transmission system, the bus voltage angles
measured by PMUs in the distribution grid will deviate
from those of the transmission grid. Phasor angle
measurements are bounded to .
Therefore, if the bus frequency is calculated from the
bus angle directly, angular measurement unwrapping
will create spikes that corrupt the actual frequency

1Online at: https://github.com/DLR-SR/Noise
2Online at: https://github.com/modelica/ModelicaStandardLibrary

deviation. To overcome this issue and to provide useful
frequency signals for control a simple method is
proposed. Let 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑟𝑟 represent the imaginary and real
parts of complex bus voltage, then the bus angle (𝜃𝜃) can
be calculated from these two values as

Let 𝜔𝜔 be frequency of the bus voltage, then the first
order derivative of the bus angle represents the
frequency deviation at the bus. Therefore, the bus
frequency can be represented as,

Equation (2) is used for implementation in Modelica.

2.2 Implementation
Figure1 shows the block diagram used for
implementation of the Modelica model of the proposed
frequency computation technique.

Figure 1. Block diagram for implementation of the
frequency computation technique.

To compute the bus frequency the following Modelica
code has been used in the “Frequency computation
block” shown in Figure 1.
model frequencyCalculatiionBlockCode
 Modelica.Blocks.Interfaces.RealInput u;
 Modelica.Blocks.Interfaces.RealInput u1;
 Modelica.Blocks.Interfaces.RealOutput y;
 Modelica.Blocks.Continuous.Derivative
 derivative;
 Modelica.Blocks.Continuous.Derivative
 derivative1;
equation
 y = (u*(derivative1.y) + u1*(derivative.y))/
((u^2) + (u1^2));
 connect(u1, derivative1.u);
 connect(u, derivative.u);
end frequencyCalculatiionBlockCode;

The real inputs v_r and v_i represent the real and
imaginary parts of the complex bus voltage and the real
output y represents the calculated bus frequency.

The Modelica code uses a derivative block from
Modelica Standard Library (MSL), which is shown
below. This block defines a transfer function between
the input u and output y. In the frequency computation

𝜃𝜃 𝑡𝑡𝑎𝑎𝑛𝑛− 𝑉𝑉𝑖𝑖
𝑉𝑉𝑟𝑟

 (1)

𝜔𝜔 𝜃𝜃 𝑉𝑉𝑟𝑟𝑉𝑉 𝑖𝑖 𝑉𝑉𝑖𝑖𝑉𝑉 𝑟𝑟
𝑉𝑉𝑟𝑟 𝑉𝑉𝑖𝑖

 (2)

Frequency computation block
Bus

 frequency
Bus voltage

phasor

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154112 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

113

the derivative block uses a gain value of k=1 and a time
constant of T= 0.01 sec.

Figure 2. Model of the derivative block from the
Modelica Standard Library (MSL).

2.3 Numerical results and comparison
Conventional power system tools, e.g. PSS/E (Siemens
AG, 2018), compute bus frequencies using the
approach shown in Figure 3. It passes the bus voltage
angle through a derivative computation and a first
order filter. It has been shown in (Milano, 2017) that
the approach is prone to numerical problems, although
it is the standard de-facto approach. An alternative
method in (Milano, 2017), is only suitable for domain
specific power system tools and not general-purpose
ones, e.g. Dymola or OpenModelica.

To illustrate the need for the implementation proposed
in this paper, the standard approach, i.e. wash-out (WF)
filter, is compared with the one proposed in this paper.
The Modelica implementation of the WF filter is
shown in Figure 3, while simulation results are plotted
in Figure 4. The parameter used for the WF filter are
k= 1, T_f= 1 sec and T_w = 2 sec, where T_f and
T_w are the time constants of the derivative and first
order filter blocks, respectively. The gain k is the same
for both derivative block and first order filter. In the
simulation the input angle is switched from – 𝞹𝞹 to + 𝞹𝞹
with a period of 1 sec. to mimic angle wrapping.

Figure 3. Washout filter (WF) implementation in
Modelica.

The Figure 4a shows the traces of the proposed
implementation showing ∆f = 0 for angle switching in
Figure 4b through +/- 𝞹𝞹 switching, while the blue trace
shows the output of the WF filter. The expected output
is a frequency value of 1Hz, consequently, two major
issues with the WF filter can be observed: (1) the
filter‟s response due to initialization and (2) numerical
switching due to the sawtooth‟s input. Hence instead of
using the traditional frequency computation approach,
the islanded controller in the next section will use the
proposed method for frequency computation.

(a) Proposed method vs WF model

(b) Input signal

Figure 4. Comparison between the proposed frequency
computation technique and the WF model.

3 The Islanded Operation Controller
3.1 Islanded operation control function
A schematic of the proposed islanded controller model
is shown in Figure 5.

Figure 5. Schematic of the proposed controller.
The controller is activated when it detects that the
distribution network is islanded from the transmission
grid. In the schematic the error signal is obtained from
the load bus frequency (ΩL) and the reference
frequency (ΩRef). The output of this controller, along
with the reference speed (ωRef), provide the new input
error signal of the speed control loop in the governor
system. PMech represents the mechanical power input to
the turbine corresponding to a prescribed power
dispatch.

0 5 10 15 20
0

5

10

15

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[ra
d/

s]

Proposed method
WF

0 5 10 15 20

-2

0

2

4

Simulation Time [s]

An
gl

e
Sw

itc
hi

ng
 [d

eg
re

e]

Sawtooth input signal

Islanding
Detection

PI
Controller

+
+ +

_

ΩL

ΩRef

ωRef

PMech

Turbine
Governor

System

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154112

114

3.2 Modelica Implementation
The Modelica implementation of the proposed
controller is shown in Figure 6. The proposed
controller is highlighted with a dotted line surrounding
it, while the GENSAL block corresponds to the
synchronous generator; IEEESGO corresponds to the
gas and turbine model, and SEXS to the excitation
control system of the generator. The overall system
frequency is varied by introducing a speed change in
the governor system of the transmission side generator
model G1 in Figure 9 and 10.

Figure 6. Modelica implementation for the distribution
side generator model (G22) with the islanded operation
controller, see Figure 9 for the network model.

The IEEE Standard for Interconnecting Distributed
Resources with Electric Power Systems (IEEE
Standard, 1547.2-2008) states that the DGs
(Distributed Generations) must be disconnected from
the isolated grid within 2 s after an unintentional
islanding event. However, the goal of the proposed
controller is to avoid DG disconnection and operate the
grid autonomously. Hence, instead of tripping the
generator, when the distribution side frequency reaches
tripping thresholds, the trip signal goes to the breaker
to island the distribution side, and the same time an
activation signal „start_islanding‟ activates the
islanded operation controller. The PI controller‟s
output can be expressed as in the Table 1, where 𝐾𝐾𝑃𝑃
and 𝐾𝐾𝐼𝐼 represent the proportional and integral gain of
the islanded operation controller respectively.

Table 1. Output truth table of voltage controller
Boolean signal

(start_islanding)
Output of islanded

controller (y)

True y 






 
S

K
K I

PL

False 0

4 Stochastic Load Modeling
The Modelica Noise Library allows users to model
stochastic behavior, and it can be used along with the
load model with external input of OpenIPSL (Baudette
et al, 2018) under,
OpenIPSL.Electrical.Loads.PSSE.Load_E
xtInput, to model the load uncertainties in any
power network. Here, a white noise has been injected
to the load model. Note that white noise generates a
signal having normal distribution characterized by a
mean and variance.

Figure 7. Stochastic model to simulate load variation in a
power network.

5 Modeling of PMU Reporting Rates
and End-to-End Delay

To Model the reporting rate of a PMU device, a Zero
Order Hold (ZOH) block from Modelica Standard
Library can be used to simulate different data
“resolutions”, i.e. different reporting rates, streamed by
a PMU device. The time delay due to data transmission
from a PMU to Phasor Data Concentrator (PDC) has
been modeled using the „fixedDelay‟ block from
the MSL that uses the following Modelica code shown
below. Note that it uses the Modelica „delay‟
operator, which is a unique Modelica language feature.
This operator introduces a fixed time delay between a
real input and a real output signal.

block FixedDelay "Delay block with fixed De
layTime"
extends
Modelica.Blocks.Interfaces.SISO;
parameter SI.Time delayTime(start=1)
"Delay time of output with respect to input
 signal";
 equation
 y = delay(u, delayTime);
 end FixedDelay;

The implementation of the reporting rate and delay
block is shown below, and the PMU reporting rate is
shown in Figure 8. In this paper the performance of the
controller has been studied for both the PMU reporting
rate and delay due to data transmission by varying the
sampling period of the ZOH block and the delay time
of the „fixedDelay‟ block.

OpenIPSL load class Islanded
operation
controller

GENSAL

IEESGO

SEXS

Stochastic
behaviour

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154112 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

115

Figure 8. Modeling of PMU reporting rate and data
transmission delay.

6 Power System and Simulation
Execution Models

6.1 Power System Model
Figure 9 shows the power system model used for
analysis. It is comprised by a transmission network and
a distribution network. The circuit breakers CB1 and
CB2 are controlled using logic equations implemented
in a simulation set-up block, which is discussed next.

Figure 9. Modelica model of the test power system.

Figure 10. Generator model G1 in the transmission
portion of the network.

6.2 Simulation Set-up Implementation
The implementation of the simulation set-up block is
shown in Figure 11. It is used to create the islanding
event and to activate the islanded operation controller.
A ramp signal is activated in G1at t=6 seconds when
the simulation starts and lasts for 5 seconds to vary the
frequency. The „Frequency computation
block‟ calculates the frequency for the distribution
side network from B6‟s bus voltage.

Figure 11. Modelica model of the simulation set-up
block.
A true Boolean signal is sent to the circuit breaker CB2
when the frequency limit is reached. This condition
checks the frequency deviation to the set-point limit set
in the „Frequency limit check‟ block. The
output of this block is also used to activate the
proposed islanded controller, while a Boolean true
signal keeps the circuit breaker CB1 closed in the
transmission side network while maintaining the
transmission line energized. Regardless, CB1 is
modeled in such way that it can be closed and open as
CB2, which will be used in further studies. If the
frequency limits are provided in nominal frequency
values instead of a frequency difference, i.e. 49.95 and
50.05 Hz instead of +/- 0.05 Hz, the block „const1‟
can be used to introduce a 50 Hz offset.

7 Case Studies

In the following case studies, except in Case 1, a steam
turbine and governor system are used in the model of
the distribution side generator G22 to analyze the
performance of the proposed islanded operation
controller. For all case studies, the same basic
simulation set-up described in the previous section is
used; hence, the disturbance applied corresponds to the
ramp input into the governor reference as shown in
Figure 10.

7.1 Case 1:

The feasibility of using proposed controller in either
hydro or gas turbines is studied in this case. This is

zeroOrderHold f ixedDelay

delayTime=5

u y

Distribution Network

CB1

CB2

Simulation
Set-up

Transmission
Network

Frequency
limit check block

Signal to activate
the controller

Signal to CB1

Signal to CB2

Frequency
computation
block

System Base = 100 MVA
Frequency = 50 Hz

GENSAL

HYGOV

SEXS

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154112

116

necessary as DER‟s include small hydro units, thermal
and gas-power sources. In power systems, HYGOV is
used to model hydraulic turbine and governor systems,
while IEEESGO can be used to model steam turbine
and governor systems.

The test system responses due to the controller‟s action
were analyzed by plotting the frequency deviation in
the distribution side network using both the HYGOV
and the IEESGO turbine-governor systems. Figure 12
shows that the distribution side frequency deviation is
zero when the proposed PI controller is activated,
whereas a steady state error is present when there is no
such control action regardless to the turbine-governor
type.

Figure 12. Case 1 - Frequency deviation for different
turbine- governor systems.

In the case of the IEESGO turbine-governor system the
maximum instantaneous values of frequency deviations
are 0.0414 Hz and 0.0405 Hz respectively when the
controller remains inactive and active. However In case
of HYGOV turbine-governor systems the maximum
instantaneous values are 0.057 Hz (when control action
remains inactive) and 0.055 Hz (when control action
remains active).
Observe that the responses of HYGOV results from a
larger frequency transient which is due to the non-
minimum phase characteristic of the hydro turbine. To
minimize this transient or reduce it to allowable
operational limits it is necessary to redesign the
governor control system, which will be discussed in a
future paper.

7.2 Case 2:
Here the controller‟s response has been analyzed by
plotting the frequency deviation of the distribution
network when the load in B6 has a noise level with
standard deviation (s.d.) of 0.0001. The results are
plotted in Figure 13a. As it can be observed, the
modeling of load uncertainties allows to evaluate the
controller‟s effort during the islanding and also when
normal operating conditions have been reached.
Figure 13b helps to show the impact of stochastic
loads. It shows the islanded operation control output

error for both deterministic and stochastic responses.
Note from Figure 13b that deterministic load models
do not allow to accurately capture the controller‟s
response due to time varying load changes. The ability
to capture this behavior can allow to create controls
that minimize the impact of stochastic variations on the
turbine, which will be subjected to further work.

(a) Frequency deviation

(b) Controller output

Figure 13. Case 2 – Stochastic and deterministic model
responses.

7.3 Case3:
This case study has been carried out to analyze the
performance of the islanded operation controller for the
test network in Figure 9 considering the impact of the
PMUs reporting rate. The frequency deviation has been
plotted for different sampling periods (ZOH) when the
islanded controller is active. The plots for this case
study are shown in the Figure 14a.

From Figure 14a observe that delays from 25 to 150
ms have no major impact on the controller‟s
performance, this is because the frequency dynamics
being controlled are much larger than typical PMU
reporting rates. However as shown in Figure 14b, when
the reporting rate is set to tens of seconds, the control
loop becomes unstable i.e. for the reporting rate > 16 s.
This is a positive result, as typical PMU reporting rates
are ≤ 16_s, i.e. 10, 30, 50, 60 samples per seconds.

0 10 20 30 40 50 60 70
-0.06

-0.04

-0.02

0

0.02

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[H
z]

PI active (HYGOV)
PI inactive (HYGOV)
PI active (IEESGO)
PI inactive (IEESGO)

0 5 10 15 20 25 30

-0.04

-0.03

-0.02

-0.01

0

0.01

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[H
z]

Controller active
Controller inactive

0 50 100 150
-3

-2.5

-2

-1.5

-1

-0.5

0
x 10-4

Simulation time [s]

Co
nt

ro
l o

ut
pu

t

Derterministic
Stochastic

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154112 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

117

Although the lowest PMU reporting rates is of 10
samples per second, simulations have been carried out
with much slower reporting rates to determine the
stability margin of the controlled system.

(a) Frequency deviation

(b) Frequency deviation

(c) Controller output

Figure 14. Case 3 – Analysis of different PMU reporting
rates.

7.4 Case 4:
This case study analyses the impact of data
transmission delay. A „fixedDelay‟ block is used to
mimic the aggregate time-delay from a PMU device to
the controller. The results are shown in Figure 15a
and15b.

As it can be observed in Figure 15a that the maximum
delay bound is time delay (td) ≈ 12s. These results are
encouraging, as typical synchrophasor systems only
incur in delays in the order of a 100s of milliseconds,
up to a few seconds, and thus, delay compensation will
not be critical as in other PMU based controls (Almas
&Vanfretti, 2016).

(a) Frequency deviation

(b) Controller output

Figure 15. Case 4 - Controller output for different delays.

7.5 Case 5:
This case study analyses the impact of frequency
deviation over both control error and mechanical
power output of the turbine governor system. From
Figure 16a it can be observed that for both
deterministic load and stochastic load model the
control error decreases up-to 0.023 %. This shows the
impact of modeling the stochastic behavior of the load
for control design. Meanwhile, Figure 16b shows the
plot of frequency deviation for mechanical power
output of the turbine governor system for both
stochastic and deterministic load models. Observe that
with the increase of the frequency deviation, the
mechanical power increases up-to 10.88 %. This shows
that stochastic load modeling is necessary when
analyzing turbine-governor control systems.

0 5 10 15 20

-0.04

-0.03

-0.02

-0.01

0

0.01

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[H
z]

Reporting rate= 25 ms
Reporting rate= 50 ms
Reporting rate= 100 ms
Reporting rate= 125 ms
Reporting rate= 150 ms

0 50 100 150 200 250 300
-0.03

-0.02

-0.01

0

0.01

0.02

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[H
z]

Reporting rate= 50 ms
Reporting rate= 16 s
Reporting rate= 17 s

0 50 100 150 200 250 300
-6

-4

-2

0

2
x 10-4

Simulation Time [s]

Co
nt

ro
lle

r o
ut

pu
t

Control effort= 50 ms
Control effort= 16 s
Control effort= 17 s

0 20 40 60 80 100 120

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Simulation Time [s]

Fr
eq

ue
nc

y
de

vi
at

io
n

[H
z]

Delay= 0 ms
Dealy = 5 s
Delay = 10 s
Delay = 12 s

0 20 40 60 80 100 120
-10

-8

-6

-4

-2

0

2
x 10-4

Simulation Time [s]

Co
nt

ro
lle

r o
ut

pu
t

Control effort= 0 s
Control effort= 5 s
Control effort= 10 ms
Control effort= 12 ms

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154112

118

(a) Frequency deviation vs control error plot(see Figure

13b for the time domain plot of the control error)

(b) Frequency deviation Vs mechanical power

Figure 16. Case 5 – Impact of stochastic load modeling in
turbine-governor system control performance.

8 Conclusions

The following conclusions can be drawn from the work
presented in this paper:
 The proposed frequency computation provides

better results than the traditional WF filter in case
of angle wrapping from +/- 180 degrees.

 To simulate random load variations in any power
network the Modelica Noise Library features is
combined with OpenIPSL is a feasible solution that
helps to capture the impact of time domain load/
generation uncertainties in the controller
performance.

 The proposed supplementary islanded frequency
controller can be activated to retain a frequency
deviation of zero when islanding occurs. It also
performs satisfactorily to correct the frequency
deviations when subjected to load uncertainties.

 The current PMU report rates and typical delays
that synchrophasor systems experience will not
have a major impact on the controller performance.

Further work will be to investigate the performance of
this controller under multiple realizations of load
uncertainties (noise level) in order to analyze the
impact of uncertainties on the system.

Reproducibility of Research
The models used to obtain the results in this paper are
available online on the following Github repository:
https://github.com/ALSETLab/2018_AmericanModeli
caConf_PMUBasedIslanding

Acknowledgements
The authors would like to acknowledge former
members of the now extinct SmarTS Lab research
group for their valuable feedback and comments
towards building the models for this work, especially
Tin Rabuzin.
Author B. Mukherjee was supported by Explora‟Sup
grant (Auvergne Rhône Alpes Scholarship) from
Grenoble Institute of Technology (Grenoble-INP), for
the year of 2016/2017.
The work of L. Vanfretti was also supported in part by
the Engineering Research Center Program of the
National Science Foundation and the Department of
Energy under Award EEC-1041877 and in part by the
CURENT Industry Partnership Program.

References
Almas, M.S. &Vanfretti, L., “RT-HIL Implementation pf the

Hybrid Synchrophasor and GOOSE-Based Passive
Islanding Schemes,” IEEE Transactions on Power
Delivery, vol. 31, pp. 1299-1309, June 2016.

Taranto, G.N., Assis, Tatiana M.L. “Automatic
Reconnection From Intentional Islanding Based on
Remote Sensing of Voltage and Frequency Signals,” IEEE
Transsactions on Smart Grid, December 2012, Vol. 3, pp.
1877-1884

Lasseter, R.H., "MicroGrids," Power Engineering Society
Winter Meeting, 2002. IEEE , vol.1, no., pp.305,308 vol.1,
2002

Franc, R., Sena, C., Taranto, G.N., & Giusto, A., “Using
synchrophasors for controlled islanding-A prospective
application for the Uruguayan power system,” IEEE
Trans. Power Syst., vol. 28, no. 2, pp. 2016–2024, May
2013

Kirkham, H., Dagle, J., Sun, Y., PMU Measurement
Technology. s.l.:
https://certs.lbl.gov/sites/all/files/kirkham-pmu-
measurement-technology.pdf, 2014. p. 10

Milano, F., and Ortega, A., “Frequency divider,” Power &
Energy Society General Meeting, 2017 IEEE

Diez-Maroto. L., Vanfretti. L., Almas, M.S., Jonsdottir.
G.M., Rouco.L, “A WACS exploiting generator Excitation
Boosters for power system transient stability
enhancement,” Elsevier-Electric Power Systems Research.
https://doi.org/10.1016/j.epsr.2017.03.019

Jacobsen, M.R., Laverty, D., Best, R. J., “A laboratory
experiment of single machine synchronous islanding using
PMUs and Raspberry Pi – A platform for multi-machine
islanding,” Power & Energy Society General Meeting,
2016

-0.3 -0.2 -0.1 0 0.1
-3

-2.5

-2

-1.5

-1

-0.5

0
x 10-4

Frequency deviation [rad/s]

Co
nt

ro
l e

rro
r

Derterministic
Stochastic

-0.3 -0.2 -0.1 0 0.1
0.1

0.102

0.104

0.106

0.108

0.11

Frequency deviation [rad/s]

M
ec

ha
ni

ca
l p

ow
er

Deterministic
Stochastic

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154112 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

119

PukarMahat, Zhe Chen, and BirgitteBak-Jensen, “Gas
turbine control for islanding operation of distribution
systems,” Power & Energy Society General Meeting, 2009
IEEE

Modelica Noise. [Online] https://github.com/DLR-SR/Noise
Modelica Standard Library, [Online]

https://github.com/modelica/ModelicaStandardLibrary
Siemens AG. (2018). PSS®E – high-performance

transmission planning and analysis software. Retrieved
from:
https://www.siemens.com/global/en/home/products/energy
/services/transmission-distribution-smart-grid/consulting-
and-planning/pss-software/pss-e.html

IEEE Application Guide for IEEE Standard for
Interconnecting Distributed Resources With Electric
Power Systems, IEEE Std. 1547.2-2008, 2008

Baudette, M., Castro, M., Rabuzin, T., Lavenius, J.,
Bogodorova, T., &Vanfretti, L. (2018). OpenIPSL: Open-
Instance Power System Library – Update 1.5 to “iTesla
Power Systems Library (iPSL): A Modelica library for
phasor time-domain simulations”, SoftwareX.
https://doi.org/10.1016/j.softx.2018.01.002

OpenIPSL GitHub, [online]
https://github.com/OpenIPSL/OpenIPSL .

Modelica Documentation, [Online]
https://build.openmodelica.org/Documentation/ModelicaR
eference.Operators.%27delay()%27.html

Almas, M.S. &Vanfretti, L., “Impact of time-synchronization
signal loss on PMU-based WAMPAC applications,”IEEE
Power and Energy Society General Meeting
(PESGM),pp.1 – 5,2016

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154112

120

ModestPy: An Open-Source Python Tool for Parameter Estimation
in Functional Mock-up Units

Krzysztof Arendt1 Muhyiddine Jradi1 Michael Wetter2 Christian T. Veje1

1Center for Energy Informatics, University of Southern Denmark, Denmark, {krza,mjr,veje}@mmmi.sdu.dk
2Lawrence Berkeley National Laboratory, USA, mwetter@lbl.gov

Abstract
The paper presents an open-source Python tool for pa-
rameter estimation in FMI-compliant models, called Mod-
estPy. The tool enables estimation of model parameters
using user-defined sequences of methods, which are par-
ticularly helpful in non-convex problems. A user can start
estimation with a chosen global search method and sub-
sequently refine the estimates with a local search method.
Several methods are available already and the tool’s archi-
tecture allows for easily adding new ones. The advantages
of having a single interface to multiple methods and using
them in sequences are highlighted on a case study in which
the parameters of a Modelica-based gray-box model of a
building zone (nonlinear, multi-output) are estimated us-
ing 9 different combinations of methods. The methods are
compared in terms of accuracy and computational perfor-
mance.
Keywords: FMI, parameter estimation, Python, open-
source

1 Introduction
1.1 Background
The Functional Mock-up Interface (FMI) is becoming a
de facto standard co-simulation interface, as of 2018 be-
ing supported by over 100 simulation tools (http://
fmi-standard.org/tools/). The support of the FMI
in simulation tools varies from full support, especially in
Modelica tools, to a subset of FMI 1.0 / 2.0, import / ex-
port, co-simulation / model exchange. Models compli-
ant with FMI are referred as Functional Mock-up Units
(FMUs).

Using FMUs allows for a flexible co-simulation be-
tween models developed in different software environ-
ments. It is also attractive for resource-limited embed-
ded systems with no need to install a GUI-based simu-
lation environment, or because relying on FMI makes the
system less dependent on specific tools and vendors. In
addition, the common interface to models developed in
different software environments makes it possible to de-
velop generic tools for co-simulation, system identifica-
tion, or optimization. System identification methods are
commonly used to calibrate models with respect to the real
system. In the case of FMUs, the model structure is typ-
ically already defined in the FMU, so the problem is nar-

rowed down to the estimation of model parameters and/or
states. In fact, several FMI-specific tools for parameter
and state estimation have been developed in recent years.

Bonilla et al. (2017) developed a GUI tool for static
(batch) parameter estimation in FMUs (compliant with
Model Exchange 2.0), based on a global-search Multi-
Objective Genetic Algorithm (MOGA). The main moti-
vation for the development of this tool was to facilitate
the coupling of different modeling languages, tools and
optimization algorithms, while being customizable. The
authors stated that the implementation of additional opti-
mization algorithms is planned.

Bonvini et al. (2014) developed a state and parameter
estimation Python tool based on Unscented Kalman Filter
(UKF), compliant with Model Exchange 1.0. The UKF
is a recursive estimation method, meaning it is suitable for
on-line applications where the states or parameters need to
be continuously updated. The authors presented the capa-
bilities of the tool on a fault detection and diagnosis (FDD)
case study, in which it was used to identify a faulty valve
in a simple theoretical system. In another exemplary ap-
plication, the tool has been used for an on-line estimation
of the number of occupants in a building based on indoor
temperature and CO2 (Sangogboye et al., 2017).

Vanfretti et al. (2016) developed the Rapid Parameter
Identification toolbox (RaPId), used for parameter estima-
tion in FMUs. The tool is developed as a Matlab/Simulink
plug-in and can be called using the Matlab command line
interface, but is also equipped with a GUI allowing it to
be used as a standalone application. Multiple optimiza-
tion methods are available, such as fmincon from Mat-
lab and heuristic algorithms, like a particle swarm opti-
mization (PSO) implemented by the authors.

Kampfmann et al. (2017) proposed a work flow for pa-
rameter estimation in FMUs, based on open-source tools.
The performance of the work flow was demonstrated on a
real industrial problem of a three arm Delta Robot. The es-
timation problem is formulated using the maximum like-
hood approach and the underlying optimization problem
is solved using the Levenberg-Marquardt algorithm.

De Coninck et al. (2016) developed a more special-
ized Python toolbox for gray-box system identification for
buildings. The tool automates both the model selection
(out of a group of predefined models) and parameter es-
timation. The toolbox relies on the JModelica.org plat-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154121 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

121

form which is used for compilation of models, simulation
and optimization. The direct collocation method is used to
solve the underlying optimization problem. Since the col-
location method is a local optimization method, the initial
guesses of parameters are either inherited from the previ-
ous estimation runs or a set of initial guesses is constructed
using the Latin hypercube sampling method. The toolbox
is currently in use in MPC systems in existing buildings
(De Coninck and Helsen, 2016).

Andersson et al. (2012) implemented in JModelica.org
three derivative-free optimization algorithms suitable for
parameter estimation in FMUs. The algorithms include
the Nelder-Mean simplex method, a differential evolution
algorithm, and a genetic algorithm. The algorithms can be
accessed through a Python interface.

Despite the diverse landscape of the tools and work
flows presented, there are still some niche applications
not specifically addressed. For example, there are no
lightweight, generic, open-source tools that would enable
automated testing of multiple algorithms, including algo-
rithm sequences (for global and local search), and be eas-
ily deployable on the target machines and integrable into
other codes. The available tools are either tied to specific
optimization algorithms, specific proprietary platforms, or
large software environments. This paper presents a new
tool that potentially fills this niche.

1.2 Paper Objective
The objective of this paper is to present a new open-source
Python tool for parameter estimation in FMUs, called
ModestPy (Arendt, 2017). Through the PyFMI (Ander-
sson et al., 2016) the tool is compatible with FMI 1.0/2.0
and Co-Simulation/Model Exchange. The main novelty of
the tool compared to the ones presented is that it includes
several optimization methods and enables easily running
the methods in user-defined sequences.

The initial motivation of this work was to facilitate
parameter estimation in models of buildings and HVAC
systems for the purpose of MPC. One of the often men-
tioned requirements for MPC to become economically vi-
able in buildings is an automated creation and updating
(e.g. through parameter estimation) of predictive mod-
els (Rockett and Hathway, 2017). Building and HVAC
models are often non-linear and in general can be non-
differentiable. In this context, ModestPy is a generic
tool with no assumptions on the model structure, offer-
ing a high flexibility in terms of combining different al-
gorithms. Since the performance of specific methods is
model-dependent, the aim of the tool is to support mul-
tiple algorithms. Currently, the tool supports two algo-
rithms implemented by the authors (genetic algorithm and
pattern search) in addition to several algorithms from the
SciPy eco-system (Jones et al., 2001).

2 Software Description
ModestPy is designed with the ease of use and installation
in mind. It is compatible with both Python 2.7 and 3 and

was tested on Windows and Linux. The package can be
installed using the command pip install modestpy.

The package structure is modular (Fig. 1). A user
needs to interact only with one class, Estimation from
estimation.py, and its two methods: estimate() and
validate().

Figure 1. Package structure (testing, logging and auxiliary mod-
ules excluded for clarity).

The implemented algorithms are kept in separate
modules under modestpy.estim. The algorithms
share some common functionality covering the error
calculation (error.py), estimation parameter interface
(estpar.py), plotting (plots.py), and FMU model in-
terface (model.py). The interaction with FMUs is pro-
vided by PyFMI (Andersson et al., 2016). Two types of
error metrics are implemented, the total mean-square er-
ror (MSEtot) and the total normalized mean-square error
(NMSEtot), calculated as follows:

MSEtot = ∑
i

∑N
t=1(Ŷ

t
i −Yt

i)
2

N
, (1)

NMSEtot = ∑
i

MSEi

Ȳ 2
i

, (2)

where Ŷ t
i is the measured value of variable i at time step t,

Yt
i is the simulated value of variable i at time step t, Ȳi is

the mean measured value of variable i, N is the number of
time steps, and MSEi is the mean-square error for variable
i. Eq. (1) is suggested for single-output models (i = 1)
or models with physically comparable outputs. Eq. (2)
is suggested for multi-output models (i > 1) with physi-
cally incomparable outputs, e.g. temperature and CO2. It
should be noted that Ȳi in Eq. (2) needs to be non-zero.
Other norms can be easily implemented in error.py if
needed.

2.1 Algorithms
A user can estimate parameters using a single algorithm
or an arbitrarily designed sequence of algorithms. The se-
quences typically contain two methods, the first for global
search and the second for local search, but if needed it
is possible to queue more methods, e.g. multiple genetic
algorithms with different evolution parameters (best so-
lution from each run is saved and propagated to the next

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154121

122

one). It is, therefore, possible to quickly test and evaluate
different methods and combination of methods on a given
problem.

Currently two in-house algorithms are implemented,
a genetic algorithm (GA) and a generalized pattern
search (GPS), in addition to the interface to several
well-known algorithms from the SciPy eco-system (Jones
et al., 2001), specifically those compatible with the func-
tion scipy.optimize.minimize(). The SciPy’s al-
gorithms tested by the authors with results presented in
this paper include the sequential least squares program-
ming (SLSQP) (Kraft, 1988), the limited memory Broy-
den–Fletcher–Goldfarb–Shanno with box constraints (L-
BFGS-B) (Byrd et al., 1995), and the truncated Newton
method (TNC) (Nash, 1984).

The implemented GA (Algorithm 1) is based on the
standard operations of tournament-based selection and
crossover. The mutation is adaptive and depends on the
population diversity, defined as the ratio of shared genes
among the individuals. If the population is diverse, a stan-
dard mutation is applied in which a low mutation rate
(10% by default) is used, but genes can mutate within a
wide range (entire parameter range by default). If the pop-
ulation diversity is low, the population is split into 1/3 and
2/3 parts. The larger group (2/3) undergoes the standard
mutation (low mutation rate, wide range of possible val-
ues), and the smaller group undergoes mutation with an in-
creased rate (33% by default), but the genes are allowed to
change only within a small range (equivalent to a stochas-
tic local search). By tuning mutrate1, mutrate2, range1,
and range2 in Algorithm 1, a desired balance between the
exploratory and local search of the evolution can be found.
The algorithm continues until the error stops decreasing
or the maximum number of generations is reached. The
tolerance criterion checking can be delayed by a user-
defined number of generations (10 by default), allowing
for continuing the evolution for some time even if the sub-
sequent generations do not improve the solution. GA is a
metaheuristic global search algorithm, which is often able
to deal with complex non-convex functions, but does not
guarantee that the global optimum is found. In fact, the
solution might be worse than in the case of local search
methods. It is, therefore, often coupled with some local
search methods, as GPS, least squares or Newton-based
methods.

The implemented GPS (Algorithm 2) is a simple
gradient-free local search method. The algorithm requires
an initial guess x0 and an initial step size s. Thereafter it
starts a series of orthogonal exploratory moves, by chang-
ing one parameter at a time (in both positive and negative
directions) and evaluating the cost function f (x). The pa-
rameter vector propagated to the next iteration is the one
with the lowest cost function value. If the given step size
does not yield a reduction in the cost function value, it
is reduced by a factor of 2 and the procedure is repeated.
The algorithm stops when the solution does not improve
despite kmax reductions of the step size. GPS usually re-

Algorithm 1 Genetic algorithm implemented in ModestPy

Initialize population pop1 with N individuals
while generation g < gmax and error decreasing do

for all individuals in pop1 do
Evaluate cost function

end for
Initialize empty population pop2
Add fittest individual from pop1 to pop2 {elitism}
for i = 0 to N −1 do

ind1 ← tournament(pop1)
ind2 ← tournament(pop1)
child ← crossover(ind1, ind2)
Add child to pop2

end for
if pop2 is diverse then

pop2 ← mutate(pop2, mutrate1, range1)
else

X% of pop2 ← mutate(mutrate1, range1)
mutrate2 ← mutrate1K {K > 1}
range2 ← range1L {1 > L > 0}
(100−X)% of pop2 ← mutate(mutrate2, range2)

end if
pop1 ← pop2
g ← g+1
x ← parameters of fittest individual

end while
return x

quires more iterations than gradient-based methods, but
the method can deal with models that are not differentiable
or continuous. A similar algorithm is implemented in the
generic optimization program GenOpt (Wetter, 2001).

2.2 Usage
ModestPy does not have a GUI (although there are plans to
develop one in the future) and is aimed to be used directly
in Python scripts. First, the user has to instantiate the
Estimation class. All the estimation and validation set-
tings are specified during the instantiation. The required
arguments are as follows: path to the working directory
(string), path to the FMU (string), data frame with the in-
puts (pandas DataFrame), known inputs (dictionary), pa-
rameters to be estimated (dictionary), and measured data
(pandas DataFrame). The user can control other aspects of
the estimation with the optional arguments, as discussed
in the documentation (Arendt, 2017). Secondly, the esti-
mation and validation methods are called to retrieve the
results.

The exemplary Python code setting up an estimation us-
ing GA+GPS and using the MSE cost function is as fol-
lows:

from modestpy import Estimation

session = Estimation(
workdir, # string
fmu_path, # string

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154121 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

123

Algorithm 2 Generalized pattern search algorithm imple-
mented in ModestPy

Require: Initial guess vector x0 with N parameters, initial
step s0, max. no. of tries kmax to decrease step
s ← s0
k ← 0
x ← x0
y ← f (x)
while k < kmax do

yn ← y
for n = 0 to N do

x̂n ← N-dim. versor with n-th element equal to 1
sn ← sx̂n
y+n ← f (x+ sn)
y−n ← f (x− sn)
if y+n < yn then

yn ← y+n
xn ← xn + sn

end if
if y−n < yn then

yn ← y−n
xn ← xn − sn

end if
end for
if yn < y then

y ← yn
x ← xn
k ← 0

else
s ← s/2 {reduce step}
k ← k+1

end if
end while
return x

inputs, # pandas DataFrame
known, # dictionary
estimate, # dictionary
measured, # pandas DataFrame
method=(’GA’, ’GPS’),
ga_opts={’maxiter’: 5, ’tol’: 1e-4},
gps_opts={’maxiter’: 500, ’tol’: 1e-6},
ftype=’MSE’

)

estimates = session.estimate()
err, res = session.validate()

In addition to the estimation and validation results re-
turned by the respective methods, the results are saved in
the working directory together with plots of error and pa-
rameter trajectories.

3 Example
3.1 System
The functionality of the tool is presented on a case study in
which it was used to calibrate a Modelica-based gray-box
model of a single building zone to the results of a white-
box model developed in EnergyPlus. The case study is
a part of a larger project aimed at the development of an
MPC framework that will be tested on the OU44 building
in Odense, Denmark (Jradi et al., 2017). The developed
EnergyPlus model is a downscaled 7-zone version of the
OU44 building, but with the same HVAC system and in-
ternal heat gains schedules. The EnergyPlus model is used
for MPC tests in the project.

The building is equipped with a balanced mechanical
ventilation system. The air handling unit (AHU) contains
two fans (for supply and exhaust air), a rotary wheel heat
recovery system, and a heating coil. No cooling is pro-
vided. The fans are controlled to maintain a constant pres-
sure in the duct system. Each zone is equipped with a
hydronic radiator and a VAV box. The radiator valve and
ventilation damper positions depend on the indoor temper-
ature and CO2 concentration, respectively. The tempera-
ture and CO2 setpoint schedules are set through the BMS
system.

Selected outputs of the white-box model are assumed to
represent the measured data for the calibration of the gray-
box model. The following zone-level outputs are used:
indoor temperature T [◦C], indoor CO2 concentration CO2
[ppm], radiator heat supply qrad [W], ventilation airflow
rate verate [m3/s], and the number of occupants occ [−]
(notation consistent with the gray-box model variables).
The chosen outputs correspond with the available sensors
in the OU44 building, so in the later phase of the project
the same gray-box model can be used with the real data.
In this study, however, the white-box results are used to
exclude the effect of uncertain inputs on the results. In
addition to the zone-level measurements, the weather data
and assumed temperature and CO2 setpoints are passed to
the gray-box model as inputs.

3.2 Modelica Gray-box Model
The gray-box model was developed in Modelica and ex-
ported to an FMU using Dymola (Fig. 2). The thermal
part of the model is based on the RC network approach
and contains two capacitors, one for the indoor air and
one for the internal thermal mass, and one resistor repre-
senting the external walls. The solar gains and radiator
heat gains are modeled with single gain blocks. The radi-
ator heat supply is controlled by a PI controller, depending
on the temperature setpoint (input) and calculated indoor
temperature. The occupancy contributes to both the indoor
heat gains and CO2 generation. The metabolic heat gen-
eration per person is modeled as a linear function of the
indoor temperature. The CO2 balance is modeled with a
custom block containing a steady state mass balance equa-
tion. The ventilation heat gain is also modeled with a cus-

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154121

124

tom block containing a steady state heat balance equation.
The rest of the model is based on the components from the
Modelica Standard Library.

The model takes six inputs and has six outputs. The
inputs include the solar radiation solrad [Wm−2], out-
door temperature Tout [◦C], number of occupants occ,
ventilation air temperature setpoint Tvestp [◦C], indoor
CO2 setpoint CO2stp [ppm], and indoor temperature set-
point Tstp [◦C]. The outputs are the indoor temperature
T [◦C], indoor CO2 CO2 [ppm], ventilation airflow rate
verate [m3s−1], total ventilation airflow vetot [m3], ra-
diator heating rate qrad [W], and total radiator heating
energy Qrad [J].

Seven of the model parameters are estimated: outdoor
wall resistance RExt [m2WK−1], indoor wall resistance
RInt [m2WK−1], infiltration air change rate Vinf [h−1],
maximum ventilation air change rate maxVent [h−1], in-
ternal thermal mass imass [JK−1m−2], solar heat gain co-
efficient shgc [−], and indoor air thermal mass tmass
[JK−1m−3]. All parameters excepts shgc are scaled by
the respective surface areas (e.g. external wall surface
area for RExt) or the indoor volume (tmass). It should
be noted that the infiltration rate parameter Vinf affects
only the CO2 balance, while the thermal effect of infiltra-
tion is included in the resistance RExt.

3.3 Estimation Setup
Table 1 provides the lower and upper bounds in addition to
the initial guesses of the seven parameters to be estimated
in this study. The bounds were chosen considering stan-
dard physical and technical specifications of buildings.

Table 1. Initial guess, lower and upper bounds of the gray-box
model parameters.

Parameter Initial guess Low. bound Up. bound

shgc 5 0.1 10
tmass 50 1 100
imass 50 1 100
RExt 5 0.1 10
RInt 5 0.1 10
Vinf 5 0.1 10
maxVent 5 0.1 10

The cost function is based on the total normalized
mean-square error NMSEtot , calculated according to
Eq. (2). Four white-box model outputs are taken into ac-
count: T, CO2, verate, and qrad.

9 different method sequences were used to estimate the
parameters: (1) GA, (2) GPS, (3) TNC, (4) SLSQP, (5)
L-BFGS-B, (6) GA+GPS, (7) GA+TNC, (8) GA+SLSQP,
(9) GA+L-BFGS-B.

The GA settings were consistent across the sequences
(1) and (6)-(9). In addition a random number seed was
used to make the results comparable. The maximum num-
ber of generations was set to 100. The initial popula-
tion contained 40 individuals and was generated using the

Latin hypercube sampling. The maximum number of it-
erations in all the other methods was 500. The absolute
solution tolerance was 1e-9 (same for all methods).

All the non-default estimation parameters are specified
in the following code:

ga_opts = {
’maxiter’: 100, ’tol’: 1e-9,
’lhs’: True, ’pop_size’: 40

}
gps_opts = {

’maxiter’: 500, ’tol’: 1e-9
}
scipy_opts = {

’solver’: ’scipy_solver’,
’options’: {

’maxiter’: 500, ’tol’: 1e-9
}

}

session = Estimation(
wdir, fmu, inp, known, est, out,
lp_frame=(0, 86400 * 3),
vp=(86400 * 3, 86400 * 4),
ga_opts=ga_opts,
gps_opts=gps_opts,
scipy_opts=scipy_opts,
methods=met_seq,
ic_param=ic_param,
ftype=’NMSE’, seed=1

)

where scipy_solver is one from [’TNC’,
’L-BFGS-B’, ’SLSQP’], and met_seq is one from
[(’GA’,), (’GPS’,), (’SCIPY’,), (’GA’,
’GPS’), (’GA’, ’SCIPY’)].

The training period was 3 days long (January 1-3). The
validation was performed on the day following the training
period (January 4).

3.4 Results
All the 9 considered method sequences yielded different
estimates, despite the same bounds and initial guesses (in
GPS, SLSQP, L-BFGS-B, TNC) and the random num-
ber seed (in the GA-based sequences). Fig. 3 presents
a stacked histogram of the obtained estimates. The esti-
mates obtained by the GA-based sequences are close to
the ones yielded by the GA alone. Differences are no-
ticeable mainly in the case of shgc and maxVent. The
remaining method sequences (non-GA-based) yielded es-
timates scattered across the parameter space.

The GA+L-BFGS-B and GA+GPS sequences yielded
the lowest training errors, while GA+SLSQP was the most
accurate in the validation, suggesting that the parameters
are slightly overfitted in former cases (Table 2). GA+L-
BFGS-B was the only GA-based sequence that performed
worse in the validation than the GA alone. Nevertheless,
all GA-based sequences yielded models with a similar ac-
curacy, with training errors below 0.394 and validation er-
rors below 0.379. The rest of the methods (GPS, TNC, L-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154121 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

125

Figure 2. Gray-box zone model developed in Modelica (using Dymola).

BFGS-B, SLSQP) yielded significantly worse estimates,
with validation errors above 3.4.

The computational time of the GA-based sequences
was mostly dominated by GA (723 s). In the consid-
ered problem only GPS was slower than GA (986 s).
All gradient-based methods included in the test where
much faster, but stuck in local minima. From the time-
to-accuracy point of view mixing GA with a gradient-
based method seems the most efficient (801-934 s), while
GA+GPS is the slowest combination (1319 s).

All computations were performed on a laptop equipped
with an Intel Core i7-5600U processor (2.60GHz), 16 GB
RAM, and a hard-disk drive (HDD). The disk type is rel-
evant, because ModestPy was run in a verbose logging
mode, each time saving a log file containing up to 85000
lines with detailed results from each iteration. All simula-
tions were run on a single core – ModestPy does not offer
parallelized algorithms yet.

Table 2. CPU time and total normalized mean square error
(NMSEtot) for validation and training, sorted in ascending order
by validation NMSEtot .

Method Training Validation CPU Time
NMSEtot NMSEtot [s]

GA+SLSQP 0.377 0.353 920
GA+GPS 0.351 0.371 1319
GA+TNC 0.393 0.372 801
GA 0.394 0.373 723
GA+L-BFGS-B 0.349 0.379 934
GPS 1.306 3.428 986
TNC 4.967 5.856 101
L-BFGS-B 4.929 6.808 38
SLSQP 5.040 6.920 12

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154121

126

The different estimates yielded by the respective meth-
ods can be due to inaccuracies in the numerically approx-
imated gradients, and due to the non-convexity of the cost
function. The non-convexity of the cost function used in
this study can be analyzed in Fig. 4. The cost function
evaluated on the line connecting estimates yielded by two
different methods (GA and SLSQP) has few sections with
positive derivatives and local minima. In addition the cost
function is very steep in the vicinity of the GA solution,
while relatively flat for s < 0.7. Although the shape of
the function in other directions is not presented, Fig. 4
highlights the need for a good initial guess in the case of
gradient-based methods if the cost function is non-convex.

0 9

0

4

8

O
b
s
e
r
v
a
t
i
o
n
s

RExt

0 5

RInt

0

1
0

0

4

O
b
s
e
r
v
a
t
i
o
n
s

Vinf

0

7
0

imass

0
.
1

0
.
2

0

4

O
b
s
e
r
v
a
t
i
o
n
s

maxVent

0 8

shgc

0

1
0
0

0

4

O
b
s
e
r
v
a
t
i
o
n
s

tmass

GA

GPS

L-BFGS-B

TNC

SLSQP

GA+GPS

GA+L-BFGS-B

GA+TNC

GA+SLSQP

Figure 3. Histogram of estimates yielded by the 9 method se-
quences.

In the case of non-convex problems, it is sometimes
useful to analyze the visualization of the parameter search
in GA (Fig. 5). This figure is by default generated by Mod-
estPy whenever GA is used in the method sequence. Each
dot in the figure represents a solution produced by a single
individual. The colors represent the error (NMSEtot), with
the brightness decreasing with decreasing error. The GA
starts with the inaccurate population spread over the entire

0.0 0.2 0.4 0.6 0.8 1.0

s

1

2

3

4

5

g

(
s
)

=

f

(
s
x

1

+
(
1

s
)
x

2

)

SLSQP

GA

df / ds > 0

0.40 0.75

4.98

5.00

Figure 4. Cost function evaluated on the training data based
on linear combinations of parameters yielded by GA (x1) and
SLSQP (x2). Sections with positive derivatives with respect to s
marked in red.

search domain (yellow color marks NMSEtot above 5.0).
Over time, the solution quality improves to NMSEtot be-
low 1.0 (purple color). For some parameters (most notably
maxVent and Vinf) the value found early in the evolution
does not change much throughout the rest of the evolu-
tion. In other cases rapid jumps in parameters with only
a minor improvement in the accuracy are observed (e.g.
imass). Based on this visualization, the user is able to as-
sess whether a desired balance of the exploration and local
search was achieved.

Fig. 6 depicts root-mean-square errors (RMSE) for
each output variable, calculated for the validation period.
RMSE was not used in the cost function, because it is
non-differentiable at 0 which is problematic for gradient-
based methods, but the metric helps interpreting results.
RMSE represents the standard deviation between the pre-
dicted and true values. The analysis of the errors reveals
that the problems encountered by the non-GA-based se-
quences were due to both the thermal and CO2 parts of
the model. The best performing models achieved RMSE
below 50 ppm for CO2, 0.4 ◦C for T, 600 W for qrad, and
10 m3h−1 for verate. The RMSE differences between
the best and worst performers are around 180 ppm for CO2,
2 ◦C for T, 1600 W for qrad, and 20 m3h−1 for verate.
Interestingly, unlike the gradient-based methods, GPS cal-
ibrated well the parameters affecting CO2 and verate,
even though it started from the same initial guess.

The validation results for the four output variables ex-
plain the large errors yielded by the non-GA-based se-
quences. The temperature in those cases slowly reacts to
the applied heat loads (Fig. 7), which is due to the over-
estimated thermal mass (tmass, imass) of the building
(Fig. 3).

In the case of CO2 (CO2) and ventilation rate (verate)
the inaccuracy of the gradient-based methods is due to
the overestimated infiltration rate Vinf (Fig. 3), which
reduced the indoor CO2, preventing it from reaching the
setpoint of 800 ppm and triggering the ventilation. Hence,
the ventilation in those cases remained turned off through-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154121 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

127

Figure 5. Parameter evolution in the genetic algorithm – color represents the training error (darker more accurate).

0

100

200

R
M
S
E

[
p
p
m
]

CO2

0

2

R
M
S
E

[
C
]

T

G
A

G
P
S

L
-
B
F
G
S
-
B

T
N
C

S
L
S
Q
P

G
A
+
G
P
S

G
A
+
L
-
B
F
G
S
-
B

G
A
+
T
N
C

G
A
+
S
L
S
Q
P

0

1000

2000

R
M
S
E

[
W
]

qrad

G
A

G
P
S

L
-
B
F
G
S
-
B

T
N
C

S
L
S
Q
P

G
A
+
G
P
S

G
A
+
L
-
B
F
G
S
-
B

G
A
+
T
N
C

G
A
+
S
L
S
Q
P

0

20

R
M
S
E

[
m

3

h

1

]

verate

Figure 6. Validation root-mean-square error (RMSE) per output
variable.

out the entire validation period (verate equal to 0).
Similarly, the models with the inaccurate indoor tem-

perature yielded inaccurate radiator heating power qrad
(Fig. 8). Only the GA-based method sequences were able
to achieve a good accuracy with respect to qrad. In all
cases, however, there is a mismatch in the initial 8 hours
of the validation period due to the wrong initial condition
for qrad. If the grey-box model is to be used for short-
term predictions, the initial value should be based on the
measurements, as in the case of indoor temperature and
CO2.

4 Discussion
The results are not generalizable to other models, estima-
tion settings (initial guesses, number of iterations, parame-

17.5

20.0

22.5

T

[
C
]

500

750

C
O
2

[
p
p
m

]

80 88 96

Simulation time [h]

0

50

v
e
r
a
t
e

[
m

3

s

1

]

GA

L-BFGS-B

TNC

GPS

SLSQP

GA+TNC

GA+L-BFGS-B

GA+GPS

GA+SLSQP

E+

Figure 7. Validation results: temperature (T), CO2 (CO2), ven-
tilation airflow rate (verate).

ter bounds etc.), or even training data. The specific meth-
ods can perform differently on different problems. The
gradient-based methods heavily rely on the quality of the
initial guess, while the GA results depend on the random
seed. Both, the initial guess and the random seed were
fixed in this study. However, the results highlight the im-
portance of such inter-method comparisons, especially in
the cases where the parameter estimation is a non-convex
problem. In many practical applications it may be diffi-
cult to assess whether or not the problem is non-convex,
or what should be the initial guess for parameters.

The GA results presented in this paper are surprisingly
good in terms of the accuracy and computational time.
Typically GA requires much more time to converge than
gradient-based methods. However, since GA is stochastic
in nature, the results could be different if the experiment
was repeated without a fixed random seed. The computa-

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154121

128

72 80 88 96

Simulation time [h]

0

1000

2000

3000

4000

q
r
a
d

[
W

]

GA

L-BFGS-B

TNC

GPS

SLSQP

GA+TNC

GA+L-BFGS-B

GA+GPS

GA+SLSQP

E+

Figure 8. Validation results: radiator heating rate (qrad).

tional times reported in this study are based on single trials
and therefore may be slightly biased.

The authors advise to always couple GA with an-
other gradient-based method and rerun the estimation sev-
eral times if there are no strict time constraints, possi-
bly with various GA settings. ModestPy allows for set-
ting up the number of estimation runs with an option-
ally moving training period during the instantiation of the
Estimation class. An alternative approach could be to
test the gradient-based methods with multiple random ini-
tial guesses.

It should be noted, that the gradient-based methods
(SLSQP, L-BFGS-B, TNC) would be much faster if the
gradient of the cost function with respect to the estimated
parameters was known. In a general case, this gradient
is not known and has to be evaluated numerically, as in
this study. However, the FMI standard allows to provide
directional derivatives (optional feature), and some tools
support it. If the computational time is an issue, other tools
that are able to perform algebraic differentiation should be
used, e.g. JModelica.org (Åkesson et al., 2009).

5 Conclusions
Automated parameter estimation is crucial in many in-
dustrial applications, including MPC and other cyber-
physical systems. The FMI standard provides an attrac-
tive simulation interface that allows for using models out-
side their dedicated environments, and developing model-
agnostic tools. This paper introduces a new Python tool
for parameter estimation in FMI-compliant models, called
ModestPy. The tool supports several optimization meth-
ods, both gradient-free and gradient-based (numerically
approximated), that can be queued in user-defined se-
quences. ModestPy enables easily testing multiple meth-
ods on a given model and find the most suitable approach
and estimation settings.

The tool was tested on a case study in which it was used
to estimate parameters of a non-linear multi-output model
of a building zone. The results showed that the local opti-
mization methods (GPS, L-BFGS-B, TNC, SLSQP) were
unable to calibrate the model, marking that the the ini-
tial guess for parameters was poor. The addition of GA

as the initial global search method significantly improved
the model accuracy. The results also validated the two in-
house algorithms (GA and GPS).

It should be noted, that the initial global search would
not be needed if the approximate initial values of parame-
ters were known. In such a case the gradient-based meth-
ods would easily outperform GA.

The current functionality of the tool is already sufficient
for a general use. It is used by the authors for calibrating
gray-box models of buildings and HVAC systems for the
use in MPC.

However, the development work continues and there are
plans to include the following functionality:

• a simple graphical user interface to attract users less
experienced in the Python programming language,

• support for on-line estimation methods (e.g. Kalman
filter),

• support for multi-period stochastic gradient descent
training,

• support for parallel processing methods.

6 Acknowledgments
The authors thank David Blum for comments that helped
to improve the manuscript and the development of Mod-
estPy.

This work was supported by the Innovation Fund Den-
mark for the project COORDICY (4106-00003B).

This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.

This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associa-
tion (IBPSA). Project 1 will develop and demonstrate a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation.

References
Johan Åkesson, Magnus Gäfvert, and Hubertus Tummescheit.

JModelica—an open source platform for optimization of
Modelica models. In Proceedings of MATHMOD 2009 -
6th Vienna International Conference on Mathematical Mod-
elling, Vienna, Austria, February 2009. TU Wien.

Christian Andersson, Sofia Gedda, Johan Åkesson, and Stefan
Diehl. Derivative-free parameter optimization of functional
mock-up units. In Proceedings of the 9th International Mod-
elica Conference - Munich, Germany, September 3, 2012.
Modelica Association, 2012.

Christian Andersson, Johan Åkesson, and Claus Führer. PyFMI:
A Python Package for Simulation of Coupled Dynamic
Models with the Functional Mock-up Interface, volume
LUTFNA-5008-2016 of Technical Report in Mathematical

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154121 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

129

Sciences. Centre for Mathematical Sciences, Lund Univer-
sity, 2016.

Krzysztof Arendt. ModestPy: Parameter Estimation in FMI-
compliant Models, 2017. URL https://github.com/
sdu-cfei/modest-py. [Online; accessed April 25,
2018].

Javier Bonilla, Jose Antonio Carballo, Lidia Roca, and Manuel
Berenguel. Development of an open source multi-platform
software tool for parameter estimation studies in fmi mod-
els. In Proceedings of the 12th International Modelica Con-
ference, Prague, Czech Republic, May 15-17, 2017, number
132, pages 683–692. Linköping University Electronic Press,
Linköpings universitet, 2017.

Marco Bonvini, Michael Wetter, and Michael D. Sohn. An FMI-
based Framework for State and Parameter Estimation. In
Modelica Conference 2014, 2014.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu.
A limited memory algorithm for bound constrained optimiza-
tion. SIAM J. Sci. Comput., 16(5):1190–1208, September
1995. ISSN 1064-8275. doi:10.1137/0916069.

Roel De Coninck and Lieve Helsen. Practical im-
plementation and evaluation of model predictive con-
trol for an office building in brussels. Energy and
Buildings, 111:290 – 298, 2016. ISSN 0378-7788.
doi:https://doi.org/10.1016/j.enbuild.2015.11.014.

Roel De Coninck, Fredrik Magnusson, Johan Åkesson, and
Lieve Helsen. Toolbox for development and validation of
grey-box building models for forecasting and control. Jour-
nal of Building Performance Simulation, 9(3):288–303, 2016.
doi:10.1080/19401493.2015.1046933.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy:
Open source scientific tools for Python, 2001. URL http:
//www.scipy.org/. [Online; accessed April 25, 2018].

Muhyiddine Jradi, Fisayo Caleb Sangogboye, Claudio Gio-
vanni Mattera, Mikkel Baun Kjærgaard, Christian Veje,
and Bo Nørregaard Jørgensen. A world class energy
efficient university building by danish 2020 standards.
Energy Procedia, 132:21 – 26, 2017. ISSN 1876-
6102. doi:https://doi.org/10.1016/j.egypro.2017.09.625. 11th
Nordic Symposium on Building Physics, NSB2017, 11-14
June 2017, Trondheim, Norway.

Rüdiger Kampfmann, Danny Mösch, and Nils Menager. Param-
eter Estimation based on FMI. In Proceedings of the 12th
International Modelica Conference, Prague, Czech Republic,
May 15-17, 2017, number 132, pages 313–319. Linköping
University Electronic Press, Linköpings Universitet, 2017.

Dieter Kraft. A Software Package for Sequential Quadratic
Programming. Deutsche Forschungs- und Versuchsanstalt
für Luft- und Raumfahrt Köln: Forschungsbericht. Wiss.
Berichtswesen d. DFVLR, 1988.

Stephen G. Nash. Newton-Type Minimization Via the Lanczos
Method. SIAM Journal on Numerical Analysis, 21(4):770–
788, 1984. ISSN 00361429.

Peter Rockett and Elizabeth Abigail Hathway. Model-predictive
control for non-domestic buildings: a critical review and
prospects. Building Research & Information, 45(5):556–571,
2017. doi:10.1080/09613218.2016.1139885.

Fisayo Caleb Sangogboye, Krzysztof Arendt, Ashok Singh,
Christian T. Veje, Mikkel Baun Kjærgaard, and Bo Nør-
regaard Jørgensen. Performance comparison of occupancy
count estimation and prediction with common versus dedi-
cated sensors for building model predictive control. Build-
ing Simulation, 10(6):829–843, Dec 2017. ISSN 1996-8744.
doi:10.1007/s12273-017-0397-5.

Luigi Vanfretti, Maxime Baudette, Achour Amazouz, Tetiana
Bogodorova, Tin Rabuzin, Jan Lavenius, and Francisco José
Goméz-López. Rapid: A modular and extensible toolbox for
parameter estimation of modelica and fmi compliant mod-
els. SoftwareX, 5:144 – 149, 2016. ISSN 2352-7110.
doi:https://doi.org/10.1016/j.softx.2016.07.004.

Michael Wetter. Genopt - a generic optimization pro-
gram. In Roberto Lamberts, Cezar O. R. Negrão, and
Jan Hensen, editors, Proc. of the 7th IBPSA Conference,
volume I, pages 601–608, Rio de Janeiro, 2001. URL
http://www.ibpsa.org/proceedings/BS2001/
BS01_0601_608.pdf.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154121

130

A Safe Regression Test Selection Technique for Modelica

Niklas Fors1 Jon Sten2 Markus Olsson2 Filip Stenström2

1Department of Computer Science, Lund University, Sweden, niklas.fors@cs.lth.se
2Modelon AB, Sweden, jon.sten@gmail.com, {filip.stenstrom|markus.olsson}@modelon.com

Abstract
Running regression tests for Modelica models usually
takes a long time. This paper presents a safe regression
test selection technique for Modelica based on static anal-
ysis. The technique tracks dependencies between classes
to compute which tests that need to be run given a change.
The dependency rules have been verified using mutation
testing. The technique has been evaluated on the Model-
ica Standard Library and another library with promising
results.
Keywords: regression test selection, mutation testing

1 Introduction
Regression testing is an important activity when devel-
oping software today, preventing software changes from
introducing bugs that break previous functionality. Re-
gression tests allow the developer to run tests while de-
veloping for spotting errors early on. However, running
all tests may take a long time, which makes the developer
less likely to run the tests very often. Regression test selec-
tion tries to solve this problem by running a subset of all
tests. There are different test selection techniques (Rother-
mel and Harrold, 1996; Yoo and Harman, 2012), some of
them are safe, meaning that all tests that may be affected
by the change are selected. Safe techniques are usually
approximate and include tests that are not affected by the
change. These techniques may also have a higher runtime
for computing the selection, which should be lower than
the time saved using the selection compared to running all
tests.

This paper presents a safe regression test selection
technique for the modeling language Modelica (2018),
which is based on extraction-based test selection intro-
duced by Öqvist et al. (2016) for Java. Tests in Model-
ica usually require relatively long compilation and simu-
lation time, which makes test selection especially suitable
for Modelica. For example, we have evaluated the tech-
nique on the Modelica Standard Library (MSL), where
running all tests takes about 2-3 hours. If a random class
is changed in MSL, then on average 95.5% time can be
saved by running the selected tests compared to running
all tests. The runtime for the test selection algorithm is
only 0.14% of running all tests.

Our technique analyzes the source code and finds de-
pendencies between classes, which form a dependency
graph. The test selection algorithm takes a set of changed

classes and gives back the tests that depend on the changed
classes, according to the dependency graph.

The contributions of this paper are the following:

• Dependency rules that describe when a class de-
pends on another class (Section 3). These rules in-
clude name bindings, nested classes, redeclare
clauses, and implicitly called functions such as
equalityConstraint.

• Empirical verification of the dependency rules using
mutation testing (Section 4). The mutation testing
was performed on MSL, where each class was mu-
tated to detect which tests that actually depend on the
mutated class. The actual dependencies were then
compared with the output of the test selection algo-
rithm.

• Evaluation of how much time is saved using test se-
lection on two libraries, the Modelica Standard Li-
brary and the Heat Exchanger Library (Section 5).

• An open source test suite for dependency analysis al-
gorithms for Modelica1.

The work in this paper has been carried out as a master’s
thesis project by Olsson and Stenström (2018) at Mode-
lon, and is a continuation of the master’s thesis project
by Hedblom and Rundquist (2017)2 with higher preci-
sion.

2 Safe Test Selection
The test selection algorithm takes a set of changed classes
and returns a set of test cases that need to be run. Consider
the set of all classes C in a system, and the test cases T
that is a subset of C, and which are considered as entry
points. For a change in a subset of C, the test selection
algorithm gives back a subset Tts ⊆ T that need to be run
due to the test results may have changed. The algorithm is
safe, meaning that the test cases Tf that actually fail due
to the changes is a subset of Tts (hence, Tf ⊆ Tts ⊆ T ⊆C).

The test selection is implemented by tracking depen-
dencies between classes using static analysis. A class X
depends on another class Y if a change in Y may affect
the meaning of X. The dependencies form a dependency
graph, which is used by the test selection algorithm to

1See https://github.com/modelon/MCDTS
2Hedblom and Rundquist were also supervised by Niklas Fors.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154131 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

131

model A
...

end A;

model B
A a;

end B;

model T1
A a;

end T1;

model T2
B b;

end T2;

T1

A

T2

B

Figure 1. Two test cases T1 and T2 that use the models A and B,
respectively. The right part of the figure shows the dependencies
between the models.

find dependent test cases given a set of changes. We use
the term class in accordance with the Modelica specifica-
tion, which includes specialized classes such as model,
record, type, function, etc.

For example, consider the Modelica source code in Fig-
ure 1. In this example, we have two test cases T1 and
T2 that use the models A and B, respectively. The figure
also shows the dependency graph between the classes. If
a change is made in model A, then the dependency graph
tells us that test case T1 and T2 need to be rerun. How-
ever, if a change is made in model B instead, then only
T2 needs to be rerun. As illustrated by the example, the
dependencies are transitive, for instance, test case T2 de-
pends transitively on A.

2.1 Detecting Changes
Detecting changes can be done in different ways. One
approach is to detect file changes, for instance, using ver-
sion control systems, and then map files to classes. For
example, if a file has changed, then all classes in that
file can be considered as changed. This is the approach
we currently use and which was implemented during the
previous master’s thesis. It was chosen because it was
the easiest approach to implement. The effect of the ap-
proach depends on how the Modelica code is organized.
For example, MSL usually has quite many classes per file
(on average 30 per file) and there are other libraries that
have fewer classes per file. A more fine-grained approach
would analyze what part of the file that has changed and
which classes that corresponds to.

2.2 External Code
Modelica supports interfacing with other languages, such
as C and FORTRAN. This can be challenging as it is
very hard to calculate the dependencies within the external
code. It is also common that the external code, based on
input from the Modelica code, will read and access other
resources, e.g. files or network resources.

In the current implementation, changes to non-
Modelica files will mark all Modelica classes with exter-
nal dependencies as changed. This, in turn, will force a
rerun of all test cases which directly or indirectly depend
on external code. This is not ideal as, to the user, seem-
ingly harmless changes may mark some test cases for re-
run. Possible improvement is to allow the user to provide
a list of files to monitor or not to monitor for changes. For
example, by allowing the user to list a set of files which
won’t cause rerun of tests, or provide a list of files which
will force a rerun of tests.

3 Dependency Rules
The following dependency rules are used for building the
dependency graph between classes:

Rule 1. A class has a dependency on an accessed class,
including all parts of the qualified name. This in-
cludes component declarations, extending clauses,
function calls, import statements, functions in an-
notations (derivative, inverse) and overloaded oper-
ators.

Rule 2. A class has a dependency on its enclosing class.

Rule 3. A class that contains a redeclaration depends on
all super classes and enclosed classes of the replacing
class (and all their enclosed classes and super classes
recursively).

Rule 4. A class has a dependency on implicitly called
classes. This includes a record or type enclosing
a function named equalityConstraint, and a
class extending the class ExternalObject has
dependency on enclosed function destructor.

3.1 Motivation
The rules will now be motivated with examples.

Rule 1 was illustrated in Section 2, namely that a class
depends on classes it references. Additionally, the rule
also handles qualified accesses. For example, for the ac-
cess A.B.C, the rule creates dependencies to A, A.B and
A.B.C. This is needed because changes in A or A.B may
change what C refers to. For instance, class C may be de-
clared in a supertype of A.B, and changing the supertype
of A.B may then change what C refers to.

Rule 2 is illustrated in Figure 2. If model B is changed
to extend A2 instead of A1, then the type of m in B.C
is changed from A1.M to A2.M. Thus, Rule 2 is needed
to create a dependency from B.C to B to handle when B
changes.

Rule 3 is illustrated in Figure 3. The dependency anal-
ysis needs to be careful with redeclare clauses. In the fig-
ure, the class C needs a dependency to all nested classes in
A2 due to the redeclare modifier in component declaration
for b. This because the replaceable package P in package
B is redeclared to A2 in the context of component b in

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154131

132

package A1
model M
end M;

end A1;

package A2
model M
end M;

end A2;

package B
extends A1;

model C
M m;

end C;
end P;

B.C

A1.M B

A1

A2.M

A2

Figure 2. Example for Rule 2. Dependencies stipulated by Rule
2 are illustrated with thicker edges. The rule is needed to han-
dle if B changes its extends clause to A2, which changes the
reference in class B.C.

model C. This broad addition of dependencies is needed
in order to capture the actual use of A2.f in package B
when in context of model C. Alternatively, a complex and
time consuming analysis of the usages of the package P
in context of model C could be done. Note that the rule
is recursive, meaning that if A2 would have a nested class
NC1 which in turn would have another nested class NC2,
then C would depend on both NC1 and NC2.

Rule 3 also handles classes prefixed with redeclare,
which is illustrated in Figure 4. In this example, we want
a dependency from B to B.f, since B redeclares the func-
tion f that is declared in A.

Rule 4 is needed due to specific dependencies that the
language specification dictates based on class context. See
the test suite for examples of Rule 4.

3.2 Implementation
We implemented the dependency analysis based on the
rules in this section in the OPTIMICA Compiler Toolkit3,
which is based on the JModelica.org compiler (Åkesson
et al., 2010a).

4 Verification
We want the test selection algorithm to be safe, but it is
hard to know if the dependency rules (Section 3) cover all
cases since Modelica is a complicated language. We have
verified the dependency rules empirically by using tests
from the previous master’s thesis project (Hedblom and
Rundquist, 2017), coming up with new tests manually and
performed verification based on mutation testing.

Mutation testing is a technique for evaluating how ef-
ficient a test suite is (DeMillo et al., 1978). This is done
by automatically introducing small faults in the program

3http://www.modelon.com/products/modelon-creator-
suite/optimica-compiler-toolkit/

package A1
function f
end f;

end A1;

package A2
function f
end f;

end A2;

package B
replaceable

package P = A1;
Real x = P.f();

end B;

model C
B b(redeclare

package P = A2);
end P;

C

B A2.f

A2

A1

A1.f

Figure 3. Example for Rule 3, which creates a dependency from
C to A2.f. This dependency is needed to handle changes in
A2.f.

model A
replaceable

function f
end f;
Real x = f();

end A;

model B
extends A;

redeclare
function f

end f;
end B;

model C
B b;

end C;

C

B

A B.f

A.f

Figure 4. Another example for Rule 3 that illustrates classes
with the redeclare prefix, which creates a dependency from B to
B.f.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154131 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

133

model A;
Real x;

equation
x = 7;

end A;

model B
A a;
Real y;

equation
y = a.x + 3;

end B;

model T
B b;

end T;

(a) Source system

fclass T;
Real b.a.x;
Real b.y;

equation
b.a.x = 7;
b.y = b.a.x + 3;

end T;

(b) Flat class

Figure 5. Model T is selected and the compiler instantiates it to
a flat class.

and then checking if these faults are detected by any test
case. If a fault is not detected, then a new test case can be
added that covers the fault. A change may be, for exam-
ple, switching the branches in an if statement or replacing
arithmetic operators, for instance, replacing a minus (-)
with a plus (+). However, we use this technique in a little
different way since we are interested in verifying the test
selection algorithm, and thus are interested in finding out
the actual dependencies between classes. We do this by
introducing changes in a class and then computing which
tests that are actually affected by the changed class. For
the affected tests, there is an actual dependency from the
test to the changed class, and we want this dependency to
be in the dependency graph. If this is not the case, then the
algorithm contains a bug or a dependency rule is missing.

We only change one class at a time and then check
which tests are actually affected by the change. We de-
tect that a test is affected by the change by computing
and comparing the string representation of the flat (unop-
timized) class for the test. This flat class contains all the
variables, equations, function and other parts of the model
which is needed in order to solve the equation system. If
the flat class has changed in any way, we consider that the
test is affected by the change. Note that running the test
may actually give the same results as before since a test
involves comparing simulation results. However, we are
only interested in the dependencies to the changed class
from the test class, and if the flat test class changes in any
way, then there is a dependency (direct or indirect).

When a test is selected to run, the compiler creates a
flat class representing the equation system for the test,
which is then optimized and later solved using a numer-
ical solver. The flat class is illustrated in Figure 5, where
the test T has been selected and instantiated by the com-
piler. As can be seen, the object-oriented and hierarchical
structure are removed in the flat class (but not optimized

Table 1. Mutation testing on MSL. The unique column is how
many classes the mutation was unique for. Mutations is the total
number of mutations carried out. The total number of classes in
MSL is 5946.

Mutation Mutated classes Unique Mutations
LocalVar 1772 (29.5%) 485 1772

Arit 2026 (33.8%) 16 9647
Lit 3306 (52.3%) 805 25563

Bool 913 (15.2%) 17 3028
Redecl 68 (1.1%) 17 68

Comment 1650 (27.3%) 205 10142

in the figure). For this class, we could change the value of
x in model A to 5, and the flat class would change, and we
can then infer that there is an indirect dependency from T
to A. To verify that the test selection algorithm works, we
check that this dependency is in the dependency graph. If
we instead would change the value of x to 4+3, then the
flat class would still change, even if the meaning would
remain (since 4+ 3 = 7). This is as earlier described not
an issue, since we are interested in computing actual de-
pendencies between classes.

4.1 Mutation Testing on MSL
We performed mutation testing on MSL with the follow-
ing types of mutations.

LocalVar. Add local variable to function.

Arit. Switching arithmetic operands, e.g., 1-2⇒ 2-1.

Lit. Changing literals, e.g., 2⇒ 3.

Bool. Changing boolean operators, e.g., a<b⇒ a>b.

Redecl. Redeclaring a replaceable function.

Comment. Changing string comments.

Changing string comments will not change the meaning
of the program, but they are carried over to the flat class,
which is what we are interested in.

The mutation testing was performed for one class in
MSL at the time and one mutation type at the time. How-
ever, several mutations of the same type could be applied
for one class, for example, by changing several literals.
The results are shown in Table 1. As can be seen in the
table, changing literals was the most applicable mutation
type and could be applied for more than half of the classes
in MSL. Performing one mutation test took around 18
minutes, since it requires all tests to be individually in-
stantiated to a flat class. We performed the mutation tests
on a cluster of Jenkins machines, and it would take 280
days if they were carried out in a sequence (non-parallel).

From the result of mutation testing, we needed to gen-
eralize Rule 3, discovered Rule 4, found derivative/inverse
in annotations, and found six bugs in the implementation.
A test case was added to the test suite for dependency anal-
ysis algorithms for each fault found.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154131

134

4.2 Threat to Validity

Note that we have only verified the test selection algo-
rithm empirically and not formally. Thus, we cannot know
with certainty that the rules and implementation are safe.
A complete formal verification would require a formal
model of Modelica, a language that is very complicated.
It would also be possible to use a simplified formal model
that does not cover the complete language, but some as-
pects of it. However, using a simplified formal model
would probably miss, for example, equality constraints
(Rule 4) because they are not a central part of the lan-
guage, which the mutation testing did find. Also, the mu-
tation testing was performed on MSL, which might not
use all language features. Thus, it would be desirable with
more mutation testing on other libraries to make the veri-
fication more complete.

4.3 Partial Dependency Graph

We also used mutation testing to compute a partial depen-
dency graph between classes in MSL. For each mutated
class, we get actual dependencies to the mutated class
from all test classes that changed because of the muta-
tion. Combining all actual dependencies from all muta-
tions yield a partial dependency graph from test classes
to classes. This partial dependency graph can be used to
partly verify test selection algorithms. Thus, in addition
to the manually created test cases for dependency analy-
sis algorithms, the open test suite also contains the partial
dependency graph from the mutation testing as an XML
file.

4.4 Instrumenting the Compiler

We have used mutation testing to compute actual depen-
dencies between test classes and classes. Another way
would be to instrument the compiler to compute all ac-
tual dependencies when instantiating a test class, which
would require less resources. The reason why we chose
mutation testing is because we believe that instrumenting
the compiler might contain the same bugs as the test selec-
tion implementation. Mutation testing is more like black-
box testing in this context. However, it would be useful
to complement the mutation testing with compiler instru-
mentation to improve the verification, which is something
we would like to do.

4.5 Previous Technique Unsafe

During the mutation testing we found that the implementa-
tion by Hedblom and Rundquist (H&R) was not safe since
it ignored classes with the redeclare prefixes. We also
found another bug in their implementation that included
too many dependencies. We fixed these two issues in the
evaluation (Section 5) for H&R’s technique when compar-
ing it to our technique.

H&R
Our

Figure 6. Tests runtime for each class changed in MSL. The
number of classes is 5946, of which 366 are tests.

H&R
Our

Figure 7. Tests runtime for each class changed in HXL. The
number of classes is 871, of which 227 are tests.

5 Evaluation
We have evaluated the time saved using test selection com-
pared to running all tests on two libraries, the Model-
ica Standard Library (MSL) and the Heat Exchanger Li-
brary (HXL) by Modelon4. The time saved is compared
to the test selection defined by Hedblom and Rundquist
(2017), which will be denoted H&R. Their technique is
more coarse-grained than ours and operates in an earlier
step in the compilation process, leading to more tests se-
lected, but with a lower analysis running time (see Sec-
tion 6 for comparison).

We computed the test selection for each class in the li-
brary and then the runtime for the selected tests, which
includes compilation and simulation time. The runtime
for the selected tests was computed as a percentage of the
runtime for all tests. The results are shown in Figures 6-
7, where classes are sorted by tests runtime in ascending
order. For both techniques, the average savings is above
90% for MSL and above 70% for HXL. The average sav-
ings, the average test runtime, the median test runtime and
the analysis time are shown in Tables 2-3 under Class.
The complement of the average savings in the tables cor-
respond to the blue areas in the graphs.

We also computed the test selection for each file in
MSL and HXL, where all classes in a file were consid-

4https://www.modelon.com/library/heat-exchanger-library/

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154131 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

135

Table 2. Performance results for MSL. All values are in per-
centage of the time it takes to run all tests.

Class File
Our H&R Our H&R

Average savings 95.5% 93.1% 88.9% 87.9%
Average test time 4.3% 6.9% 11.0% 12.1%
Median test time 0.22% 0.33% 1.19% 1.7%
Analysis time 0.14% 0.04% 0.14% 0.04%

Table 3. Performance results for HXL. All values are in per-
centage of the time it takes to run all tests.

Class File
Our H&R Our H&R

Average savings 78.9% 72.0% 80.5% 74.8%
Average test time 20.9% 27.9% 19.4% 25.1%
Median test time 3.61% 15.7% 3.77% 15.7%
Analysis time 0.12% 0.10% 0.12% 0.10%

ered changed. The results can be seen in the tables under
File. As expected, the time saved for files is less than for
classes.

As we can see, the new test selection technique has
higher precision than H&R’s technique leading to im-
proved savings. However, our dependency analysis is a bit
more advanced and the implementation is 201 source lines
of code5 (SLOC) specified in JastAdd (Hedin and Mag-
nusson, 2003), whereas H&R’s implementation is 134
SLOC.

5.1 MSL Commit History
We have also used the MSL commit history to get more
realistic sets of changed files. Thus, we use each commit
as a set of changed files and compute the time saved for
that set. The results are shown in Figure 8, where commits
are sorted by tests runtime in ascending order. The average
saving is 68.9% for our technique and 57.0% for the old
technique.

6 Related Work
As described earlier, the dependency rules presented in
this paper is a continuation of the master’s thesis by Hed-
blom and Rundquist (2017), but with higher precision.
H&R implemented their test selection algorithm in an ear-
lier step in the compilation process6 with less static in-
formation available about name bindings etc., leading to
more coarse-grained rules. One major difference is that
the previous implementation could not resolve all parts
of a qualified access like a.b.c. This lead to a depen-
dency rule for class accesses where an access to a class A
created dependencies to all nested classes enclosed by A

5Measured with cloc, see https://github.com/AlDanial/cloc
6H&R implemented their algorithm in the source tree, whereas our

algorithm is implemented in instance tree, according to the different
compilation steps defined by Åkesson et al. (2010b).

H&R

Our

Figure 8. Test runtime for MSL commit history.

(recursively). Another difference is that H&R’s rules are
implementation-specific, where the rules use the term re-
solvable to mean names that are resolved in that compila-
tion step in the OPTIMICA compiler. In contrast, our rules
are defined in terms of the language and are not dependent
on the implementation. However, it would be possible to
generalize the H&R’s rules to be implementation-neutral.

There is previous work on safe test selection for other
languages (Chen et al., 1994; Rothermel and Harrold,
1997), such as Java (Öqvist et al., 2016; Gligoric et al.,
2015), where both dynamic- and static analyses have been
investigated. Our technique is based on extraction-based
test selection by Öqvist et al. (2016), who applied it for
Java. This kind of technique uses only static analysis
and is more coarse-grained (for instance, dependencies be-
tween files or classes) than other techniques. Modelica
is quite different from Java, leading to other dependency
rules, for example, covering the redeclaremechanism.
One interesting property from a safe test selection per-
spective is that compilation and simulation usually takes
rather long time for Modelica models, especially when
comparing to compilation and test time for Java. This
makes test selection especially useful for Modelica. Also,
since Modelica compilers generate flat equation systems
for test classes, you cannot use dynamic analysis, but only
static analysis.

7 Conclusions
We have in this paper presented a regression test selec-
tion technique using static analysis for Modelica with very
promising results. In the evaluation, we found that chang-
ing a class in MSL and only running the tests selected by
the algorithm saved on average 95.5% tests runtime com-
pared to running all tests. Using MSL commit history as
basis for changed files, then the average saving is 68.9%.
Since Modelica is a complicated language, we performed
mutation testing on MSL to verify that our dependency
rules are correct and safe. However, with mutation test-
ing, we cannot prove that the rules or the implementation
of the rules are complete.

In the future, we would like to do more mutation testing
on other libraries than MSL, and also add more mutation
types. It would also be interesting to update the depen-
dency graph incrementally. The current implementation
computes the dependency from scratch for each change
that the test selection is run on. However, computing the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154131

136

dependency graph is relatively fast. For example, comput-
ing it for MSL only takes 0.14% of the time it takes to run
all tests. We would also like to detect changes on a more
fine-grained level and identify which classes in a file that
are actually changed.

Acknowledgements
We thank Jesper Öqvist for comments on an earlier draft
of this paper. This research was partly supported by the
Swedish Governmental Agency for Innovation Systems
(VINNOVA), within the strategic innovation program Pro-
cess Industrial IT and Automation, under contract number
(2017-02371).

References
Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove

Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problem.
Computers and Chemical Engineering, 34(11):1737–1749,
November 2010a.

Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implemen-
tation of a Modelica compiler using JastAdd attribute gram-
mars. Science of Computer Programming, 75(1-2):21–38,
January 2010b.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Test-
tube: A system for selective regression testing. In Proceed-
ings of the 16th International Conference on Software Engi-
neering, Sorrento, Italy, May 16-21, 1994., pages 211–220,
1994.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Say-
ward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practi-
cal regression test selection with dynamic file dependencies.
In Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, pages 211–222, 2015.

Erik Hedblom and Kasper Rundquist. Safe test selection for
modelica using static analysis. Master’s thesis, Lund Univer-
sity, 2017. LU-CS-EX 2017-26.

Görel Hedin and Eva Magnusson. JastAdd: an aspect-
oriented compiler construction system. Science of Com-
puter Programming, 47(1):37–58, 2003. ISSN 0167-6423.
doi:http://dx.doi.org/10.1016/S0167-6423(02)00109-0.

Modelica. The Modelica Association, 2018. http://www.
modelica.org.

Markus Olsson and Filip Stenström. Improved precision and
verification for test selection in Modelica. Master’s thesis,
Lund University, 2018. LU-CS-EX 2018-08.

Jesper Öqvist, Görel Hedin, and Boris Magnusson. Extraction-
based regression test selection. In Proceedings of the 13th

International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Lan-
guages, and Tools, Lugano, Switzerland, August 29 - Septem-
ber 2, 2016, pages 5:1–5:10, 2016.

Gregg Rothermel and Mary Jean Harrold. Analyzing regression
test selection techniques. IEEE Trans. Software Eng., 22(8):
529–551, 1996.

Gregg Rothermel and Mary Jean Harrold. A safe, efficient re-
gression test selection technique. ACM Trans. Softw. Eng.
Methodol., 6(2):173–210, 1997.

Shin Yoo and Mark Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test., Verif. Re-
liab., 22(2):67–120, 2012.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154131 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

137

Functional Mock-up Interface: An empirical survey
identifies research challenges and current barriers

Gerald Schweiger1 Cláudio Gomes2 Georg Engel1 Irene Hafner3 Josef-Peter Schoeggl4

Alfred Posch5 Thierry Nouidui6

1Technical University of Graz, Graz, Austria {gerald.schweiger,georg.engel}@tugraz.at
2University of Antwerp, Antwerp, Belgium claudio.gomes@uantwerp.be

3dwh GmbH - Simulation Services und Technical Solutions, Vienna, Austria irene.hafner@dwh.at
4KTH Royal Institute of Technology, Stockholm, Sweden schoggl@kth.se

5University of Graz, Graz, Austria alfred.posch@uni-graz.at
6Lawrence Berkeley National Laboratory, Berkeley, USA tsnouidui@lbl.gov

Abstract
Co-simulation is a promising approach for the analysis
of complex, multi-domain systems, that leverages mature
simulation tools of the respective domains. It has been ap-
plied in many different disciplines in academia and indus-
try, with limited sharing of findings. With the increasing
adoption of the FMI standard, researchers have set to work
on surveying the scattered knowledge on co-simulation
in academia. This paper complements the existing sur-
veys by taking on the social and empirical aspect, corrob-
orating, and prioritizing, previous findings. We focus on
understanding the perceived research challenges, and the
current barriers, based on expert assessment. One of the
main barriers pointed out is the limited support for discrete
event and hybrid co-simulation.
Keywords: Co-Simulation, Functional Mock-Up Inter-
face, Modelling

1 Introduction
As engineered systems become more complex, whole sys-
tem simulation techniques need to keep up with the in-
creasing plethora of tools used in the development pro-
cess. It is no longer reasonable to expect the existence of a
one-size-fits-all modelling and simulation tool, capable of
reproducing the behavior of a complex heterogeneous sys-
tem, across the many development stages (Van der Auwer-
aer et al., 2013; Vangheluwe et al., 2002). Instead, highly
specialized modelling and simulation tools, each tailored
to the needs of a specific engineering domain through
years of research and development, should be integrated,
to allow engineers to glimpse at the inter domain interac-
tions of a coupled system.

For simulation, this integration can in theory be
performed by describing how each of the models are
translated to a uniform behavioral model, as suggested in
(Vangheluwe, 2008). However, the existence of special-
ized suppliers with valuable Intellectual Property (IP), the
subtleties of accurately simulating some formalisms, the
sheer number of different modelling and simulation tools

and accompanying licensing fees, make this approach,
denoted as co-modelling, infeasible in practice.

A pragmatic solution, called co-simulation (Gomes
et al., 2018b; Hafner and Popper, 2017), is to perform the
model integration at the dynamic behavioral level, where
each model is used to produce a black box that consumes
inputs and produces outputs over time. These black boxes,
each representing the behavior of a subsystem/domain,
can then be interconnected to mimic the interconnections
of the corresponding subsystems. These interconnections
frequently form feedback loops, which means that the
behavior of one black-boxes, up to a simulated time
point t, is only specified when the behavior of all the
other interacting black-box has been computed up to
t. The consequence is that the behavior of each black
box must be computed in lock-step with the other black
boxes, through the aid of a master algorithm. The master
algorithm is responsible for: finding the appropriate initial
values for every black-box; coordinating the progression
of the simulated time; obtaining outputs and feeding
inputs from/to the black-boxes; and instructing each black
box to compute the next set of outputs. The algorithm is
oftentimes summarized in time diagrams such as the one
shown in Figure 1.

Co-simulation yields multiple advantages:

Figure 1. Example master algorithm.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154138

138

• The behavioral level seems to be the simplest level
any subsystem integration can be done, and is com-
mon across all behavioral formalisms;

• Each black box incorporates its own simulation algo-
rithm, usually the most adequate for its domain;

• The exchange of the black box models can be
made without requiring their content to be disclosed,
thereby protecting IP, and avoiding licensing fees.

Unfortunately, naively connecting inputs to outputs on
black boxes does not necessarily imply that the resulting
behavior mimics the actual couplings of the subsystems,
which brings us a main research problem in co-simulation:
are the co-simulation results trustworthy?

This is not a new challenge, and the coupling of
simulators can be traced back to multi-rate simulation
techniques. However, the increasing number of applica-
tions in different domains (Schweiger et al., 2018a), have
led researchers to survey the vast and scattered body of
knowledge in co-simulation. For example, (Hafner and
Popper, 2017) discusses the differences in terminology
used regarding co-simulation. They provide a classifica-
tion of existing co-simulation methods, which highlights
the unexplored methods. With the intent of systematically
surveying the academic state of the art, (Gomes et al.,
2018b) introduces the fundamental concepts, and applies
feature oriented domain analysis to construct a taxon-
omy of functional and non-functional requirements of
co-simulation. This highlights the multiple ways in which
information about the black-boxes can be exposed to
attain more reliable results. The work in (Palensky et al.,
2017) introduces the main concepts in co-simulation in
a tutorial fashion. Despite its focus on power systems,
it covers the main methods thoroughly, highlighting the
pros and cons of each, and providing pointers to more
detailed expositions.

To the best of our knowledge, even though co-simulation
has been used in industry, there is no empirical assess-
ment of its use, nor of the challenges described in the
above surveys. Only (Bertsch et al., 2014) reports on
the industrial use of co-simulation, and highlights some
of the practical challenges in such a setting, but from
the authors’ experiences. There have been many other
applications of co-simulation even since this report was
published.

In this paper, we complement the existing survey work
by taking on the social and empirical aspect. We collected
interviews with international experts from various fields
(both academic and industry) regarding applications, bar-
riers and future challenges of Functional Mock-up Inter-
face (FMI). The results presented here are part of a larger
survey effort on co-simulation, whose results are still be-
ing collected. The FMI (Blockwitz et al., 2012; FMI,
2014) is a standard that enables co-simulation by pro-
viding a common interface to couple black box simula-
tors. We focus on FMI based co-simulation, because of its
adoption in various fields in industry and academia (Brem-

beck et al., 2011; Schweiger et al., 2018a; Bünte et al.,
2014; Engel et al., 2018; Sanfilippo et al., 2018; Schweiger
et al., 2018b) as well as increasing citations among scien-
tific papers (see Figure 2).

In the next section, we describe our methodology, and
in the section after, we summarize the main results and
conclusions.

0

5

10

15

20

25

30

35

2011 2012 2013 2014 2015 2016 2017

Nu
m

be
r

of
 p

ap
er

s

Year

"Keywords" "Article ti tle, Abstract, Keywords"

Figure 2. Example master algorithm.

2 Method
As a methodological foundation of this study, the Del-
phi method was adopted. The Delphi method is a fore-
casting technique with which the opinions from a defined
group of experts are systematically collected and compiled
(Hsu and Sandford, 2007). It enables the empirical in-
vestigation of research questions on topics that are char-
acterized by an incomplete state of knowledge (Powell,
2003), a lack of historical data or a lack of agreement in
the studied field (Okoli and Pawlowski, 2004). A Del-
phi study aims at achieving a reliable consensus of opin-
ion, by conducting a repetitive assessment process that in-
cludes controlled opinion (Linstone and Turoff, 2002). As
a formal consensus methodology, the Delphi method pro-
vides structured circumstances that “[. . .] can generate a
closer approximation of the objective truth than would be
achieved through conventional, less formal, and pooling
of expert opinion” (Balasubramanian and Agarwal, 2012).
We considered this method because it is especially useful
for addressing interdisciplinary research problems, where
the experts’ opinions are heterogeneous

Regarding the number of experts, Clayton (1997) in-
dicated that 15-30 experts with homogeneous expertise
background or five to ten experts with heterogeneous
background should be involved in a Delphi process, while
Adler and Ziglio (1996) argued that 10–15 experts with
homogeneous expertise can already be considered appro-
priate.

The quality of the Delphi process depends on the factors
of creativity, credibility and objectivity (Nowack et al.,
2011) and to address these quality criteria we followed ac-
knowledged guidelines by authors such as (Landeta, 2006;
Nowack et al., 2011; Okoli and Pawlowski, 2004).

For the selection of the sample of participants, we used
a Knowledge Resource Nomination Worksheet (KRNW)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154138 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

139

as a framework (Okoli and Pawlowski, 2004). The KRNW
is a general criterion for sampling an expert panel to be in-
cluded in a group technique study and consists in the fol-
lowing five steps (Delbecq et al., 1975): (1) Preparation of
the KRNW; (2); Population of the KRNW; (3) Nomina-
tion of additional experts; (4) Ranking of experts; and (5)
Invitation of experts (Okoli and Pawlowski, 2004).

In step 1, experts from academia and industry were se-
lected, as we considered both perspectives essential. In
step 2, the category academia was populated based on
a keyword-based search in the relevant literature. The
category of industry experts was compiled based on a
keyword-based search in the relevant literature, the expe-
rience of the research group and consultation with practi-
tioners. In step 3, both categories were expanded, based
on the suggestions received after contacting the initial list
of experts. The ranking of experts in step 4 was based on
the number of publications (www.scopus.com). In step 5
the final list of 15 experts was invited to take part in the
first phase of the Delphi study via an online-questionnaire.

The survey consist of two rounds. The choice of rounds
is justified by, for instance, Sommerville, which argues
that the changes in the participants’ views in most cases
occurred in the first two rounds of the study and not many
new insights are gained on further rounds (Somerville,
2008). Table 1 summarizes the aim and approach of each
round and provides the number of participants per cate-
gory.

Table 1. Summary of the 2-stage Delphi process. Participants
A=Academia, I=Industry, ND=not declared.

Participants
Round Aim Approach A I ND Total
1 Identification of research

needs, SWOT factors,
limitations and possible
extensions of the FMI
standard

Qualitative 7 2 3 12

2 Evaluation of the result
from the first round and
developing in-depth dis-
cussions on the key as-
pects.

Semi-
quantitative 17 11 0 28

Relevant questions regarding FMI in the first round
were selected based on existing literature studies (e.g.
(Gomes et al., 2018b; Palensky et al., 2017; Trcka et al.,
2007) and the experience of the authors. Both rounds
included both open-ended (qualitative) and quantitative
questions.

In the first round, the majority of questions was qualita-
tive, whereas in the second, quantitative. This ensures that
the topic is introduced in a general way in the first round.
If the first round consisted only of quantitative questions,
there would be an increased risk of overlooking important
factors or biasing the results.

The qualitative questions in the first round concerned
only with findings that were common across the survey pa-
pers referred above. In these cases, expert opinions were
used to evaluate findings in previous surveys and to enable
quantitative statements and comparisons (e.g. how impor-

tant is the extension of the FMI standard in area “a” versus
“b”).

The quantitative questions in the second round were
mainly formulated based on the results of the first round
and the findings in recent literature (e.g. when contradic-
tions were identified).

A total of 28 experts answered the FMI relevant ques-
tions presented in this paper. Experts from academia who
took part in the survey, work in the following fields: Soft-
ware development, Energy Systems, Mobility and Mar-
itime. Experts from industry, who took part in the survey,
work in the following sectors: Energy Systems, Software
development, Mobility. Some experts did not provide in-
formation about their field or sector.

A seven-point Likert scale was used to measure the
quantitative responses (Entirely agree =7 to Entirely dis-
agree = 1). In order to provide a transparent presenta-
tion of the results, (i) in the appendix, all results are dis-
played in detail in a bar chart and (ii) in Section 3 we
present a summary table including Mean, Median and In-
terpolated Median values (Balasubramanian and Agarwal,
2012; Hallowell and Gambatese, 2010; Sachs, 1997)).
There is an ongoing discussion about the best way to inter-
pret Likert scales; Sachs argues that the interpolated me-
dian is more precise than the normal medians because of
better consideration of frequencies of answers within one
category in comparison to all answers (Sachs, 1997).

3 Results and Discussion
Table 2 summarizes the results from the second round of
quantitative questions; more details can be found Figure 3.

The questions focus on the issues reported by the ex-
perts in the first round of the survey, and on the exiting
literature. Based on the score provided by the experts to
each question, we classified each issue according whether
it constitutes a barrier for the adoption of the standard:
issues with a median score less than 4 are considered as
“Not a barrier”; issues with a median score between 4 and
5 are considered as “Somewhat of a barrier”; and issues
with a median score of 5 or higher are considered as a
“Barrier”.

For example, concerns with IP protection, with a me-
dian score of 3.0, do not constitute a barrier for the
adoption of FMI. This corroborates the fact that one of
the goals of FMI is to provide adequate IP protection
(Blochwitz et al., 2011). This result does not necessarily
contradict what is stated in (Durling et al., 2017), as that
work concerns advanced use cases of co-simulation, such
as design space exploration, or solving boundary condi-
tions. As the authors suggest, it is likely that advanced co-
simulation methods, or those providing formal guarantees
(e.g., (Thule et al., 2018)), will require some information
from the models.

We also tested the results on disagreement between
experts from academia and industry using a Chi-square
test. We found disagreement for the question: "There is a

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154138

140

lack of (scientific) community, forums, groups" (p<0.05).
Whereas the majority of industry experts did not consider
it a barrier (median=3), experts from academia provided
mixed answers (median=4).

In the following, we discuss the issues that experts con-
sider to be barriers.

3.1 FMI has limited support for hybrid and
discrete time co-simulation

Informally, a hybrid co-simulation is the co-simulation of
a hybrid system (cf. (Gomes et al., 2017) for more de-
tails and examples). Hybrid systems exhibit a mix of con-
tinuous and discrete event dynamics; e.g., systems mod-
elled with hybrid automata (Henzinger, 2000), switched
systems (Sun, 2006), etc.

The ability to reproduce the dynamics of these sys-
tems in a co-simulation is important because, in full sys-
tem evaluations, where co-simulation is frequently used
(Van der Auweraer et al., 2013), hybrid dynamics are per-
vasive. For example, systems exhibiting Coulomb friction
and/or hysteresis, or comprising non-trivial control soft-
ware, all exhibit hybrid behavior.

In the FMI for co-simulation, version 2.0 (FMI, 2014),
some support is provided to locate discontinuous events.
However, according to the covered literature, providing
support for hybrid co-simulation includes addressing the
following challenges:
• Sound representation of different semantics (as done

in (Ptolemaeus, 2014; Cremona et al., 2016) and se-
mantic adaptations (Gomes et al., 2018a);

• Accurate event location (e.g., as done in (Zhang
et al., 2008; Broman et al., 2013));

• Discontinuity identification and signal distinction
(e.g., using the super-dense integer time formaliza-
tion (Broman et al., 2015; Cremona et al., 2017a), or
explicitly representing internal clocks (Franke et al.,
2017); and

• Adequate discontinuity handling (e.g., set the inter-
nal continuous numerical solvers’ state (Andersson
et al., 2016)).

3.2 There is insufficient documentation
Detailed documentation, tutorials and examples are of
central importance for the establishment of a technology
such as co-simulation. Previous works have already ad-
dressed this barrier. (Palensky et al., 2017) presents a
good introduction for researchers looking to understand
the main co-simulation algoritms, and what their trade-
offs are.

It is also important to mention that some tutorials have
been published on individual standards or in the context of
co-simulation projects. Within the the INTO-CPS (Larsen
et al., 2016) project, for example, tutorials with industrial
case studies were developed and training schools were or-
ganized. There are also tutorials for the FMI standard
(FMI, 2018); some tool vendors also provide video tutori-
als on social media platforms such as Youtube.

The revision and/or introduction of online learning ma-
terial based on insights into success factors in online edu-
cation would be helpful (Volery and Lord, 2000; Sun et al.,
2008). This should include real-world examples from dif-
ferent fields. Furthermore, the possibilities, problems and
limitations of applications in the field of continuous, dis-
crete event and hybrid co-simulation should be presented.
In order to sustain a long term adoption of the standard
and to lower the entry barrier for new user, it is impor-
tant to manage expectations of what co-simulation can,
and cannot, do. This includes e.g. licensing issues, com-
putational performance in comparison to monolithic sim-
ulations. The integration of FMI into university courses
would increase the visibility of the standard and accelerate
the development of (online) learning materials and tutori-
als.

3.3 The standard does not support certain re-
quirements that would be widely needed
by industry and academia

The authors are aware that this statement is very general
and answers based on Liker Scales do not allow general
conclusions; several extensions to the standard have been
proposed from tool vendors (e.g. (Sahlin and Lebedev,
2016)), industry (e.g. (Hirano et al., 2015) and academia
(e.g. (Cremona et al., 2017b; Broman et al., 2013)). Some
of these proposed extensions are addressed in the current
development process (FMI, 2018). In addition to the on-
going FMI development process, we propose a compre-
hensive empirical study to clarify which extensions are
needed by which actors in industry and academia. In this
context, one expert pointed out that if all extensions and
peculiarities of individual tools are considered, there is a
risk that the robustness of applications will be reduced.
Therefore, the proposed empirical study should also in-
clude theoretical experts, tool and members of the FMI
development committee.

3.4 Lack of transparency in in features sup-
ported by FMI tools

Potential users usually have a clear idea of the model-
ing requirements when addressing a problem with co-
simulation. Based on these requirements, a screening
of possible alternatives often follows. A transparent and
easy-to-understand presentation of supported features is
of central importance in this context. We propose two ac-
tions: (i) which features are supported, and which are not,
should also be addressed in online learning materials and
tutorials (see section 3.2); and (ii) a transparent and fre-
quently updated online presentation of supported features
and planned extensions.

3.5 Limitations of the study
The aim of this study is to identify barriers to FMI by
means of empirical surveys and to link and critically re-
flect on findings from recent literature. How these barriers
could be overcome was also discussed in relation to re-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154138 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

141

Table 2. Expert assessment of current barriers for FMI based on a Seven-point Likert scale.

Score: Entirely agree (7) Mostly agree (6) Somewhat agree (5) Neither agree nor disagree (4) Somewhat disagree (3)
Mostly disagree (2) Entirely disagree (1) Mean Median Interpolated

Median

Not a Barrier

It is difficult to post-process simulation results 3.57 2.50 2.50

Concerns of industry/academia regarding FMI and IP protection 3.52 3.00 2.83

No pre-implemented Master Algorithms 4.08 3.00 3.25

Somewhat of a Barrier

The FMI-standard still requires a number of updates in order to serve as a useful general standard for co-simulation 4.52 4.00 3.75

There is not enough cooperation and exchange (theoretical/numerical, implementation, application/industry)
in defining and developing the FMI standard

4.12 4.00 3.81

There is a lack of tools that sufficiently support FMI 4.04 4.00 3.83

There is a lack of (scientific) community, forums, groups 4.27 4.00 3.83

Simulations are slow compared to monolithic simulations 3.82 4.00 3.92

It is difficult to implement FMU’s (API, connecting/linking different subsystems) 4.07 4.00 4.00

Barrier

FMI has limited support for hybrid co-simulation and it is not easily applicable 5.82 5.00 5.00

Lack of transparency in features supported by FMI tools 5.12 5.00 5.05

There is insufficient documentation and a lack of examples, tutorials, etc. 5.14 5.00 5.17

The standard does not support certain requirements that would be widely needed by industry and academia 5.42 5.00 5.25

FMI has limited support for discrete co-simulation and it is not easily applicable 5.67 5.00 5.25

cent literature. The identification of new approaches and
the quantitative and qualitative evaluation and comparison
of existing approaches for the respective barriers is beyond
the scope of this paper.

The barrier "The standard does not support certain
requirements that are urgently needed by industry and
academia" is very general and a detailed discussion goes
beyond the scope of this paper. The authors admit that ide-
ally, experts should have been asked in detail about these
requirements. Nevertheless, we did not want to withhold
these results, as they could stimulate a broader discussion
on that topic.

A further limitation of the present study concerns the
size of the sample. However, the aim of Delphi studies
is not to obtain a representative sample in a purely sta-
tistical sense. The number of experts participating in this
study is in line with recommendations from relevant liter-
ature on Delphi studies (Adler and Ziglio, 1996; Clayton,
1997; Ludwig, 1997). A general critical discussion about
the Delphi method and its weaknesses can be found here
(Goodman, 1987; Hill and Fowles, 1975).

4 Conclusion
The present paper reports an expert assessment on FMI,
taking on the social and empirical aspect, with a focus on
understanding the perceived research challenges and the
current barriers. After a two-round Delphi-method, we

concluded that experts consider the following as barriers
to the adoption of the standard:

1. limited support for hybrid- and discrete event co-
simulation;

2. insufficient documentation and a lack of examples
and tutorials;

3. lack of certain requirements that would be widely
needed by industry and research; and

4. transparent presentation of supported features;

It is our hope that the results of this study increase trans-
parency and facilitate a structured development of the
standard, and related research.

5 Acknowledgments
We want to thank all experts who participated in our study.
The research was supported by ECSEL JU under the
project H2020 737469 AutoDrive - Advancing fail-aware,
fail-safe, and fail-operational electronic components, sys-
tems, and architectures for fully automated driving to
make future mobility safer, affordable, and end-user ac-
ceptable. AutoDrive is funded by the Austrian Fed-
eral Ministry of Transport, Innovation and Technology
(BMVIT) under the program "ICT of the Future" be-
tween May 2017 and April 2020. More information
https://iktderzukunft.at/en/

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154138

142

References
Michael Adler and Erio Ziglio. Gazing Into the Oracle: The

Delphi Method and Its Application to Social Policy and Pub-
lic Health. Jessica Kingsley Publishers, London and Philadel-
phia, 1996.

Christian Andersson, Claus Führer, and Johan Åkesson.
Efficient Predictor for Co-Simulation with Mul-
tistep Sub-System Solvers. Technical Report 1,
2016. URL http://lup.lub.lu.se/record/
dbaf9c49-b118-4ff9-af2e-e1e3102e5c22.

Ramya Balasubramanian and Deepti Agarwal. Delphi
Technique- A Review. International Journal of Public
Health Dentistry, 3(2):16–25, 2012. ISSN 17411645. URL
http://journalgateway.com/ijphd/article/
view/444.

Christian Bertsch, Elmar Ahle, and Ulrich Schulmeister. The
Functional Mockup Interface-seen from an industrial per-
spective. In 10th International Modelica Conference, 2014.

Torsten Blochwitz, Martin Otter, Martin Arnold, C Bausch,
Christoph Clauss, Hilding Elmqvist, Andreas Junghanns,
Jakob Mauss, M Monteiro, T Neidhold, Dietmar Neumerkel,
Hans Olsson, J.-V. Peetz, and S Wolf. The Func-
tional Mockup Interface for Tool independent Exchange
of Simulation Models. In 8th International Modelica
Conference, pages 105–114, Dresden, Germany, 6 2011.
Linköping University Electronic Press; Linköpings univer-
sitet. doi:10.3384/ecp11063105.

Torsten Blockwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation
Models. In 9th International Modelica Conference, pages
173–184, Munich, Germany, 11 2012. Linköping University
Electronic Press. doi:10.3384/ecp12076173.

Jonathan Brembeck, Martin Otter, and Dirk Zimmer. Non-
linear Observers based on the Functional Mockup In-
terface with Applications to Electric Vehicles. Pro-
ceedings of the 8th International Modelica Conference,
pages 474–483, 2011. doi:10.3384/ecp11063474. URL
http://www.ep.liu.se/ecp/article.asp?
issue=063%26article=53.

David Broman, Christopher Brooks, Lev Greenberg, Edward A
Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.
Determinate composition of FMUs for co-simulation. In
Eleventh ACM International Conference on Embedded Soft-
ware, page Article No. 2, Montreal, Quebec, Canada, 2013.
IEEE Press Piscataway, NJ, USA. ISBN 978-1-4799-1443-2.

David Broman, Lev Greenberg, Edward A Lee, Michael
Masin, Stavros Tripakis, and Michael Wetter. Require-
ments for Hybrid Cosimulation Standards. In 18th Inter-
national Conference on Hybrid Systems: Computation and
Control, HSCC ’15, pages 179–188, Seattle, Washington,

2015. ACM New York, NY, USA. ISBN 978-1-4503-3433-4.
doi:10.1145/2728606.2728629.

Tilman Bünte, Lok Man Ho, Clemens Satzger, and Jonathan
Brembeck. Central Vehicle Dynamics Control of the Robotic
Research Platform RoboMobil. ATZelektronik worldwide, 9
(3):58–64, 6 2014. ISSN 2192-9092. doi:10.1365/s38314-
014-0254-6. URL https://doi.org/10.1365/
s38314-014-0254-6.

Mark J Clayton. Delphi: a technique to harness ex-
pert opinion for critical decision-making tasks in edu-
cation. Educational Psychology, 17(4):373–386, 1997.
doi:10.1080/0144341970170401. URL https://doi.
org/10.1080/0144341970170401.

Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher
Brooks, and Edward A Lee. FIDE: an FMI integrated de-
velopment environment. In 31st Annual ACM Symposium on
Applied Computing, SAC ’16, pages 1759–1766, Pisa, Italy,
2016. ACM New York, NY, USA. ISBN 9781450337397.
doi:10.1145/2851613.2851677.

Fabio Cremona, Marten Lohstroh, David Broman, Edward A.
Lee, Michael Masin, and Stavros Tripakis. Hybrid co-
simulation: It’s about time. Software & Systems Mod-
eling, November 2017a. ISSN 1619-1366, 1619-1374.
doi:10.1007/s10270-017-0633-6.

Fabio Cremona, Marten Lohstroh, David Broman, Stavros
Tripakis, Edward A Lee, and Michael Masin. Hy-
brid Co-simulation: It’s About Time. Technical re-
port, Report No. UCB/EECS-2017-6, EECS Depart-
ment, University of California, Berkeley, 2017b. URL
http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2017/EECS-2017-6.html.

André L Delbecq, Andrew H Van de Ven, and David H
Gustafson. Group techniques for program planning: A guide
to nominal group and delphi processes. Scott-Foresman and
Company, Glenview, Illinois, 1975.

Erik Durling, Elias Palmkvist, and Maria Henningsson. FMI
and IP protection of models: A survey of use cases and sup-
port in the standard. In 12th International Modelica Con-
ference, number 132, pages 329–335. Linköping University
Electronic Press, 2017. ISBN 1650-3740.

Georg Engel, Ajay S. Chakkaravarthy, and Gerald Schweiger.
A General Method to Compare Different Co-Simulation
Interfaces: Demonstration on a Case Study. In Janusz
Kacprzyk, editor, Simulation and Modeling Methodologies,
Technologies and Applications, chapter 19. Springer, 2018.
doi:10.1007/978-3-030-01470-4_19.

FMI. Functional Mock-up Interface for Model Exchange and
Co-Simulation. Technical report, 2014.

FMI. Functional Mock-up Interface, 2018. URL https://
fmi-standard.org.

Rûdiger Franke, Sven Erik Mattsson, Martin Otter, Karl Wern-
ersson, Hans Olsson, Lennart Ochel, and Torsten Blochwitz.
Discrete-time models for control applications with FMI.
pages 507–515, July 2017. doi:10.3384/ecp17132507.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154138 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

143

Cláudio Gomes, Yentl Van Tendeloo, Joachim Denil, Paul
De Meulenaere, and Hans Vangheluwe. Hybrid System Mod-
elling and Simulation with Dirac Deltas. Technical report,
University of Antwerp, Antwerp, 2 2017. URL http:
//arxiv.org/abs/1702.04274.

Cláudio Gomes, Bart Meyers, Joachim Denil, Casper Thule,
Kenneth Lausdahl, Hans Vangheluwe, and Paul De Meule-
naere. Semantic Adaptation for FMI Co-simulation with Hi-
erarchical Simulators. SIMULATION, pages 1–29, 2018a.
doi:10.1177/0037549718759775.

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: a Sur-
vey. ACM Computing Surveys, 51(3):Article 49, 4 2018b.
doi:10.1145/3179993.

Claire M. Goodman. The Delphi technique: a critique. Journal
of Advanced Nursing, 12(6):729–734, 1987. ISSN 13652648.
doi:10.1111/j.1365-2648.1987.tb01376.x.

Irene Hafner and Niki Popper. On the terminology and struc-
turing of co-simulation methods. In Proceedings of the 8th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pages 67–76, New York,
New York, USA, 2017. ACM Press. ISBN 9781450363730.
doi:10.1145/3158191.3158203. URL http://dl.acm.
org/citation.cfm?doid=3158191.3158203.

Matthew R. Hallowell and John A. Gambatese. Quali-
tative Research: Application of the Delphi Method to
CEM Research. Journal of Construction Engineer-
ing and Management, 136(1):99–107, 1 2010. ISSN
0733-9364. doi:10.1061/(ASCE)CO.1943-7862.0000137.
URL http://ascelibrary.org/doi/10.1061/
%28ASCE%29CO.1943-7862.0000137.

Thomas A Henzinger. The theory of hybrid automata. Springer,
2000. ISBN 3642640524.

Kim Quaile Hill and Jib Fowles. The methodological worth of
the Delphi forecasting technique. Technological Forecasting
and Social Change, 7(2):179–192, 1975. ISSN 0040-1625.
doi:https://doi.org/10.1016/0040-1625(75)90057-8. URL
http://www.sciencedirect.com/science/
article/pii/0040162575900578.

Yutaka Hirano, Satoshi Shimada, Yoichi Teraoka, Os-
amu Seya, Yuji Ohsumi, Shintaroh Murakami, Tomo-
hide Hirono, and Takayuki Sekisue. Initiatives for
acausal model connection using FMI in JSAE (Soci-
ety of Automotive Engineers of Japan). In Proceed-
ings of the 11th International Modelica Conference,
pages 795–801, 2015. doi:10.3384/ecp15118795. URL
http://www.ep.liu.se/ecp_article/index.
en.aspx?issue=118;article=85.

Chia-chien Hsu and Brian Sandford. The delphi technique:
making sense of consensus. Practical Assessment, Re-
search & Evaluation, 12(10):1–8, 2007. ISSN 1531-7714.
doi:10.1016/S0169-2070(99)00018-7.

Jon Landeta. Current validity of the Delphi method
in social sciences. Technological Forecasting and So-
cial Change, 73(5):467–482, 2006. ISSN 00401625.
doi:10.1016/j.techfore.2005.09.002.

Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Peter
Fritzson, Jorg Brauer, Christian Kleijn, Thierry Lecomte,
Markus Pfeil, Ole Green, Stylianos Basagiannis, and An-
drey Sadovykh. Integrated tool chain for model-based de-
sign of Cyber-Physical Systems: The INTO-CPS project.
In 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPS Data), pages 1–6, Vi-
enna, Austria, 4 2016. IEEE. ISBN 978-1-5090-1154-4.
doi:10.1109/CPSData.2016.7496424.

Harold A Linstone and Murray Turoff. The Delphi Method:
Techniques and Applications. Technometrics, 18:363, 2002.
ISSN 00401706. doi:10.2307/1268751.

Barbara Ludwig. Predicting the Future: Have you con-
sidered using the Delphi Methodology? Journal
of Extension, 35(5):5TOT2, 1997. ISSN 10775315.
doi:10.1161/CIRCULATIONAHA.111.023879. URL
http://www.joe.org/joe/1997october/tt2.
php.

Martin Nowack, Jan Endrikat, and Edeltraud Guenther. Re-
view of Delphi-based scenario studies: Quality and de-
sign considerations. Technological Forecasting and So-
cial Change, 78(9):1603–1615, 2011. ISSN 00401625.
doi:10.1016/j.techfore.2011.03.006. URL http://dx.
doi.org/10.1016/j.techfore.2011.03.006.

Chitu Okoli and Suzanne D Pawlowski. The Delphi method
as a research tool : an example , design considerations
and applications. Information & Management, 42(1):15–
29, 2004. ISSN 03787206. doi:10.1016/j.im.2003.11.002.
URL http://dx.doi.org/10.1016/j.im.2003.
11.002.

Peter Palensky, Arjen A Van Der Meer, Claudio David
Lopez, Arun Joseph, and Kaikai Pan. Cosimulation of
Intelligent Power Systems: Fundamentals, Software Ar-
chitecture, Numerics, and Coupling. IEEE Industrial
Electronics Magazine, 11(1):34–50, 2017. ISSN 1932-
4529. doi:10.1109/MIE.2016.2639825. URL http://
ieeexplore.ieee.org/document/7883974/.

Catherine Powell. The Delphi Technique: myths and real-
ities. Methodological Issues in Nursing Research, 41(4):
376–382, 2003. ISSN 0309-2402. doi:10.1046/j.1365-
2648.2003.02537.x. URL http://www.ncbi.nlm.
nih.gov/pubmed/12581103.

Claudius Ptolemaeus. System Design, Modeling, and Simula-
tion: Using Ptolemy II. Berkeley: Ptolemy.org, 2014. ISBN
1304421066.

Lothar Sachs. Angewandte Statistik. Springer-Verlag, Berlin
Heidelberg, 1997.

Per Sahlin and Alexey Lebedev. OPENCPS: Benchmark build-
ing and energy system models. Technical report, 2016.

Filippo Sanfilippo, Lars Ivar Hatledal, Kristin Ytterstad Pet-
tersen, and Houxiang Zhang. A Benchmarking Framework
for Control Methods of Maritime Cranes Based on the Func-
tional Mockup Interface. IEEE Journal of Oceanic Engineer-
ing, 2018. ISSN 03649059. doi:10.1109/JOE.2017.2691920.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154138

144

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner,
Josef-Peter Schoeggl, Alfred Posch, and Thierry Stephane
Nouidui. An Empirical Survey on Co-Simulation: Promis-
ing Standards, Challenges and Research Needs. Manuscript
submitted for publication, 2018a.

Gerald Schweiger, Richard Heimrath, Basak Falay, Keith
ODonovan, Peter Nageler, Reinhard Pertschy, Georg Engel,
Wolfgang Streicher, and Ingo Leusbrock. District Energy
Systems: Modelling paradigms and general-purpose tools.
Energy, 2018b.

Jerry Somerville. Critical Factors Affecting the Assessment of
Student Learning Outcomes: A Delphi Study of the Opin-
ions of Community College Personnel. Journal of Applied
Research in the Community College, 15(2):109–119, 2008.
ISSN 1068-610X.

Pei-Chen Sun, Ray J Tsai, Glenn Finger, Yueh-Yang
Chen, and Dowming Yeh. What drives a successful
e-Learning? An empirical investigation of the critical
factors influencing learner satisfaction. Computers &
Education, 50(4):1183–1202, 2008. ISSN 0360-1315.
doi:https://doi.org/10.1016/j.compedu.2006.11.007. URL
http://www.sciencedirect.com/science/
article/pii/S0360131506001874.

Zhendong Sun. Switched linear systems: control and de-
sign. Springer Science & Business Media, 2006. ISBN
1846281318.

Casper Thule, Cláudio Gomes, Julien Deantoni, Peter Gorm
Larsen, Jörg Brauer, and Hans Vangheluwe. Towards Verifi-
cation of Hybrid Co-simulation Algorithms. In 2nd Workshop
on Formal Co-Simulation of Cyber-Physical Systems, page to
be published, Toulouse, France, 2018. Springer, Cham.

Marija Trcka, Michael Wetter, and Jan Hensen. Comparison
of co-simulation approaches for building and HVAC/R sys-

tem simulation. In International IBPSA Conference, Beijing,
China, 2007.

Herman Van der Auweraer, Jan Anthonis, Stijn De Bruyne,
and Jan Leuridan. Virtual engineering at work: the chal-
lenges for designing mechatronic products. Engineering
with Computers, 29(3):389–408, 2013. ISSN 0177-0667.
doi:10.1007/s00366-012-0286-6.

Hans Vangheluwe. Foundations of Modelling and Simulation of
Complex Systems. Electronic Communications of the EASST,
10, 2008. doi:10.14279/tuj.eceasst.10.162.148.

Hans Vangheluwe, Juan De Lara, and Pieter J Mosterman. An
introduction to multi-paradigm modelling and simulation. In
AI, Simulation and Planning in High Autonomy Systems,
pages 9–20. SCS, 2002.

Thierry Volery and Deborah Lord. Critical success factors
in online education. International Journal of Educa-
tional Management, 14(5):216–223, 9 2000. ISSN
0951-354X. doi:10.1108/09513540010344731. URL
http://www.emeraldinsight.com/doi/10.
1108/09513540010344731.

Fu Zhang, Murali Yeddanapudi, and Pieter J Moster-
man. Zero-Crossing Location and Detection Algorithms
For Hybrid System Simulation. In IFAC Proceed-
ings Volumes, volume 41, pages 7967–7972, Seoul, Ko-
rea, 7 2008. Elsevier Ltd. doi:10.3182/20080706-5-KR-
1001.01346. URL http://linkinghub.elsevier.
com/retrieve/pii/S1474667016402296.

6 Appendix

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154138 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

145

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

There is a lack of tools that sufficiently support FMI]

It is difficult to post-process simulation results

Concerns of industry/academia regarding FMI and IP protection

No pre-implemented Master Algorithms

The FMI-standard still requires a number of updates in order to serve as a useful general standard for co-
simulation

There is not enough cooperation and exchange (theoretical/numerical, implementation,
application/industry) in defining and developing the FMI standard

There is a lack of (scientific) community, forums, groups

Simulations are slow compared to monolithic simulations

It is difficult to implement FMU’s (API, connecting/linking different subsystems)

FMI has limited support for hybrid co-simulation and it is not easily applicable

Lack of transparency in features supported by FMI tools]

There is insufficient documentation and a lack of examples, tutorials, etc

The standard does not support certain requirements that would be widely needed by industry and
academia

FMI has limited support for discrete co-simulation and it is not easily applicable

Current barriers for FMI in and research

Entirely agree Mostly agree Somewhat agree Neither agree nor disagree Somewhat disagree Mostly disagree Entirely disagree

Figure 3. Expert assessment of current barriers for FMI based on a Seven-point Likert scale.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154138

146

A Method to Import an FMU to a Hardware Description Language

Min Zhang
Synopsys Inc., USA, minz@synopsys.com

Abstract
In this paper, a new method of importing FMUs
(Functional Mock-up Unit) [1] to a multi-domain,
mixed-mode simulator is presented. Supporting FMI
(Functional Mock-up Interface) 2.0 for Model Exchange
by converting an FMU to an HDL (Hardware
Description Language) wrapper model not only takes
advantage of the existing simulator capabilities, but also
avoids a significant amount of work in the core of the
simulator. The selected HDL in this paper is MAST
which is used in both Saber and SaberHDL simulators
[2][7]. To make the FMU import process easier, a
general conversion utility, FMU2MAST, was developed
which converts an FMU to a MAST model
automatically. Two examples, bouncing ball and motor
drive system are presented. With these two examples,
three techniques used in this method are discussed:
Accurate event detection in a variable time-step
integration algorithm; Re-initialization of a state
variable in MAST; and solving DAE (Differential
Algebraic Equation) of a coupling FMUs system. This
new FMU import method has been proved a success
with 44 examples exported from five different tools.

Keywords: FMI, FMU, HDL, MAST, Modeling,
Simulation, Saber, SaberHDL, DAE

1 Introduction
In order to improve the exchange of simulation models
between suppliers and OEMs, FMI (Functional Mock-
up Interface) is initiated by Daimler AG in 2010. It
defines an interface to be implemented by an executable
called FMU (Functional Mock-up Unit). It has been
used in automotive and non-automotive industries, and
supported by many simulation tools [1].

Saber is a multi-domain, mixed-mode simulator used in
automotive and aerospace industries for more than thirty
years. It supports models written by an HDL such as
MAST and VHDL-AMS [4][7]. In recent years, there
are more and more requests to import FMUs into Saber
simulator from the industry.

To support the FMI 2.0 for Model Exchange in an HDL
simulator, it requires a significant work in the core of the
simulator. In this paper, a new method to import FMUs

for Model Exchange is explored. Instead of supporting
the FMU in a simulator core, the method proposed in
this paper is to convert an FMU into a MAST wrapper
model. This method has the following advantages:

1. Reduce significant work in the core of the
simulator, which is time consuming as well as
risky.

2. Avoid the duplicated work in another MAST
simulator to support FMU import. Once an
FMU is successfully converted to a MAST
model, the generated MAST model works in
Saber simulator, it also can work in another
MAST simulator, SaberHDL, without any extra
work.

3. The generated MAST wrapper model inherits
all the features of the MAST language, and is
applicable for all the existing simulator
analyses, such as operating analysis, transient
analysis, and advanced Monte Carlo analysis
[7].

4. The generated MAST wrapper models can be
used along with other models written in MAST
or VHDL-AMS [4][6]. It increases the model
availability and helps the study of a more
complex and interesting system.

In chapter 2, a detail analysis of the data types and
variables in FMU and MAST language is presented.
Based on that, the equivalent objects in MAST language
is derived. A new interface, saberFMI is introduced in
chapter 3. It creates the communication channel
between MAST models and FMUs through FMI
interfaces. In chapter 4, A general conversion utility,
FMU2MAST is introduced. It parses the model
description file in the FMU, generates an equivalent
MAST wrapper model automatically, which makes the
conversion from FMUs to MAST models easier. Two
FMU examples are presented in the chapter 5 and 6 to
discuss the detail techniques used in the method.
Although the bouncing ball example is simple, it is
useful to discuss two issues: accurate event detection in
variable-time step integration algorithm and re-
initialization of a state variable in MAST model. The
motor drive system is used to illustrate how a coupling
system with multiple FMUs are solved in a DAE solver.
The method has been verified in two simulators with 44
FMU examples exported by five different tools.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154147 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

147

2 Model Types and Variables
Both FMUs and MAST models are designed to describe
a mixed-mode, multi-physics system, consequently they
share many interchangeable objects, which are
discussed below [1][2].

2.1 Data Types
MAST has six data types. The four basic scalar data
types are integer, number, string and enumeration.
These types have the same definition as the data types
defined in the FMUs. The difference is that the identifier
name in the FMUs is case sensitive, and it also can have
special characters, such as space, parenthesis, braces and
brackets in it, e.g. “der(v)”. In such cases, an underscore
“_” is used to replace the illegal MAST characters,
therefore, the variable name “der(v)” in the FMU will
be translated into “der_v” in MAST. Due to lack of char
and byte types in MAST, any FMUs with these variable
types will not be supported for MAST conversion.

2.2 Model Connection Points
In MAST, the model connection points communicate
the characteristics of the model with the rest of the
system. There are three different types of connection
points: continuous analog pin, event-driven port and
data flow type.

The continuous analog data type presents the physical
connection which has across and through units. For
example, the electrical port has voltage as a cross unit
and current as a through unit. The across and through
units satisfy the KCL (Kirchhoff’s Voltage Law) and
KVL (Kirchhoff’s Current Law) laws, thus the analog
pin is energy conservative. There is no direction for this
type. Currently FMI 2.0 doesn’t support physical
connection port. A method has been proposed to create
an adaptor model for the physical port to solve the
problem [8]. The proposal assumes the voltage as input,
and current as the output, which may not applicable for
all the cases. The better way is to solve the equations
associated with the physical ports in a DAE solver,
which may be supported in FMI/FMU standard in the
future.

The event-driven port is used to communicate a model’s
discrete behavior in the system. It has three direction
modes: input, output and inout (also called bi-direction).
It is the input mode if it is driven by other discrete events
and output mode if it drives other models. It is the inout
mode if it adopts both behaviors. It is equivalent to the
FMU scalarVariable with the variability of discrete and
causality of input or output.

The data flow connection describes a model in a control
flow fashion. It has input and output modes. It is input
mode if it reads values from the connection point and
output mode if it writes values to the connection. It is

equivalent to the FMU scalarVariable with the
variability of continuous and causality of input or
output.

2.3 Model Parameter
Model parameters are coefficients that reside within
physical characteristic equations which describe the
model behavior. During simulation, the model
parameters remain constant, however it can be varied in
different simulation runs. The model parameter is
equivalent to the FMU scalarVariable with the causality
of parameter and variability of constant.

2.4 Constant Variable
The constant variable is similar to the model parameter,
but used locally and only visible inside the model. Its
value is constant, or may be calculated based on other
model parameters but remains constant during the
simulation. The constant variable in MAST model is
equivalent to the FMU scalarVariable with the
following types: 1. Causality is parameter and
variability is fixed; 2. Causality is calculatedParameter
and variability is fixed or constant; 3. Causality is local
and variability is fixed or tunable.

2.5 State Variable
In MAST, the state variable (state) is used to describe
the discrete behavior whose value remains constant
between two consecutive time steps but may change
from time point to time point. It is equivalent to the
FMU scalarVariable with the following types: 1.
Causality is independent; 2. Causality is local and
variability is either discrete or tunable; 3. Causality is
parameter and variability is tunable.

2.6 Local Analog Variable
A local analog variable in MAST (val) is a continuous
variable and used to simplify the complicated system
equations. It is equivalent to the FMU variable with the
causality of local and variability of continuous.

2.7 System Analog Variable
In MAST, system variables (var) are the unknown
variables that are needed to be simultaneously solved via
the DAE (Differential Algebraic Equations) solver.
Usually they are the analog connection points, data flow
connections, through variable of independent source and
d_by_dt operators for differential equations. FMU only
solves the ODE (Ordinary Differential Equations), thus
MAST system variable (var) is equivalent to an FMU
continuous state variable with the causality of local and
variability of continuous. The exchangeable objects
between MAST and FMUs are shown in figure 1.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154147

148

3 saberFMI Interface
In order to communicate with an FMU inside a MAST
model, a new MAST foreign routine interface,
saberFMI is developed. It exchanges the information
between the MAST and FMU through the FMI. With
this interface, the simulator can talk to FMUs through
the interfaces: MAST, saberFMI and FMI. The
communication interfaces between the FMUs and Saber
simulator are shown in figure 2.

3.1 Parameter Section
The Parameters section is a group of sequential
statements that initializes the system. It validates all the
model parameters, calculates the internal constant
variables which depend on the model parameters, and
initializes state variables if needed. It is equivalent to
instantiated and initializationMode states defined in
FMI state machine [1]. Four saberFMI interfaces are
introduced in this section: initialization, setValues,
updateValues and getValues. The first initialization
saberFMI interface calls fmi2Instantiate to construct
the fmi2Component and return fmiHandle to the MAST
model. The second setValues interface passes all the
model parameters to the FMU by calling fmi2SetX
internally (where X is one of the FMU data types, e.g.
Integer, Real and Boolean). The third updateValues

interface will update all the internal variables by calling
the FMI interface fmi2EnterIntializationMode and
fmi2ExitInitializationMode. The fourth saberFMI
interface, getValues, will get all the internal local
variables by calling fmi2GetX and pass them back to
the MAST model. The saberFMI calling sequence in
MAST model during the initialization phase is shown in
figure 3.

3.2 When Sections
The when section in MAST is used to construct the
discrete state machine. Once the input events get
changed, Saber simulator will call the statements in the
body of the when section, and propagate the events until
no new events are generated. This section is equivalent
to the EventMode state in the FMI state machine. Two
new saberFMI interfaces are introduced: setEvents and
checkEvents. The first setEvents interface will call
fmi2EnterEventMode, then fmi2SetX to update input

Figure 2 Interfaces between Simulator and FMUs

Figure 5 saberFMU Environment Layer

Figure 3 saberFMI in MAST Parameter section

Figure 4 saberFMI in MAST when section

Figure 1 Exchangeable objects between the MAST

and FMU

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154147 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

149

discrete variables. Next, fmi2NewDiscreteStates will
be repeatedly called to propagate all the events until no
new event is generated. The FMI interface
fmi2EnterContinuousTimeMode will be called later
to appropriately switch back to continuousTimeMode.
At the end of when section, the MAST built-in
scheduling function, schedule_next_time(), will be
called to force the next simulation time to be the value
returned by checkEvents. The FMI calling sequence in
MAST when section is shown in figure 4.

3.3 Values Section
In MAST, the values section of a model is used to
transform variables into a form needed in the equations
section. In this section, three new saberFMI interfaces
are introduced: timeValue, nonlinear and checkCross.
The first one, timeValue, passes continuous input values
to the FMU by calling fmi2SetTime and fmi2SetReal.
The second saberFMI interface, nonlinear, receives the
nonlinear function values of the scalarVariables defined
in the FMU by calling fmi2GetReal. Saber simulator
will automatically construct the nonlinear functions,
extract the numerical partial derivatives for each
nonlinear dimension, and fill in system Jacobin matrix.
The third saberFMI interface, checkCross, will get
eventIndicator value, return zero if no cross event is
detected, and one a cross event is detected. This
evenIndicator will be used in a when (threshold)
section to find the exact time when any event occurs and
force the simulator to find a solution at that time point.
All these steps are accomplished in the
continuousTimeMode state. The FMI calling sequence
in MAST values section are shown in figure 5.

4 FMU2MAST conversion
With the new saberFMI interface introduced in section
3, the FMU models can be represented by a MAST
wrapper model and simulated in Saber simulator. It is
nevertheless very challenging to translate an FMU to a

MAST model manually because it requires advanced
knowledge of both FMU and MAST. To assist the
conversion process, a new utility FMU2MAST was
created.

The conversion process can be divided into three steps.
The first step is to read in the model description file,
parse the XML file, and build up the XML tree in the
memory. The second step is to preprocess the variables.
First, all the illegal MAST variables will be renamed to
valid MAST names; Next, the alias variables, which
share the same ValueReference attribute, will be
identified. The alias variables can be represented in
MAST model with a simple assign statement without
unnecessary FMI calls; At the end, the FMU2MAST
utility will sort all the variables into the groups in the
order of connection points, continuous state variables
and others. The reason of this order is to avoid renaming
the names of connection point and system variable in
MAST, thus keep the most important variable names
unchanged from the original names in the FMU. The
third step is to convert the XML tree into the MAST data
tree. The new MAST tree categorizes the variables into
six categories based on data types shown in figure 1:
inputs, outputs, constants, states, vals and vars. With
all the equivalent information available, FMU2MAST
can generate a correct MAST wrapper model.

This new FMU2MAST utility has been verified by 44
cross-check FMUs exported from five different tools:
FMUSDK, OpenModelica, MathWorks, Dymola and
standard reference tests suggested by [3]. The generated
MAST models have been tested in two different
simulators: Saber and SaberHDL. The simulation results
match well with the reference results provided by the
examples. The tests are selected with the intention of
covering as many different applications as possible: 1.
Exported from five different tools; 2. Analog system:
vanDerpol; 3. Discrete system: BooleanNetwork1; 4.
Mixed-Mode system: BouncingBall; 5. Multi-domain
system: for example, hydraulic ControlledTanks,
mechanical CoupledClutches, electrical Rectifier and
thermal ControlledTemp; 6. Coupling system with
multiple FMUs: motor drive example; 7. Complex

Figure 5 saberFMI in MAST values section

Figure 6 cross-check tests information

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154147

150

system: 36 state variables, 109 discrete variables and
more than 5000 other variables in FullRobot example.
The detail information of some tests are listed in figure
6.

5 Bouncing Ball Example
A simplified MAST model of a bouncing ball example
generated by FMU2MAST is given in the appendix.
This example has two state variables. Although it is very
simple, it can be used to illustrate two important
simulation techniques. The first one is the accurate event
time detection. It is challenging to detect the accurate
event time in a mixed-mode simulator with a variable
time-step integration algorithm. The second is the re-
initialization of a state variable. It is trivial if the HDL
provides this capability, such as reinit() in Modelica [5]
and break in VHDL-AMS [6]. However, MAST
language has no such a function. If these two features
are not implemented appropriately in MAST wrapper
model, the bouncing ball will not behave correctly.
Three bouncing ball examples exported from different
tools have been tested, only two of them succeed. The
reason for the failed one is that the state variable velocity
has no <reinit> attribute in its modelDescription.xml.
After the <reinit> attribute is added manually to the
velocity variable, it works as well as other two.

In the header of the MAST model attached in the
appendix, the height h is defined as an output connect
point, the gravitational constant g is defined as a model
parameter with default value of 9.81. The elastic
coefficient e is defined as an internal state variable with
initial value of 0.7.

At the beginning of parameters section, saberFMI
initialization interface is called to create the fmiHandle
for the FMU model. Inside this interface, it will call
standard fmi2Instantiate to instantiate the FMU. The
saberFMI setValues interface is called to pass the
gravitational constant g to FMU and update it by
fmi2SetReal. After that, saberFMI updateValues is
called, the FMI calculated parameters will be updated
by standard FMI function fmi2EnterInitialization and
fmi2ExitInitialization. At the end of parameters
section, saberFMI getValues is called to get the initial
values, h_ic is initial value for continuous state height h
and v_ic is for velocity v. They will be used in the
MAST control_section to set initial condition for the
differential equations in operating point analysis.

The first when section with sensitive variables dc_init
or time_init is called at beginning of operating point
analysis and transient analysis. It processes all the initial
events by FMI interface, fmi2NewDiscreteStates, until
no new events are generated.

In values section, two saberFMI nonlinear interfaces
are called to get FMU derivative variables: der(v) and
der(h). Obviously, the equation der(v) = -g has a
constant relationship, and der(h) = v has a linear
relationship. Both equations don’t have a nonlinear
relationship but a nonlinear MAST function is used
here. The reason is that the FMU model is a black box
to the MAST model, there is no explicit expression for
each equation, however, the linear/nonlinear
relationship is available in the ModelStructure section
in the model description file. According to FMI
documentation, if the <dependencies> attribute is
presented as an empty list, the Unknown depends on
none of the Knowns; If the <dependencies> attribute is
presented and dependenciesKind is constant or fix,
then the Unknown has a linear relationship with the
Knowns; If no <dependencies> attribute is provided,
then Unknown has no particular dependency on
Knowns. In this example, since both der(v) and der(h)
have no <dependencies> attributes, they are translated
as nonlinear dependency of state variables: v and h.

In order to detect the accurate events time, an interface
saberFMI checkCross is introduced in the values
section. It checks whether there is an event occurred in
the time interval between the last accepted time and
current time. If it is true, then xIndicator becomes 1, and
0 if it is false. In this example, the true means the ball
hits ground, the height variable h becomes negative and
the velocity variable needs to be re-initialized as v=-
e*v0. To achieve this, a MAST threshold detection
section is used: when (threshold (xIndicator, 0.5,
before, after)). This threshold function will use the
simulator built-in threshold cross detection algorithm to
find the exact time when the crossing event occurs. If
the xIndicator crosses 0.5, a new event, cross, will be
scheduled, which triggers another process when
(event_on (cross)) to force simulator to find a solution
at this time point. With this build-in event detection
method, the event time can be detected precisely with an

Figure 8 Threshold Crossing Detection

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154147 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

151

error less than one picosecond. The iterative event detect
process can be shown in figure 8. Where t0 is the last
accepted time point, t1 to t3 are the tentative time points
during the iteration, although the xIndicator becomes 1,
they are discarded because they don’t meet the time
criteria: ∆𝑡𝑡 ≤ 1 𝑝𝑝𝑝𝑝. t4 is the final event time, it satisfies
both event and time constraints: xIndicator=1 and ∆𝑡𝑡 ≤
1 𝑝𝑝𝑝𝑝.

After the eventIndicator is found to become true, the
voltage v needs to be re-initialized due to the attribute
reinit=true. It is trivial for an HDL if it provides the re-
initiation capability, such as Modelica [5] which has
reinit() function to do it. However, there is no such
function in MAST language. To be able to simulate this
dynamic re-initialization behavior for a continuous state
variable, an additional equation (2) is introduced. For
example, der(v) = -g, where g is a constant, the v
decreases linearly with time, a single MAST differential
equation d_by_dt(v) = -g cannot achieve this re-
initialization behavior: v = -e*v0. To initialize it
dynamically, a new variable 𝑣𝑣0 is introduced to
represent the original differential equation, another
discrete variable 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is used to help describe the re-
initialization behavior. The original state variable 𝑣𝑣 with
reinit attribute now have two equations: (1) and (2).
Solve these two equations together can achieve the
dynamic re-initialization in MAST wrapper model:

𝑑𝑑𝑣𝑣0
𝑑𝑑𝑡𝑡 = −𝑔𝑔 (1)

𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + ∆𝑣𝑣0 (2)

The 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the value re-initialized immediately after
each event is detected, ∆𝑣𝑣0 is the velocity difference
between the solution of equation (1) at current time t and
time when cross event was detected. The final solution
𝑣𝑣 should be 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 plus ∆𝑣𝑣0. The solution for the state
variable velocity with reinit attribute is shown in figure

9, the orange line represents the original differential
equation (1) and the blue line represents the new
equation (2) of a state variable with reinit attribute.

All these detail works of the event detection and state
variable re-initialization are handled in FMU2MAST
utility during the FMU conversion. Figure 10 is the
Saber simulation results of the MAST model converted
from the FMU: ref_BRef.fmu [3]. The transient analysis
uses variable time-step integration algorithm. The initial
time step is 1 us, then gradually increase to 100 ms
around 0.4 second when the height of ball is close to
zero. After the height of the ball becomes negative, the
eventIndicator of the FMU becomes 1, the converted
MAST model will find this event, re-initialize the state
variable 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at this time and save the continuous
solution 𝑣𝑣0 of equation (1). With 𝑣𝑣0 and 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 the actual
velocity can be calculated with equation (2). After this
event, the time step is reset back to the initial time step
of 1 us, and gradually increases based on truncation
error until the ball hit the ground again.

Three bouncing ball examples have been tested. They
are exported by FMUSDK, MathWork and [3]. Two of
them worked well with this method but one failed. The
reason for the failed one is that the velocity state variable
doesn’t have the attribute <reinit>, therefore, the
translated MAST model doesn’t know which variable
needs to be re-initialized when the eventIndicator is
detected. After manually adding attribute <reinit=true>
to velocity in modelDescription.xml, the new generated
MAST models works as well.

6 Motor Drive Example
When a system has multiple FMUs which are connected
in a loop, the system needs to be solved by evaluating
all the FMUs inside the loop repeatedly until the residue
is close to zero [1]. This method works, but is difficult
for a heterogeneous system that there are some non-

Figure 9 Solution for State Variable with reinit

Figure 10 Bouncing Ball Results

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154147

152

FMU models (MAST or VHDL-AMS) involved in the
loop. To be able to handle more general applications,
Saber simultaneously solves the DAE equations from all
the models written in different languages. A typical
DAE solver needs the partial derivatives of the
equations to construct the Jacobian matrix during the
iteration, and the FMI provides
fmi2GetDirectionalDerivative interface for it.
However, this interface is an optional in FMI standard,
many FMUs don’t provide it, except the FMUs exported
by Dymola. It is known that one of the advantage of an
HDL is that it does not require the modeler to provide
the derivatives of the model equations. Saber simulator
will analysis the MAST model, figure out the
dependencies of all the linear/nonlinear equations, and
approximate the nonlinear equations with PWL (Piece-
Wise Linear) method [7]. With the PWL approximation,
the partial derivatives can be obtained numerically
without FMI interface fmi2GetDirectionalDerivative.
This example will be used to discuss this method in
Saber simulator.

This example is exported from Dymola. It has three
FMUs: stimuli, controller and motor. The model
connection diagram is shown in figure 11.

The detail FMU implementations are embedded in
binary code compiled from C source files. Even the
FMU provides the original C files, it is still harder to
understand the model characteristics when compared to
an HDL. However, the model description file
modelDescription.xml provides very helpful
information, such as model inputs/outputs, state
variables and dependency relationship of Unknowns.
Based on this information, it is possible to derive the
abstract equations of an FMU.

The first stimuli FMU sends out the reference angular
speed and torque with respect to time. From its
modelDescription.xml, the output equations can be
derived as:

{𝜔𝜔𝑖𝑖 = 𝑢𝑢1(𝑡𝑡) (3) 𝑇𝑇𝑖𝑖 = 𝑢𝑢2(𝑡𝑡) (4)

Where 𝜔𝜔𝑖𝑖 is desired angular speed and 𝑇𝑇𝑖𝑖 is the required
torque.

The second controller FMU takes the desired angular
speed 𝜔𝜔𝑖𝑖 from the stimuli, and the actual speed 𝜔𝜔𝑜𝑜fed
back from the motor as inputs, produces output voltage
to the motor. From <ModelStructure> in the
modelDescription.xml, it is known that the output
angular speed depends on three variables with the same
dependenciesKind of “fixed”: the reference speed, the
feedback speed and a state variable 𝑝𝑝𝑝𝑝𝑥𝑥. The derivative
𝑑𝑑𝑝𝑝𝑖𝑖𝑥𝑥
𝑑𝑑𝑑𝑑 depends on both the reference speed and feedback

speed with the same dependeniesKind of “fixed”.
According to the FMI documentation, the “fixed”
dependenciesKind represents the Unknown depends on
a Known with a fixed factor, and the factor is an
expression that is evaluated before the
fmi2ExitInitializationMode is called. Based on this,
the characteristic equations of the controller model can
be derived as:

{
𝑑𝑑𝑝𝑝𝑝𝑝𝑥𝑥
𝑑𝑑𝑡𝑡 = 𝑘𝑘1 ∗ 𝜔𝜔𝑖𝑖 + 𝑘𝑘2 ∗ 𝜔𝜔𝑜𝑜 (5)
𝑣𝑣 = 𝑘𝑘3 ∗ 𝜔𝜔𝑖𝑖 + 𝑘𝑘4 ∗ 𝜔𝜔𝑜𝑜 + 𝑘𝑘5 ∗ 𝑝𝑝𝑝𝑝𝑥𝑥 (6)

Where 𝑝𝑝𝑝𝑝𝑥𝑥 is a state variable, 𝑣𝑣 is output voltage for the
motor, 𝜔𝜔𝑖𝑖 is reference angular speed from the stimuli,
𝜔𝜔𝑜𝑜 is the actual angular speed fed back from the motor,
 𝑘𝑘1 to 𝑘𝑘5 are fixed coefficients. If 𝑘𝑘1 = −1, 𝑘𝑘2 =
1 𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘3 = −1, 𝑘𝑘4 = 1, then the model is a classic PI
(Proportional-Integral) controller, and the state variable
𝑝𝑝𝑝𝑝𝑥𝑥 is the integral of the speed error.

The third FMU, the motor model, takes the controller
output voltage and stimuli torque command as inputs,
delivers required torque and maintains the desired motor
speed. From its <ModelStructure> in the
modelDescription.xml, it is known that this FMU has
one output variable and three continuous state variables,
the characteristic equations of motor can be written as:

{

 𝑑𝑑𝑝𝑝𝑑𝑑𝑡𝑡 = 𝑓𝑓1(𝑣𝑣, 𝑝𝑝, 𝜔𝜔) (7)
𝑑𝑑𝜔𝜔
𝑑𝑑𝑡𝑡 = 𝑘𝑘6 ∗ 𝑝𝑝 + 𝑘𝑘7 ∗ 𝑇𝑇𝑖𝑖 (8)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝜔𝜔 (9)
 𝜔𝜔𝑜𝑜 = 𝑘𝑘8 ∗ 𝜔𝜔 (10)

Where 𝑝𝑝 is the motor current, 𝑣𝑣 is the voltage applied on
the motor, 𝜔𝜔 is the internal speed with unit of 𝑟𝑟𝑎𝑎𝑑𝑑/𝑝𝑝𝑝𝑝,
𝑑𝑑 is the rotation angle which is the integral of angular
speed, 𝜔𝜔𝑜𝑜 is the motor output speed, 𝑘𝑘6 to 𝑘𝑘8 are fixed
coefficients. The motor current derivative 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 depends
on the motor voltage 𝑣𝑣, current 𝑝𝑝 and the motor angular

Figure 11 Motor Drive Schematic

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154147 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

153

speed 𝜔𝜔 with the same dependenciesKind of
“dependent”. According to the FMI standard, if the
dependenciesKind is “dependent”, it means the
Unknown depends on the Known without a particular
structure. This “dependent” dependenciesKind is
treated as a nonlinear dependency during conversion
from an FMU to a MAST model.

There are two extra blocks, d2c, used in the design. They
are hyper-models to convert the discrete output to
continuous output. The reason for this is that the angular
speed and torque outputs of stimuli are discrete outputs
while the inputs of the controller and the motor are
continuous inputs. It is illegal in MAST language to
connect the different type of ports together. With these
two hyper-models, it is possible to drive the continuous
ports of the controller and the motor with discrete speed
and torque output.

When all the three models are connected in a loop, there
are 8 equations in total. Equations (3), (4), (6) and (10)
are algebraic equations, while (5), (7), (8) and (9) are
differential equations. When the design is loaded into
Saber simulator, the simulator will setup these equations
into the following DAE form [4][8]:

𝑨𝑨𝑨𝑨 + 𝑬𝑬�̇�𝑨 = 𝑩𝑩(𝒕𝒕) (11)

Where

𝑨𝑨 =

(

𝜔𝜔𝑖𝑖
𝑇𝑇𝑖𝑖
𝑝𝑝𝑝𝑝
𝑣𝑣
𝑝𝑝
𝜔𝜔
𝜃𝜃
𝜔𝜔𝑜𝑜)

, �̇�𝑨 =

(

𝜔𝜔𝑖𝑖̇
𝑇𝑇�̇�𝑖
𝑝𝑝�̇�𝑝
�̇�𝑣
𝑝𝑝̇̇
�̇�𝜔
�̇�𝜃
𝜔𝜔�̇�𝑜)

the matrix E is:

𝑬𝑬 =
|

|
0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 0

|

|

It is a constant sparse matrix. It is also structural singular
due to the diagonal value in the row 1, 2, 4 and 8 are
zeros, then the equation (11) is a DAE system.

As stated earlier, equation (7) is a nonlinear equation
and it needs to be linearized in an iterative form with
Newton-Raphson method to be solved:

𝐹𝐹′(𝑋𝑋𝑘𝑘−1)𝑋𝑋𝑘𝑘 = −𝐹𝐹(𝑋𝑋𝑘𝑘−1) + 𝑋𝑋𝑘𝑘−1𝐹𝐹′(𝑋𝑋𝑘𝑘−1)

With the Newton-Raphson method, the Jacobin matrix
A of equation (11) in the nonlinear iteration is:

Also the iterative RHS (right hand side) B(t) of the
equation (11) becomes:

(

𝑢𝑢1(𝑡𝑡)
𝑢𝑢2(𝑡𝑡)
0
0

−𝑓𝑓1(𝑣𝑣𝑘𝑘−1, 𝑝𝑝𝑘𝑘−1, 𝜔𝜔𝑘𝑘−1) +
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑣𝑣 𝑣𝑣𝑘𝑘−1 +

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑝𝑝 𝑝𝑝𝑘𝑘−1 +

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜔𝜔 𝜔𝜔𝑘𝑘−1

0
0
0)

All the partial derivatives in Jacobin matrix A and B are
unknown, and need to be calculated in the iteration. FMI
standard provides fmi2GetDirectionalDerivative to
get partial derivatives, but it is optional in FMI standard,
and not available in all FMUs. A simple numerical
differentiation method is used in Saber to calculate the
derivatives.

𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

(𝑓𝑓
(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)

ℎ) (12)

In matrix A, all the coefficients 𝑘𝑘1to 𝑘𝑘8 are fixed and
won’t change after fmi2ExitInitalizationMode is
called. These constant coefficients are calculated in
MAST parameter section when the design is loaded into
simulator. The coefficients in 5th row of matrix A are the
partial derivatives of the nonlinear equation (7), and
varying during the nonlinear iteration. These
coefficients are calculated in MAST values section with
nonlinear PWL approximation. In the PWL
approximation method, each dimension of a nonlinear
function is divided into many small subdivisions, named
sample_points [7], and in each subdivision, the
nonlinear function is approximated with a linear
function. The smaller the subdivision width h, the more
accurate the nonlinear approximation is. The
subdivision width ℎ is controlled by sample_points
specification, it can be adjusted by user when there is a
need for better accuracy. All the MAST equations

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154147

154

translated from an FMU by FMU2MAST utility will
maintain the same linear/nonlinear relationship in the
FMU. With the PWL method, the DAE equations (11)
can be solved simultaneously in Saber simulator.

Figure 12 are the transient analysis results of the motor
drive example with a variable time-step integration
method. The initial time step is 1 us. The reference
angular speed Wi is set to 10 rpm at time 0.1 second.
The actual motor speed reaches 10 rpm around 0.2
second, about 0.1 second delay from the reference. After
another 0.1 second it settles down 10 rpm at 0.3 second.
At 0.5 second, the stimuli model applies 3 Nms torque
on the motor shaft, the voltage required to maintain the
speed is reduced, as shown with the purple curve, the
voltage drops from 6.5 volts to 6 volts after 0.6 second.
In this example, the variable time-step integration
method is used in transient simulation. As it is shown in
figure 12, the marks on the purple curve v indicate the
exact simulation time points during the simulation.
Whenever a step change occurs on the input signals, the
truncation error (LTE) of the differential equations
increases. To control the accuracy of results, the
simulator automatically reduces the time step to make
the LTE less than simulator setting. The smallest time
step is about 50 nanoseconds, 1/20 of the initial time step
(1 us). After the motor reaches its steady-state speed, 10
rpm, the LTE becomes so small, the simulator
automatically increases the time step to improve the
simulation speed without sacrificing the accuracy. As it
is shown, at 0.9 second, the time step has been increased
up to 0.1 second, which is about 100000 times of the

initial time step (1 us). Compared to the fixed time step
algorithm, the variable time-step integration algorithm
significantly improves the simulation speed.

7 Conclusion and Future Work
In this paper, a new method of importing an FMU to a
Hardware Description Language is introduced. A
conversion utility, FMU2MAST, is developed to help

the conversion from FMUs to MAST models
automatically. This method has been proved a success
with 44 FMUs exported from five different tools. With
this method, the FMUs can be imported to another
simulator which supports MAST language without any
extra work. The converted MAST wrapper model can
also be simulated with other non-FMU models which
written in MAST or VHDL-AMS language to help the
study of a more complex heterogeneous system. The
FMI 2.0, the version used in the paper, doesn’t support
the general DAE system yet, however, this can be easily
extended to support it when the FMI standard supports
the DAE in the future. Right now this method is only
applied to the FMI 2.0 for Model Exchange, but it can
also be applied to support the FMU import for Co-
Simulation as well in the future.

8 Appendix
Attached is the simplified MAST code generated from
ref_bBRef.fmu. To make the model meaningful for
illustration, only the relevant codes are kept.

References
1. Functional Mock-up Interface for Model Exchange and Co-

Simulation, 2.0 July 25, 2014. https://www.fmi-
standard.org/downloads

2. OpenMAST Language Reference Manual, 1.0, June 2004.
3. Christian Bertsch, Award Mukbil, Andreas Junghanns,

Improve Interoperability of FMI-supporting Tools with
Reference FMUs, pp. 533-540, Proceedings of the 12th
International Modelica Conference, May 15-17, 2017,
Prague, Czech Republic

4. R. Scott Coopper, The Designer’s Guide to Analog &
Mixed-Signal Modeling, March 1, 2001

5. Modelica – A Unified Object-Oriented Language for
Physical System Modeling Language Specification,
Version 3.0, September 5, 2007

6. Peter J. Ashenden, Gregory D. Peterson, Darrel A.
Teegarden, The System Designer’s Guide to VHDL-AMS:
Analog, Mixed-Signal, and Mixed-Technology Modeling,
September 10, 2002

7. Saber Simulator Guide: Reference Manual, Synopsys, June
2006

8. Yutaka Hirano, Satoshi Shimada, “Initiatives for acausal
model connection using FMI in JSAE”, Proceedings of the
11th International Modelica Conference September 21-23,
2015, Versailles, France

9. T. Blochwitz, M. Otter et al., “Functional Mockup Interface
2.0: The Standard for Tool independent Exchange of
Simulation Models”, Proceedings of the 9th International
Modelica Conference, September 3-5, 2012, Munich,
Germany

Figure 12 Motor Drive Results

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154147 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

155

THIS MODEL IS NOT A COMPLETE MODEL. ONLY FOR DEMONSTRATION!
element template fmu_bbref h = g
number g=9.81 # acceleration of gravity.
{

variable declarations...
parameters {

fmiHandle = saberfmi(initialization,fmiHandle,instance(), "fmu_bBRef.fmu")
constErr = saberfmi(setValues,fmiHandle,-1,g,g_id,fmiReal)
constErr = saberfmi(updateValues,fmiHandle,g)
h_ic = saberfmi(getValues,fmiHandle,h_id,fmiReal)
v_ic = saberfmi(getValues,fmiHandle,v_id,fmiReal)

}
when(dc_init|time_init) {

stateErr = saberfmi(initEvents,fmiHandle)
v_init = v_ic

}
when(threshold(xIndicators,0.5,before,after) & after >0) {

schedule_event(time,cross,1.0)
}
when(event_on(cross) & time_domain) {

stateErr = saberfmi(updateCross,fmiHandle,time,h,h_id,v,v_id)
nextEvent = saberfmi(checkEvents,fmiHandle,time)
hasBreak = saberfmi(valuesChanged,fmiHandle)
v_init = saberfmi(timeValues,fmiHandle,time,v_id,fmiReal)
prev_v_0 = v_0
schedule_next_time(time)
e = saberfmi(getValues,fmiHandle,e_id,fmiReal)

}
when(dc_done|time_step_done) {

stateErr = saberfmi(acceptValues,fmiHandle,h,h_id,fmiReal,v,v_id,fmiReal)
e = saberfmi(getValues,fmiHandle,e_id,fmiReal)
nextEvent = saberfmi(stepDone,fmiHandle,time)
schedule_next_time(nextEvent)

}
values {

der_h = saberfmi(nonlinear,fmiHandle,time,der_h_id,h,h_id,v,v_id)
der_v = saberfmi(nonlinear,fmiHandle,time,der_v_id,h,h_id,v,v_id)
xIndicators = saberfmi(checkCross,fmiHandle,time,h,h_id,v,v_id)
delta_v_0 = v_0 - prev_v_0

}
control_section {

initial_condition(h,h_ic)
initial_condition(v_0,v_ic)

}
equations {

h : d_by_dt(h) = der_h
v_0 : d_by_dt(v_0) = der_v
v : v = v_init + delta_v_0

}
}

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154147

156

Developing a Framework for Modeling Underwater Vehicles in
Modelica

Shashank Swaminathan1 Srikanth Saripalli1
1Texas A&M University, College Station, TX, USA, sh.swami235@gmail.com, ssaripalli@tamu.edu

Abstract
When developing Remotely Operated Vehicles (ROVs),
models prove extremely useful in determining design
parameters and control strategies. This paper’s goal is to
develop a modeling framework for underwater ROVs in
Modelica, with integration with the Robotic Operating
System (ROS), allowing for quicker prototyping and
testing of ROV design and control.

Named the Underwater Rigid Body Library (URBL),
the modeling framework treats the effect of water on
submerged bodies as interactions with a “field” of water
to capture the effects of buoyancy and drag. Its usage is
demonstrated by applying it to the BlueROV2, a
commercially available ROV from Blue Robotics.
Using controller signals to the propellers as system
inputs, the model was tested with various motor
command profiles to achieve different composite
motions. Constant motor commands were provided both
from within Modelica and from ROS; the simulation
results indicated that the model responded
appropriately.
Keywords: Underwater, ROV, Modelica, ROS,
Framework

1 Introduction
1.1 Relevant Background
Remotely Operated Vehicles (ROVs) are vital for the
exploration and development of areas that are beyond
the reach of humans, particularly in the underwater field.
When developing any ROV design, it is helpful to
construct a model of the design to provide an idea of its
performance. There exist many models of underwater
vehicle designs like in (Prestero, 2001), but these
models focus specifically upon one vehicle design.
There are very few initiatives geared towards modeling
a variety of underwater bodies and vehicles (McMillian
et al, 1995; Tran et al, 2018), but even these are purpose-
built software programs. The aim of this paper is to
develop a general-purpose modeling framework in
Modelica that can be used to model an ROV design
using prebuilt components and has flexibility to grow as
a library.

The paper will focus on modeling the ROV based off
rigid-body principles, as is done in (Tang, 1999; Wang,

W. et al, 2006). This is as opposed to modeling based
on CFD principles, like in (Yang et al, 2016; Wang, C.,
et al, 2014), as it would be intractable for quick
prototyping and control testing. Representing
hydrodynamic forces, such as viscous drag and added
mass, can be done at varying levels of complexity, as
seen in (Yuh, 1990), and (da Silva et al, 2007). As this
paper’s focus is on developing a modeling framework,
it will only address the most basic of hydrodynamics,
while also providing a template for further expansion by
the user.

1.2 Objectives
The goal for the work described in this paper is to
develop a basic framework for mathematically
modeling underwater vehicles that can:
• Aid the prototyping and testing of vehicle design

and controls.
• Be readily integrated with common control and

feedback mechanisms, specifically ROS.
• Visualize prototype design and test results via three-

dimensional animation.
In Section 2, the modeling framework URBL is

discussed in detail. In Section 3, a demonstration of the
modeling framework is done via a use case of modeling
a physical ROV. Section 4 follows with verification
tests of the model developed from the framework, and
the ROS interface capability of the model. Section 5
provides the final remarks and closes the paper.

2 Underwater Rigid Body Library.
2.1 Overview
The modeling framework is developed as the
Underwater Rigid Body Library (URBL) – the library
contains the base functional components to any ROV
design. The URBL consists of two major sections –
components and interfaces for modeling underwater
vehicles, and an external interface to ROS. The URBL
components are models to describe rigid body
interactions with water; the interface is for a basic
propeller.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

157

2.2 Rigid Body and Field Model
As modeling within Modelica is component-based, it is
imperative to develop a rigid body component that can
interact with the surrounding submerging fluid
environment. To accomplish this, the framework
represents the environment via a field. The fluid is
assumed to be an incompressible Newtonian fluid. The
field is considered to have two primary interactions with
the rigid body – one via the buoyancy and the other via
fluid drag forces exerted by the fluid on the rigid body.
This is written into the model as shown below, with
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 being the density of the rigid body, 𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏 the
density of the submergent fluid, 𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 being the
coefficient of viscosity, and 𝐴𝐴 being the cross-sectional
area of the body.

 𝑓𝑓𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣 ∶= −
𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∙ 𝑚𝑚 ∙ �⃗�𝑔 (1)

 𝑓𝑓𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∶= −𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 ∙ 𝐴𝐴 ∙ �⃗�𝑣

(2)

Here, �⃗�𝑣 represents the velocity of the body, �⃗�𝑔 the
gravitational acceleration, and 𝑚𝑚 the mass. To account
for drag torques purely due to angular speed �⃗⃗⃗�𝜔, the
following equation is added to the drag computation:

 𝜏𝜏𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 = −𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∙ �⃗⃗⃗�𝜔 (3)
where 𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 represents the coefficient of drag

rotationally (Wadoo, Kachroo, 2016).
The field model dictates the values of the forces

affecting bodies within. The field’s force is applied
equally across all elements in the field. However, when
dealing with a rigid body, where the only interface
available is the Frame of Interest (F.O.I), it is not
possible to implement the field in such a manner.
Instead, the total force the field applies on the body at
the center of mass (CM) is translated to the F.O.I, as
seen in Figure 1.

Figure 1 – Translation of buoyant and drag forces
from center of mass to frame of interest

The rigid body model itself is extended from the
standard MultiBody Library (Otter, 2003). The field
model is added to the rigid body model, using the inner
and outer qualifiers in Modelica, so that any component
constructed from this rigid body model will interact with

the fluid surrounding the component, regardless of
design. The Modelica-specific implementation is shown
in Appendix B.

2.3 Propeller Model
The schematic in Figure 2 captures the torque and

thrust generation in the propeller – the electric motor is
captured through the EMF, and the propeller frame
captures the momentum exchange between the blades
and the water.

Figure 2 - Schematic of propeller structure

The propeller’s rotor is powered by a motor, which in
turn is powered by some external source of power. From
(Triantafyllou, 2004), the thrust can be written as
proportional to the square of the rotor’s angular velocity
𝜔𝜔.

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) (4)
𝐾𝐾𝑇𝑇(𝐽𝐽∗) is the thrust coefficient, where 𝐽𝐽∗ is the ratio

between rotor speed (intake speed) and fluid speed
(outtake speed). Specifically, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) can be
approximated (Triantafyllou, 2004) as follows:

 𝐾𝐾𝑇𝑇(𝐽𝐽∗) = 𝛽𝛽1 − 𝛽𝛽2𝐽𝐽∗ (5)
 𝐽𝐽∗ = 𝑣𝑣

𝜔𝜔 (6)

Here, 𝛽𝛽1 and 𝛽𝛽2 are functions of the intake and
outtake speeds of the water.

Taking 𝑣𝑣 and 𝜔𝜔 as the linear and angular velocities of
the propeller along its axis, Equation 4 can be rewritten
as follows:

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2 (𝛽𝛽1 − 𝛽𝛽2
𝑣𝑣
𝜔𝜔) (7)

Letting 𝑘𝑘𝑑𝑑, 𝑘𝑘𝑚𝑚 be appropriate constants of
proportionality, it can be rewritten as

 �⃗�𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑚𝑚|𝜔𝜔|(𝑘𝑘𝑑𝑑�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 (8)

where 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 is a constant that indicates the direction of
the propeller’s mounting.

While the load torque on the propeller due to thrust
can also be represented similarly, for the sake of
simplicity, it is approximated by a power balance with
constant efficiency 𝜂𝜂, as seen in equation 9. An
additional −𝑘𝑘𝑓𝑓𝑏𝑏𝑣𝑣𝑣𝑣�⃗⃗⃗�𝜔 term is added to represent loss
purely due to rotor rotation.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

158

𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 �̂�𝜔 ∙ �⃗�𝑣

|�⃗⃗⃗�𝜔|𝜂𝜂 − 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔
(9)

To better handle when 𝜔𝜔 approaches zero, the �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
is expanded to rewrite the load torque as

 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝑘𝑘𝑚𝑚�⃗�𝑣(𝑘𝑘𝑟𝑟�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑙𝑙𝑑𝑑𝑟𝑟
− 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔

(10)

The hydrodynamic effects of added mass and wave
drag are not considered in this implementation.

The component diagram implementation in Modelica
is displayed in Figure 3. The propeller is split into two
sections: the mass of the housing, represented by a
URBL body, and the actual propeller rotor, represented
by a Rotor1D component. The propeller is driven by an
EMF; the Mounting1D components is used to propagate
the load torques from the propeller to the main ROV
body. The thrust is calculated as a WorldForce
component and is applied to the mass of the propeller’s
housing directly; the load torque from the water is
applied to the rotor as a one-dimensional torque, leaving
it uncoupled from the actual ROV.

Figure 3 - Implementation of propeller in Modelica

2.4 Integration of External Controllers
Apart from providing the foundational components for
modeling ROVs, the URBL’s goal is also to provide
easy integration with the Robot Operating System
(ROS). ROS (Quigley, 2009) based controllers
primarily rely on TCP/IP connections for
communication. The URBL thus includes integration
for socket communication to ROS, achieved via
Modelica’s external C function capability.

The integration is done via a block extended from a
Multiple-Input-Multiple-Output (MIMO) block from
the Modelica Standard Library. The extended block
calls upon an external C function based on a time
sampler function; the C function returns an array of
control values read from the incoming information

queue buffer on the socket port. The socket uses TCP
protocol for communication, allowing for explicit
ordering of the flow of information – as opposed to UDP
protocol. The block contains parameters to set the IP and
port of the external controller. To have ROS interact
with the model, a ROS node running a TCP socket was
also written, allowing the ROS architecture to
communicate with the model by using the node-socket
connection as a relay point. The flow of data is shown
in Figure 4.

Figure 4 - Schematic of Data Flow between Modelica
and ROS

2.5 Package Structure
Figure 5 shows the package structure of the URBL.

Figure 5 - Package Structure of the URBL

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

159

2.6 Development Review
The construction of the modeling framework was done
in Ubuntu 16.04 using Wolfram SystemModeler
(SystemModeler, Wolfram). The distribution of ROS
used for testing integration capabilities with control
platforms was ROS Kinetic. As the mechanism for
connecting ROS to Modelica was based on using TCP
sockets, and the build of the model was done in a Linux
environment, the ROS connectivity is currently only
usable in *nix environments.

3 Application of URBL
The URBL’s applicability is tested by modeling a
commercially available ROV design – the BlueROV2
(BlueROV2, Blue Robotics), shown in Figure 6.

Figure 6 - Physical BlueROV2

The BlueROV2 has 6 propellers mounted – 2 dual
vertical thrusters, and 4 vector-configured thrusters,
allowing for 6 DOF. It is controlled via a Pixhawk
Autopilot flight controller running ArduSub. The full
hardware breakdown of the ROV is shown in Figure 7.

3.1 Frame Modeling
The process of assembling the frame of the BlueROV2
physically from kit is replicated when developing the
model of its frame. The ROV is built from a base plate,
two side plates, and four top plates, each a rigid body of
certain uniform density and mass, with points on the
body to connect with other parts of the frame. Likewise,
the frame model was constructed from several sub-
components, each representing one type of frame plate
– bottom, side, and top – constructed from URBL rigid
bodies, with frames to represent attachment points to
other bodies. The resultant total frame is shown in
Figure 8.

Figure 8 - Visualization of the ROV model

Figure 7 - Hardware schematic of power and information flow

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

160

3.2 Propeller Modeling
The propeller component for the BlueROV2 is extended
from the URBL’s base propeller model. The T200
propellers, used on the BlueROV2, are controlled via
Pulse Position Modulation – to approximate this voltage
control, a standard signal voltage component was used.
Each propeller thus has its own internal electric circuit,
with the signal voltage value controlled externally. By
doing so, it allows for simpler testing against flight data
from the physical ROV – the Pixhawk flight controller
on the BlueROV2 sends pulses to the propeller’s driver
ESC, which then controls the voltage to the propeller.
Hence, the model can now run the same commands sent
by the Pixhawk and ESC driver to the propeller.

The fore-aft propellers are all oriented at 45-degree
angles, for lateral movement, while the vertical
propellers are mounted perpendicular to the mounting
plate – as shown in Figure 9. Note that propellers 1 and
2 are facing forward, while propellers 3 and 4 are facing
backwards; propeller 6 is upwards facing, while
propeller 5 is downwards facing.

Figure 9 - Propeller orientation diagram [10]

3.3 Integration of ROS
The integration with ROS from the URBL library was
used to receive control values for propeller actuation. A
joystick was used to provide the values for composite
motion – to translate these to control values per each
propeller, a separate controller node was created – the
flow of control input is shown in Figure 10.

Figure 10 - ROS-based control input flow
The relationship between the six propeller torques and
the resultant forces and torques along three dimensions
was derived as follows:

Figure 11 - Propeller force and torque orientation

Following the orientation of the propellers shown in
Figure 11, the equations of forces and torques generated
by each propeller were derived: 𝜏𝜏𝑖𝑖 represents the
reaction torque generated by the propeller, �⃗�𝐹𝑖𝑖 the force
acting on the propeller’s center of mass, ℎ⃗⃗𝑖𝑖 the vector
from the propeller’s center of mass to that of the ROV,
and 𝜏𝜏𝐹𝐹𝑖𝑖 the reaction torque acting on the ROV due to
thrust.

 𝜏𝜏1 = 𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝜏𝜏1 cos 45 �̂�𝑘 (11)
 �⃗�𝐹1 = 𝐹𝐹1 sin 45 𝑖𝑖̂ − 𝐹𝐹1 cos 45 �̂�𝑘

= 𝑛𝑛𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝑛𝑛𝜏𝜏1 cos 45 �̂�𝑘
(12)

 𝜏𝜏𝐹𝐹1 = ℎ⃗⃗1 × �⃗�𝐹1 = (ℎ1𝑥𝑥𝑖𝑖̂ + ℎ1𝑦𝑦𝑗𝑗̂ + ℎ1𝑧𝑧�̂�𝑘)
× �⃗�𝐹1

(13)

The relationship between propeller torque and

propeller thrust is approximated as proportional for the
purposes of deriving a basic control matrix. The torque
and force relationships for the other propellers are
similar to Equations 11 through 13 above, with
differences in orientation. This leads to the invertible
matrix shown in the left of the equation in Figure 12,

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

161

describing the relationship between propeller torques
and composite motion. By applying the inverse of this
matrix to scale the joystick input, the control values
were derived.

3.4 Full ROV Model
The full ROV model is created by adding the propeller
to the frame model, to provide the methods of
propulsion and control to the ROV structure. Selected
parameterization of the model is listed in the Appendix
A. The completed ROV model is shown in Figure 13.

Figure 13 - Component view of full ROV model in
Modelica

4 Testing the ROV Model
4.1 Component Testing
The purpose of the component tests is to verify that the
component’s individual performance conforms to
expectations.

4.1.1 Frame Model Tests
When testing the frame, the frame sub-components are
placed alone in a body of water, and their size, structure,
and motion in response to buoyancy is verified – as each
sub-component of the frame is constructed from HDPE
(density of 0.97 g/cm3) and symmetric, it has a net
buoyancy of 0.2 kg, and therefore is expected to slightly
float upwards. The test results do indicate that all sub-
components, along with the entire frame, exhibit
normal, stable motion in the water field.

4.1.2 Propeller Model Tests
This test checks the propeller’s ability to provide thrust
to a rigid body in water. To check the model’s stability
during rotation, the propeller is made to provide thrust
along different axes of rotation to the end of a neutrally
buoyant rod. The test results indicate that the propeller
proceeds stably and smoothly in all orientations,
matching the expected motion.

4.2 Full Model Testing
The full ROV model is tested by providing a constant
joystick command and evaluating the resulting
composite motion of the ROV. The tested composite
motion is the forward motion along the X axis – the
control values necessary are derived from inverting the
matrix in Equation 14.

Figure 14 - Results from testing the full ROV model

In Figure 14, the motion along the X axis is stable,
while the motion along the other axes after accounting
for drift, linear and angular, is near zero. The drift seen
in the rotational values can be attributed to
approximations made when constructing the control
matrix. The movement seen along the Y axis is due to
the net buoyancy of the ROV, and therefore acceptable.

Figure 12 - Relationship between motor torques and composite motion

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

162

4.3 Testing ROS Integration
To test the validity of the model’s external control
capability – its connection to ROS – a network of ROS
nodes meant to handle both the model’s feedback and
the provision of control values is setup. A joystick is
used to dictate simple motor control values to the model,
via ROS, and the model’s reaction to the values is
observed. The joystick sends simple motion commands
in the orthogonal directions – lateral motion in the XZ
plane – the raw joystick input is seen in Figure 15. The
model’s response is displayed in Figure 16. Note that the
Figure 15 was recorded from ROS and uses the
operating system time; this is different from the
simulation time seen in Figure 16.

Figure 15 - Raw Joystick Input

Figure 16 - Results from testing the ROV model when
providing motor commands from ROS

The motion along the X axis, and the motion along
the Z axis are the values being controlled by the
controller. Drift in the rotation angles around the axes is
seen, attributable to approximations done in the control
matrix. A steady, slow rise is seen along the Y axis (in
orange) due to the net buoyancy of the model. The ROV
is controlled to move along the XZ plane in accordance
with the joystick input. The response of the ROV is as
desired, with appropriate motion when moving along
each axis separately, as well as when moving in a
composite manner in the XZ plane.

5 Conclusions
5.1 Results Summary
• The URBL was stably constructed to provide basic

ROV modeling components, as well as ready-to-use
integration with ROS

• The URBL was successfully used to model an
existing commercially available ROV design, the
BlueROV2.

5.2 Further Work

5.2.1 Library Improvements
The model of damping was simplified to take the cross-
sectional area of a given component in the plane
perpendicular to motion as a parameter – an
improvement would be to have this area as a changing
quantity.

The library’s hydrodynamic models are overall
extremely simplified, and so are currently implemented
via functions, to increase replaceability. However, this
possible interchangeability of hydrodynamic force
functions is still limited in scope by the function
interface; it could be widened to accept and return any
number and kind of inputs and outputs.

For integration with external control mechanisms, the
current socket-based integration relies on using
Modelica’s external C function capability and poses
restrictions on the operating system used for simulation
– *nix based distributions, and not Windows. Socket
based communication also has limitations in speed – the
larger and more computationally intensive the model,
the slower the socket-based communication will be.
Further improvement can be done by porting this
integration to rely on FMI/FMU functionality, instead of
C functions and sockets. As noted by a reviewer, there
exists another library for providing TCP/IP connections
from Modelica via external C-functions, named the
Modelica_DeviceDrivers library (Thiele, 2017). The
ROS integration in this paper was developed separately
from Modelica_DeviceDrivers, though both rely on
TCP/IP communications.

5.2.2 Model Improvements
When prototyping the design of the model, it is useful to
individually model the bodies involved in the ROV
structure. However, this adds complexity to the model,
and makes it simulate slower. Per a reviewer’s
suggestion, to speed up simulation post prototyping, the
model should be redrawn with all the rigid bodies
consolidated into one central mass, to improve
simulation usefulness.

5.2.3 Validation Improvements
The motion profiles tested in the standalone model tests
could be increased in complexity, from simple
movements across and around axes, to more composite
motion in three dimensions. The simulation results
should also be compared against experimental data from
the physical vehicle.

Appendix A – Physical Parameters

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

163

This is the list of the derived parameters for the
electronics enclosure and the battery enclosure.

Appendix B – Modelica Implementation of
Field
The code for implementing the field is as follows:

Modelica.Mechanics.MultiBody.Forces.WorldF
orceAndTorque field(animation = false);
protected
 // Fields
 outer
UnderwaterRigidBodyLibrary.Fields.WaterFie
ld waterField;
 outer Modelica.Mechanics.MultiBody.World
world;
equation
 // equations of motion
 r_0 = frame_a.r_0;
 v_0 = der(r_0);
 a_0 = der(v_0);
 w_a =
Modelica.Mechanics.MultiBody.Frames.angula
rVelocity2(frame_a.R);
 // forces and torques due to fields
 b_f = waterField.waterBuoyantForce(d =
density, m = body.m);
 f_d = waterField.waterDragForce(v =
body.v_0 - Frames.resolve1(frame_a.R,
cross(r_CM, w_a)), mu = mu_d, A = A);
 t_d = Frames.resolve1(frame_a.R,
waterField.waterDragTorque(w = w_a, k =
k_d));
 // applying force and torques due to
fields
 field.force = b_f + f_d;
 field.torque =
cross(Frames.resolve1(frame_a.R, r_CM),
b_f) + t_d +
cross(Frames.resolve1(frame_a.R, r_CM),
f_d);
connect(field.frame_b, body.frame_a);
connect(frame_a, body.frame_a);

References
J. Evans, M. Nahon, Dynamics modeling and performance

evaluation of an autonomous underwater vehicle, Ocean
Engineering, Volume 31, Issues 14–15, 2004, Pages 1835-
1858, ISSN 0029-8018,
doi:10.1016/j.oceaneng.2004.02.006

McMillian, S., Orin, D. E., & McGhee, R. B. (1995).
DynaMechs: An object oriented software package for
efficient dynamic simulation of underwater robotic
vehicles.

Otter, M., Elmquist H, Mattson S. E., “The New Modelica
Multibody Library”, Proceedings of the 3rd International
Modelica Conference, Linkopig, 2003

Prestero, T. (2001). Development of a six-degree of freedom
simulation model for the REMUS autonomous underwater
vehicle. In OCEANS, 2001. MTS/IEEE Conference and
Exhibition (Vol. 1, pp. 450-455). IEEE.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., ... & Ng, A. Y. (2009, May). ROS: an open-source
Robot Operating System. In ICRA workshop on open source
software (Vol. 3, No. 3.2, p. 5).

da Silva, J. E., Terra, B., Martins, R., & de Sousa, J. B. (2007,
August). Modeling and simulation of the lauv autonomous
underwater vehicle. In 13th IEEE IFAC International
Conference on Methods and Models in Automation and
Robotics. Szczecin, Poland Szczecin, Poland.

Tang, S. C. (1999). Modeling and simulation of the
autonomous underwater vehicle, Autolycus (Doctoral
dissertation, Massachusetts Institute of Technology).

Thiele, B., Beutlich, T., Waurich, V., Sjölund, M., &
Bellmann, T. (2017, July). Towards a Standard-Conform,
Platform-Generic and Feature-Rich Modelica Device
Drivers Library. In Proceedings of the 12th International
Modelica Conference, Prague, Czech Republic, May 15-17,
2017 (No. 132, pp. 713-723). Linköping University
Electronic Press.

Tran M., Binns J., Chai S., Forrest A., Nguyen H. (2018)
AUVSIPRO – A Simulation Program for Performance
Prediction of Autonomous Underwater Vehicle with
Different Propulsion System Configurations. In: Mazal J.
(eds) Modelling and Simulation for Autonomous Systems.
MESAS 2017. Lecture Notes in Computer Science, vol
10756. Springer, Cham

M. Triantafyllou. 2.154 Maneuvering and Control of Surface
and Underwater Vehicles (13.49). Fall 2004. Massachusetts
Institute of Technology: MIT OpenCourseWare,
https://ocw.mit.edu. License: Creative Commons BY-NC-
SA

Wadoo, S., & Kachroo, P. (2016). Autonomous underwater
vehicles: modeling, control design and simulation. CRC
Press.

Wang, C., Zhang, F., & Schaefer, D. (2015). Dynamic
modeling of an autonomous underwater vehicle. Journal of
Marine Science and Technology, 20(2), 199-212.

Wang, W., & Clark, C. M. (2006). Modeling and simulation
of the VideoRay Pro III underwater vehicle. Computer
Science and Software Engineering, 66.

Yang, R., Probst, I., Mansours, A., Li, M., & Clement, B.
(2016). Underwater vehicle modeling and control
application to ciscrea robot. In Quantitative Monitoring of
the Underwater Environment (pp. 89-106). Springer, Cham.

Yuh, J. (1990). Modeling and control of underwater robotic
vehicles. IEEE Transactions on Systems, man, and
Cybernetics, 20(6), 1475-1483.

SystemModeler (2015) Copyright © 2015 Wolfram Research,
Inc. http://wolfram.com/system-modeler/

BlueROV2, Blue Robotics, Inc.
http://docs.bluerobotics.com/brov2/

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

164

Hybridisation and splitting of a crank angle resolved internal
combustion engine model using a mean value intake for real-time

performance

Xiaoran Han Alessandro Picarelli Mike Dempsey Romain Gillot

Claytex service limited, UK,
{xiaoran.han,alessandro.picarelli,mike.dempsey,romain.gillot}@claytex.com

Abstract

This paper describes splitting a crank angle resolved three
cylinder combustion engine with an air path model and
a combustion model. This is to distribute the computa-
tional effort on hardware by running models on separate
cores to achieve real time capability. Hardware tests show
the split models are not able to achieve real time because
the thermal dynamics of air path model and combustion
model are highly interconnected and computing the mod-
els on separate cores will introduce delay and solution
can become inaccurate and even infeasible. In order to
achieve real time capability while ensuring the results are
accurate (2-5% percent max. error), a new method is pro-
posed, in which instead of running with a complete fluid
intake and exhaust model, the combustion model runs with
a mean value intake model calibrated for many operat-
ing points across the speed-load range. The results show
that the combustion model running with mean value in-
take model is able to produce highly accurate result and
real time capability is achievable. By using mean value
intake model, calibration effort is significantly reduced
compared to purely table based method as the mean value
model captures essential dynamics and is able to predict
reliably between transition from one operating point to an-
other. The mean value method takes into account Air Fuel
Ratio (AFR) dynamics and thus calibration against AFR
becomes unnecessary. Comparing to a non-mean value
purely table based method, the latter requires calibration at
densely scattered operating points in order for the transi-
tion between each calibration point to be smooth enough.
In calibrating the mean value model a controller is de-
signed to control the dynamics error to zero. This con-
trol based method shows high efficiency compared to op-
timization tools as it does not depend on initial values and
iteration process of the calibrating parameters. A function
is created to automatically create the tables calibrated. The
calibrated mean value intake model is run with a combus-
tion model on a Concurrent test/HiL rig and shows real
time capability is achieved with good accuracy. The phys-
ical engine model is built in Dymola.

Keywords: mean value intake model, split engine model,
automated calibration

1 Introduction
When running models to achieve real time in hardware-
in-Loop applications, sometimes it is desirable to split a
larger model into separate cores so that parallel process-
ing features in the hardware can compute models simulta-
neously. However when models running on separate cores
are highly interconnected, i.e. have feedback loops, where
outputs of subsystem A are fed into subsystem B whose
own outputs are in turn fed back as inputs to subsystem A,
communication delays due to sampling within feedback
loop can cause inaccuracy or infeasibility of the solutions,
depending on the size of the delay or sampling frequency.
In order to attain a reasonable accuracy of the solution,
high frequency sampling is required to reduce the size this
delay. However high frequency sampling will create more
computational overheads potentially causing more over-
runs and hence render real time capability unattainable.
To avoid feedback loops, a table based or neural network
based method or other similar method can be used to re-
place the subsystems, where the inputs of the table or neu-
ral network are command signals at a higher level which
does not require feedback from the subsystems. The tables
or neural networks are calibrated off-line for each operat-
ing point using the inputs and outputs of the subsystems.

When there are lack of dynamical models of a system,
the calibration points interval will need to be quite small
in order to capture the nonlinear dynamics of the system
between each operating point. The densely scattered oper-
ating points to be calibrated take a lot of effort to gather in
the physical tests and are not always robust and accurate
during transient from one operating point to another when
simulated. It is therefore desirable to have dynamical
models available where the essential dynamics of physical
systems can be computed by the models rather than look-
up tables. The dynamical models can be calibrated against
physical system measurement where the identified param-
eters of the dynamical system are recorded in look-up ta-
bles. Thus the dynamics of the physical system during
transition from one operating point to another is captured
by the dynamical models. This increases the robustness
and accuracy of the calibration as some of dynamical sys-
tems can be modeled so that they are robust against certain
parameter variations. As a result of the dynamical system

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154165 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

165

being robust against parameter variation, this reduces the
number of operating points to be calibrated.

For calibration, tools can be used which are gradient
based and iterate a number of simulations before conver-
gence criteria is fulfilled. The convergence of gradient
based optimization depends on the initial values of the
parameters to be calibrated and convergence of the crite-
ria can not always be guaranteed after the end of simula-
tion iterations. For calibration of multiple variables using
multiple tunning parameters, where variables are intercon-
nected, choosing initial values of the tunning parameters
for convergence becomes even more challenging. This is
because the convergence of one variable depends on the
convergence of the other variables. Another advantage
of having a dynamical model available is that controllers
may be designed to ensure convergence of calibrated vari-
ables. The inputs of the controllers are the errors between
the measured and calibrated variables and outputs of the
controllers are tuning parameters. Controller gains can be
designed such that errors starting with different initial val-
ues will be driven into the neighbourhood of zero. This
method only requires one iteration to simulate in the pres-
ence of different initial values of calibrated variables, if
controllers are designed properly.

Once calibration results are obtained it is time consum-
ing to put them manually into look-up tables. This not
only reduces efficiency but can create errors due to wrong
data being put into the tables by the user. It can be also
hard to debug which data has been wrongly entered to all
the calibrated tables if there is an error. This would ei-
ther require looking through all the tables and checking
each of the entries against the calibration result, or creat-
ing test experiment to test each table with correct inputs
to the table and check if outputs of the table are produced
correctly. A more efficient way is to create a function that
automatically puts the calibrated results into look-up ta-
bles without human intervention. This will increase effi-
ciency and minimize potential user errors.

In this paper, a crank angle resolved three cylinder
gasoline engine is considered for testing its real-time per-
formance on a Concurrent real-time test rig. The engine
model is required to be split into air path, i.e. intake and
exhaust, and combustion using feedback loops so that they
can be run on separate cores. It is shown that splitting
the model with feedback loops is inefficient in achieving
real time performance. Real time performance is jeop-
ardised due to the delay feedback loops and is therefore
not achievable with this level of detail. An alternative ap-
proach must be considered to eliminate the computational
burdens caused by the feedback loops. Motivated by this
problem, a look-up table approach becomes a first option
for avoiding feedback loops. A mean value intake model
is used for generating correct pressure and mass flow rate
in intake manifold. Look-up tables are calibrated to gen-
erate throttle discharge coefficient and the volumetric ef-
ficiency of intake ports that are formulated in mean value
intake model. Controllers are designed for the mean value

Figure 1. Split air path.

Figure 2. Split combustion.

intake model, whose inputs are mass flow rate and plenum
pressure errors between the measurement and values cal-
culated by the mean value model and outputs are the dis-
charge coefficient and volumetric efficiency. It is shown
that the mean value intake model calibrated with fewer
operating points achieves similar accuracy as those cali-
brated with more operating points. In addition, the mean
value based approach is shown to have much smoother
transition phase over using purely table based approach
which does not use dynamical models. A function is cre-
ated to populate the entries of the tables with calibrated re-
sults automatically. Because the mean value model takes
the effect of air fuel ratio (AFR) into account, calibra-
tion can be performed by choosing stoichiometric AFR for
different throttle angle, engine speed, intake and exhaust
phasing. This AFR dependence reduces calibration for
different AFRs since its effect is considered in the model
developed. An evaluation of the method, (mean value in-
take model with look-up tables as a replacement of a phys-
ical fluid based intake model with feedback loops to and
from the combustion model) is carried out on a Concur-
rent real-time test rig to show that real-time performance
is easily achievable

2 Splitting engine model with intake
and combustion models

This section shows the splitting of an engine model
into an air path model, i.e. intake and exhaust, and a
combustion model. Figure 1 and 2 show splitted air
path and combustion. Exhaust and intake model out-
put exhaustPortMassFlowRate, exhaustPortEnthalpy, ex-
haustPortTraceSubstances, intakePortMassFlowRate, in-
takePortEnthalpy, intakePortTraceSubstances, which are
the inputs of combustion model. The outputs of the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154165

166

combustion model cylinderPressure, cylinderEnthal py,
cylinderTraceSubstances are the inputs of the air path
model. The splitting method is described in detail in
(Han, 2017a). The split models are tested on a Concur-
rent test rig for real-time performance evaluation by run-
ning the two models on separate cores. The test results
reveal that splitting the models with feedback loops and
running the models on separate core will slow down the
simulation speed significantly and real time performance
is not achievable. An excessively large sampling rate has
to be chosen which can cause models to no longer re-
spond correctly. In the following section, a mean value
engine intake manifold model is introduced which calcu-
late plenum pressure and mass flow rate at the intake port.
The model is calibrated and verified so that it replaces
the intake model in Figure 1 and calculates intake plenum
pressure reliably.

3 Mean value engine intake model and
its calibration using control design

Mean value engine models have been developed for mod-
elling and control design (Heywood, 1988), (Guzzella and
Onder, 2004). An idle control design of a crank an-
gle resolved engine model using sliding mode and mean
value engine model is described in (Han, 2017b) and (Han,
2017c). In this application, the model is calibrated at each
operating point so that it can be used to replace the intake
manifold as shown in figure 1. This section shows how
to tune calibration parameters in the mean engine value
model using control design.

3.1 Mean value model of intake mass flow rate
and its calibration

Mass flow through the throttle for naturally aspirated en-
gine can be approximated as (Guzzella and Onder, 2004)

ṁa(t) =




AaλCD
pa√
RTa

1√
2
, if pm(t)

pa
< 0.5,

AaλCD
pa√
RTa

√
2 pm(t)

pa

[
1− pm(t)

pa

]
, else.

(1)
where Aa is the fixed full area of the throttle, λCD is throttle
discharge coefficient, which needs to be calibrated, pa is
the pressure upstream, ambient pressure, R is the ideal gas
constant, Ta is the temperature upstream, pm is manifold
pressure, which is calculated in (5) and ṁa is the air mass
flow through the throttle. λCD is tuned to calibrate (1) at
each operating speed and load condition against a mea-
sured quantity. Calibration tools can be used to adjust λCD
at each iteration based on an optimization criteria so that
the value of the calculated mass flow rate ṁa is close to the
measured mass flow rate, defined as ṁaMeasured . The num-
ber of iterations required before the optimization criteria
is fulfilled depends on the convergence rate and the initial
value of calibration parameters. A more efficient way to
tune λCD by using the control method is presented. The
method proves to be very efficient as dependence of the

convergence on the initial values of parameters is avoided
by designing a controller which yields the feedback loop
system to be a linear one. Simulation is only required to
run once to determine the correct value of the calibrated
parameters.

To design the controller, we define the error between
measured air mass and calculated air mass through the
throttle as

eair(t) = maMeasured(t)−ma(t) (2)

where eair is the error. A controller can be designed such
that

λCD =





√
2RTa

AaPa
Kmeair(t), if pm(t)

pa
< 0.5,

√
RTa

Aa pa

Kmeair(t)√
2 pm(t)

pa

(
1− pm(t)

pa

) , else. (3)

where Km is a positive control gain. Note that there will
always be a pressure drop from ambient pressure pa to pm
in order for air flowing through throttle and then down to
cylinder via intake valves. Substitute (3) into (1), equation
(1) becomes

ṁa(t) = Km
(
maMeasured(t)−ma(t)

)
(4)

It is easy to see that by choosing an appropriate control
gain Km, mass flowed through throttle can be controlled
such that eair → 0 eventually and ṁa → ṁaMeasured .

3.2 Mean value model of intake manifold pres-
sure and its calibration

Manifold pressure can be modeled as

ṗm(t) =
RTm

Vm

[
ṁa(t)− ṁβ (t)

]
(5)

where Tm is the manifold temperature, Vm is the volume of
intake manifold, ṁa is defined in (1) and ṁβ is the mass
flow rate into cylinder. Mass flow rate into cylinder can be
modeled as

ṁβ (t) =
ṁe(t)

1+ 1
λ (t)σ0

,

ṁe(t) =
pm(t)

RTm(t)
λl
(

pm(t),ωe(t)
)
Vd

ωe(t)
4π

(6)

where λl(·) is the volumetric efficiency of intake ports and
valves, denoted as

λl(ωe(t), pm(t)) =
mβ (t)

ρm(t)Vd
(7)

where ρm is air density in intake manifold, Vd is the engine
displacement volume, ωe is engine speed, λ is the air fuel
ratio

λ (t) =
1

σ0

ṁβ (t)
ṁφ (t)

(8)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154165 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

167

Figure 3. Schematic for control calibration of mean value intake
model

where σ0 is approximately 14.67 and ṁφ is fuel flow rate.
Approximation of the volumetric efficiency of intake ports
and valves can be formulated as

λl(pm(t),ωe(t)) = λl p(pm(t))λlw(ωe(t))

where λl p(pm(t)) =
Vc +Vd

Vd
−
(pout(t)

pm(t)

) 1
κ Vc

Vd

λlω(ωe(t)) = γ0(t)+ γ1ωe(t)+ γ2ωe(t)2

(9)

where pout is the exhaust manifold pressure, Vc is clear-
ance volume, and κ , γ0, γ1 and γ2 are tuning parameters.
For simplicity, we have chosen γ0 as calibration parameter
and γ1 and γ2 are fixed to be small values.

To design a controller for calibrating manifold pressure,
the pressure error is defined as

ep(t) = pm(t)− pmMeasured(t) (10)

A controller can be designed such that

γ0(t) =
4π(1+ 1

λσ0
)

pm(t)λl pVdωe(t)

(
KpVmep(t)+RTmṁa(t)

)

− γ1ωe(t)− γ2ω2
e (t)

(11)

where Kp is a positive control gain. Substitute equation
(11) into (9) and equation (9) into (6), equation (5) be-
comes

ṗm(t) = Kp
(

pmMeasured(t)− pm(t)
)

(12)

By choosing an appropriate control gain Kp, pm(t) →
pmMeasured(t) in (12) and ep(t) → 0. Figure 3 shows a
schematic of on using controller design for calibrating
mean value intake model, as described in this section.

3.3 Simulation results
This section shows calibration performance using con-
troller design described above for 10% throttle opening,
1000rpm, stoichiometric AFR and default intake and ex-
haust phasing. Figure 4 shows the measured and calcu-
lated mean average and actual value of intake pressure and
intake mass flow rate. Figure 5 shows control gains γ0 and

Figure 4. Calibration performance for calculated plenum pres-
sure pm and air flow rate through throttle ṁa

Figure 5. Calibration control gains γ0 and λCD

λCD which are given in (11) and (3). Both calculated in-
take pressure pm and calculated intake mass flow rate ṁa
reach to their corresponding measurement pmMeasured and
ṁaMeasured within 2 seconds. Control gains Kp = 5 and
Km = 20 are chosen for computing γ0 and λCD. Thus the
proposed method for calibrating mean value air path en-
gine model using control design is shown to be efficient
and accurate. Controllers are able to control the calculated
values despite their initial values being different from their
measured values. The control gains Km and Kp can be
fixed for all calibrating points because the dynamics of
feedback loops for mass flow rate and manifold pressure
are only a function of these two gains (4) and (12). Initial
values of ma(t) and pm(t) will not have an effect on con-
vergence because the closed loop systems are linear and
asymptotic stability of (4) and (12) are guaranteed. This
is important in ensuring that calibration process only re-
quires one time simulation for each calibration point and
calibration performance can be guaranteed. Due to this
feature, calibration process can be automated by running
each calibration point sequentially and recording calibra-
tion parameters into the entries of look-up tables. It will
be difficult to automate this process if optimization meth-
ods are used which iterate simulation a number of times
until target criterias are met which is not always possible
and different initial values of calibration parameters have
to be tested, in this case initial values of λCD and γ0.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154165

168

Figure 6. Calibrated tables and mean value model provide pres-
sure temperature source for intake and exhaust valves

Figure 7. Calibrated tables provide pressure temperature source
for intake and exhaust valves

4 Automation of calibration process
Automation of the calibration process described in sec-
tion 3 can be performed by recording all the calibrating
parameters into the entries of look-up tables. The model
needs to be calibrated against each throttle demand, in-
take phasing, exhaust phasing, engine speed. Because the
mean value model takes into account the AFR values in
(6) and (9), only stoichiometric AFR is calibrated. Vari-
ation of AFR around stoichiometric will be compensated
by the mean value model. The outputs of calibration are
throttle discharge coefficient λCD in (3), volumetric effi-
ciency parameters γ0 in (11), intake manifold temperature
Tm in (5), exhaust manifold pressure pout in (9). These
four parameters are needed to model mass flow rate ṁa in
(1) and intake manifold pressure pm in (5). The manifold
pressure pm, which is generated by the mean value model,
together with calibrated manifold temperature Tm can be
used to replace the intake manifold in Figure 1. In ad-
dition to the four outputs, exhaust manifold temperature,
denoted as Tout also needs to be an output so that exhaust
manifold in Figure 1 can be replaced by a pressure pout
and temperature Tout source, see Figure 6. Figure 7 shows
calibration without using mean value model. The advan-
tage of using mean value model based calibration over us-
ing non-mean value model based calibration will be shown
in section 5.1.

Figure 8. Function for automatic calibration where calibration
points can be defined

A function can be created where users can define all the
calibration points, Figure 8. For throttle demand, intake
and exhaust phase shift, users will need to enter a vector of
entries to be calibrated. Because the mean value model in
(6) takes into account AFR variations, calibration against
a stoichiometric AFR will be sufficient. This is one ad-
vantage of using mean value model as it reduces calibra-
tion dimensions by one. For engine speed, users will only
need to enter minimum and maximum speed and speed in-
terval step between the minimum and maximum speed. If
residual of maximum speed over speed interval is not zero,
only the last speed before the speed that exceeds the max-
imum speed by the residual is calibrated. The calibrated
result is stored in a directory. Figure 9 shows automati-
cally generated data records, tables, inputs and outputs of
the calibrated tables, as shown in blue box in Figure 6.
The number of columns of the tables is always five as it
corresponds to the output number of the calibrated table.
The number of rows of the tables depends on the engine
speed points calibrated. In this case five rows of tables
correspond to five engine speed points. The tables are of
three dimensions and takes intake phase, exhaust phase
and throttle as its three dimensional indexes. The values
of calibrated parameters are stored in data records. In such
way calibration of four dimensions by use of three dimen-
sional tables can be implemented.

5 Verification of mean value intake
model using simulation result

This section demonstrates the effectiveness of using a
mean value intake model to predict intake manifold pres-
sure. Automatic calibration as described in section 4 is
performed to generate required tables. Simulations are
carried out for different operating conditions and results
are compared between engine models with a fluid compo-
nent based intake manifold model and a mean value based
intake manifold model. To show the advantage of us-
ing a mean value model for predicting the manifold pres-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154165 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

169

Figure 9. Automatically created calibration tables, data records
and calibrating parameters

sure over using tables for predicting the manifold pressure,
simulations are performed to show the difference in re-
sults. It has been mentioned in section 3 equation (6) and
(7) that the mean value model considers the effect of AFR,
so that calibration against different AFR is not needed.
This feature is demonstrated by using the simulation re-
sults. Only one cylinder is used to produce the cylinder
pressure. The cylinder pressure is sampled and delayed by
the appropriate firing offset to represent the cylinder pres-
sures from the other two cylinders. The cylinder pressures
from all three cylinders are then applied to the pistons.

5.1 Comparison between the fluid based com-
ponent intake, the mean value based in-
take model and the table based intake
model between 5 to 20 percent throttle de-
mand and 800 to 1000 rpm engine speed

The accuracy of the mean value model in predicting
plenum pressures is compared with the fluid based com-
ponent intake model. The advantage of using the mean
value based intake model Figure 6 over using a table based
intake model Figure 7 is shown in this section. Both mean
value model based and table based calibration are per-
formed at the same set of operating points according to
Table 1. The actuation inputs for all three experiments,
i.e. intake with fluid components, mean value model, ta-
bles without mean value model, are shown in Figure 10 to
examine the transient performance. Fuel mass injected is
fixed for all three experiments so that they are compared
under the same fuel amount injected but making use of
different intake components.

In Figure 11, the mean plenum pressure of engine mod-
els with fluid based component intake is compared with
the mean value model based intake and non-mean value
model with table based intake. It is shown that the mani-
fold pressure from mean value mode based intake (red dot-
ted) is produced smoothly during transients and matches
very well with the pressure from fluid component based
intake model (thick blue line). The plenum pressure of
the non-mean value model table based intake (thin green
line) however behaves more linearly and switches at inter-

Figure 10. Inputs to calibration tables which are calibrated ac-
cording to Table 1 with throttle demand 5 to 20 percent and en-
gine speed 800 to 1000 rpm

Figure 11. Plenum pressure from engine with fluid component
based intake, mean value model based intake and table based
intake

Figure 12. Air flow rate into cylinder with fluid component
based intake and mean value model based intake

Figure 13. AFR from engine with fluid component based intake,
mean value model based intake and table based intake

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154165

170

Table 1. Calibration points, throttle: 5 to 20 percent; engine
speed: 800 to 1000 rpm

Calibration inputs calibration points

Throttle opening (percent) 5, 8, 11, 14, 17, 20
Engine speed (rpm) 800, 850, 900, 950, 1000
Intake phasing (CA) -10, -5, 0, 5, 10
Exhaust phasing (CA) -10, -5, 0, 5, 10

Figure 14. AFR effect on plenum pressure. Subplot 1: AFR
values, subplot 2: mean average of plenum pressure from fluid
component based intake, subplot 3: plenum pressure from mean
value intake, subplot 4: plenum pressure from table based intake

sections between two different calibrated speed profiles.
The accuracy is not as good at the result from mean value
model. Intake mass flow rates from the fluid based com-
ponent intake manifold and mean value model based in-
take manifold are shown in Figure 12. The mass flow rate
is calculated by mean value model correctly. Figure 13
shows AFR that corresponds to plenum pressure in Fig-
ure 11 and air flow rate in Figure 12. It is shown that
the mean value model based intake engine model tracks
AFR which follows closely with AFR produced by fluid
based component intake engine model, except after 10
second where the AFR from mean value model based in-
take model is overestimated compared to the AFR pro-
duced by the fluid component based intake model. The
overestimated AFR is caused by overestimated plenum
pressure in the mean value intake model, see Figure 11.
To improve calibration precision, more calibration points
can be chosen in this region. It is noted that improvement
on the accuracy of the calibrated intake manifold temper-
ature will improve the mean value model accuracy during
transients. For different AFR values, between a minimum
of 11 and a maximum of 16 in Figure 13, the mean value
based intake model predict plenum pressures correctly in
the presence of AFR variations.

The effect of AFR variation on the mean value model
can be further illustrated in Figure 14. The engine is run-
ning at 10 percent throttle demand at 900 rpm. Intake
and exhaust phasing are kept at default. For AFR values
from stoichiometric to lean, blue solid to red dashed line
in subplot 1 in Figure 14, mean average of plenum pres-

Figure 15. Cylinder pressure between fluid component based
intake and mean value model based intake model at 4.96, 10.04
and 15.06 seconds, under plenum pressure in Figure 11

sure in the fluid based component intake model becomes
lower, subplot 2 in Figure 14. This trend is reproduced
by the mean value model of intake manifold, subplot 3 of
Figure 14. The table based non-mean value intake model
however produces the same manifold pressure regardless
of AFR variations, subplot 4 of Figure 14.

For the fluid based component intake and mean value
model based intake, plenum pressures produced by the
two models are shown in Figure 11. Their correspond-
ing cylinder pressures at 5s, 10s, 15s, 20s and 25s are se-
lected and shown in Figure 15 and Figure 16. It is seen
that with a mean value based intake, cylinder pressure at
5s and 10s matches very closely to cylinder pressure pro-
duced using fluid based component intake. At 15s, 20s
and 25s cylinder pressure under mean value based intake
is slightly higher than cylinder pressure under fluid com-
ponent based intake. This is because under the same fuel
mass injected the AFR for the mean value based intake is
similar at 5s and 10s but slightly lean at 15s, 20s and 25s
due to more air present in the cylinder, see Figure 13.

5.2 Comparison between fluid component
based intake, mean value based intake
model under other throttle demand and
engine speed profiles

This section examines performance of the mean value
model based intake under conditions other than calibra-
tion points in Table 1.

5.2.1 Throttle demand from 5 to 70 percent at engine
speed from 800 to 1000 rpm

Table 2 shows calibrating points at 5 to 70 percent throt-
tle demand and 800 to 1000 rpm engine speed. The cali-
brating point interval for throttle demand is 10 percent in
Table 2, while it is 3 in Table 1. Calibration interval for
intake and exhaust phasing is 10 CA in Table 2, while it
is 5 CA in Table 1. This is to examine if the mean value

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154165 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

171

Figure 16. Cylinder pressure between fluid component based
intake and mean value model based intake model at 20.04 and
24.91 seconds, under plenum pressure in Figure 11

model is still able to maintain good accuracy despite larger
calibrating point intervals.

The actuation inputs for the experiments are shown in
Figure 17, which shows different input patterns compared
to Figure 10. Plenum pressure and AFR between fluid
component based intake and mean value based intake are
shown in Figure 18. It is seen that plenum pressure from
mean value intake matches very closely to the mean of
the plenum pressure produced by fluid based component
intake, despite the fact that the mean value model is cal-
ibrated with larger calibration intervals. AFR values are
similar between 5 and 15 seconds, where AFR changes
between rich and lean. After 15 seconds, the AFR from
the mean value intake is slightly lower than for the fluid
based component intake.

Table 2. Calibration points, throttle: 5 to 70 percent; engine
speed: 800 to 1000 rpm

Calibration inputs calibration points

Throttle opening (percent) 5, 10, 20, 30, 40, 50, 60, 70
Engine speed (rpm) 800, 850, 900, 950, 1000
Intake phasing (CA) -10, 0, 10
Exhaust phasing (CA) -10, 0, 10

5.2.2 Throttle demand from 5 to 60 percent at engine
speed from 4100 to 5000 rpm

Table 3 shows calibration points for the throttle and speed
range. Not that for throttle demand, calibration point in-
creases by 3 percent after 10 but between 5 to 10 per-
cent the increment is 5. Figure 19 and 20 show inputs
and plenum pressure results. It is noted that the plenum
pressure produced by the mean value engine matches very
well with plenum pressure produced by fluid based com-
ponent intake, except at very low load points between 8
and 12 seconds where plenum pressure predicted by the

Figure 17. Inputs to calibration tables which are calibrated ac-
cording to Table 2 with throttle demand 5 to 70 percent and en-
gine speed 800 to 1000 rpm

Figure 18. Mean average of plenum pressure and AFR from
engine with fluid component based intake and mean value model
based intake

mean value model is slightly higher than that produced by
the fluid based intake model. This is because the calibra-
tion point between 5 and 10 percent throttle demand is not
calibrated. This reveals that more throttle demand points
should be calibrated for at very low load.

Table 3. Calibration points, throttle: 5 to 60 percent; engine
speed: 4100 to 5000 rpm

Calibration inputs calibration points

Throttle opening (percent) 5, 10, +3, ..., +3, 61
Engine speed (rpm) 4100, +100, ..., +100, 5000
Intake phasing (CA) -10, -6, 0, 6, 10
Exhaust phasing (CA) -10, -6, 0, 6, 10

6 Hardware testing
6.1 Throttle demand 5 to 20 percent and en-

gine speed 800 to 1000 rpm
A quad-core Concurrent test rig, each core having 2.5GHz
clock rate, with 3.9 GB Ram and RedHawk Linux operat-
ing system is used for evaluation of the real time perfor-
mance of the models. Mechanical components (such as
the crankshaft) and controller which generates injection,
ignition, speed, throttle, intake and exhaust phasing are
in one model. The calibrated tables are also within the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154165

172

Figure 19. Inputs to calibration tables which are calibrated ac-
cording to Table 3 with throttle demand 5 to 60 percent and en-
gine speed 4100 to 5000 rpm

Figure 20. Mean average of plenum pressure from engine with
fluid component based intake and mean value model based in-
take

same model, see blue dashed box in Figure 6. Mean value
model, intake and exhaust pressure source, intake and ex-
haust valves and cylinder are put into another model, see
red dashed box in Figure 6. The experiment run on the
hardware is the same experiment shown in Figure 10 to
Figure 13, where cylinder pressures at different time in-
stants are shown in Figure 15 and Figure 16. Figure 21 to
Figure 25 show cylinder pressure recorded on hardware at
the same set of time instants studied in Figure 15 and Fig-
ure 16. It can be seen that the cylinder pressures produced
on the Concurrent rig are of correct values. The execu-
tion frames for two models on separate cores are shown
in Figure 26, where execution frame equals to 100 micro
seconds. It has been tested that the models run in real time
with execution frames equal to 500 micro seconds while
keeping good accuracy.

6.2 Throttle demand 5 to 80 percent and en-
gine speed 3500 to 6000 rpm

Real time performance can be achieved for the engine
running at speed between 3500 rpm to 6000 rpm. Fig-
ure 27 and Figure 28 show simulation results in Dymola
and Concurrent for throttle demand at 65 percent and an
engine speed of 5300 rpm by setting the execution frames
to be 150 micro seconds. There is a slight fluctuation in
the cylinder pressure produced by Concurrent at real time
but the accuracy is within a good margin.

Figure 21. Cylinder pressure at 5s

Figure 22. Cylinder pressure at 10s

Figure 23. Cylinder pressure at 15s

Figure 24. Cylinder pressure at 20s

Figure 25. Cylinder pressure at 25s

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154165 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

173

Figure 26. Execution frame for mechanical model on core 2 and
cylinder volume model on core 3 at 5s

Figure 27. Cylinder pressure at 65 percent throttle demand and
5300 rpm produced in Dymola

Figure 28. Cylinder pressure at 65 percent throttle demand and
5300 rpm produced in Concurrent

7 Conclusion
It has been shown that the mean value intake model ap-
proach is efficient to be used for crank angle resolved en-
gine simulation in Hardware in Loop testing for real time
performance. Automated calibration is efficient and ac-
curate. By using a mean value model intake, calibration
against AFR is not needed and the number of dimensional
inputs for calibration becomes one less. The result pro-
duced by the mean value model is smoother than purely
table based methods since plenum pressure is predicted
by dynamical models rather than tables.

References
L. Guzzella and C.H. Onder. Introduction to modelling and con-

trol of internal combustion engine systems. Springer-Verlag
Berlin Heidelberg, 2004. ISBN 978-3-642-10775-7.

X. Han. Splitting mechanical, fluid ports and thermal ports using
real inputs and real outputs. http://www.claytex.com/tech-
blog/splitting-mechanical-and-fluid-devices-using-real-
inputs-real-outputs/, 2017a.

X. Han. Linearised Mean Value Engine Model-based Idle Con-
trol. http://www.claytex.com/blog/linearised-mean-value-
engine-model-based-idle-control/, 2017b.

X. Han. Idle speed control using model based sliding mode con-
trol. http://www.claytex.com/blog/idle-speed-control-using-
model-based-sliding-mode-control/, 2017c.

J.B. Heywood. Internal combustion engine fundamentals.
McGraw-Hill, Inc, 1988.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154165

174

Component-Based 3D Modeling of Dynamic Systems

Andrea Neumayr1 Martin Otter1

1DLR, Institute of System Dynamics and Control, Germany, {andrea.neumayr,martin.otter}@dlr.de

Abstract
The objective is to model and simulate larger and more
complex 3-dimensional systems as it is possible with a pure
equation-based modeling system such as Modelica. The
approach shall combine component-based 3D modeling, as
used in modern game engines, with equation-based mod-
eling. The proposed methodology has been evaluated and
tested in the experimental modeling environment Modia3D
that is implemented with the Julia programming language.
Keywords: Modelica, Modia, Modia3D, Julia, DAE,
equation-based modeling, componend-based modeling,
multibody, collision handling

1 Introduction
The objective is to model and simulate larger and more
complex 3-dimensional systems as it is practically possible
with a pure equation-based modeling system such as the
current Modelica language version 3.4. Issues are:

• The data structures of an equation-based modeling
system are limited as compared to a programming
language such as C++ or Julia. For example, it is
virtually impossible to define 3D meshes and collision
handling algorithms in Modelica.

• Specialized operations in the 3D world are hard to use,
such as to remove redundant constraints of a planar
loop automatically, solve kinematic loops analytically,
or use an O(n) multibody algorithm. In Modelica, a
user has to explicitly model such situations with spe-
cialized elements or use a pre-processor that generates
Modelica code, see e.g. (Elmqvist et al., 2009).

• Since Modelica compilers expand the models for the
symbolic engine, the same equation is analyzed many
times. Thus, the number of expanded equations grows
at least linearly with the number of model instances
and therefore the compilation time grows at least lin-
early with the model size.

The goal of this article is to propose an approach how
to combine 3D modeling techniques with equation-based
modeling à la Modelica. This procedure has been evalu-
ated and tested with the open source prototype Modia3D1

(version 0.2.0-beta.1). It is implemented with the Julia
programming language2 (Bezanson et al., 2017) taking

1https://github.com/ModiaSim/Modia3D.jl
2https://julialang.org

advantage of Julias powerful language features such as
multiple dispatch and set-based types3. Modia4 (Elmqvist
et al., 2016, 2017) shall be used for the equation-based
modeling. The intention is to utilize the results of this
prototyping in the design of the next Modelica language
generation.

Modia3D has no graphical user interface. It would be
useful to have 3D schematics as proposed by (Elmqvist
et al., 2015a). The textual representation of Modia3D is de-
signed for 3D schematics and not for Modelica 2D schemat-
ics. Modia3D provides a generic interface to visualize
simulation results with different 3D renderers. Currently,
the free community edition as well as the professional edi-
tion of the DLR Visualization library5 (Bellmann, 2009;
Hellerer et al., 2014) are supported.

2 Component-Based 3D Modeling
Modern game engines, such as Unity or Unreal Engine,
have a component-based design, so the architecture is
based on composition and aggregation. Basically, in this
context a coordinate system is located in the 3D world that
has a container of optional components (such an object is
called GameObject6 in Unity, Actor7 in Unreal Engine, Ob-
ject3D8 in Three.js). Each of these components has prop-
erties such as geometry, visualization, dynamics, collision
properties, light, camera, sound, etc., see e.g. (Nystrom,
2014)9. This design has the advantage that many optional
components and variants can be defined and treated in a
very flexible and unified way. In this paper, this very spe-
cial variant of the generic component-based design pattern
is called component-based 3D modeling.

Modelica 3.4 supports component-based design via re-
placeable components. Unfortunately, this language con-
struct has limitations and is not sufficient for component-
based design as needed below. On the other hand, Julia
is particularly designed to support this programming pat-
tern10 and is thus very well suited for the implementation
of Modia3D.

3https://docs.julialang.org/en/stable/manual/types/
4https://github.com/ModiaSim/Modia.jl
5https://visualization.ltx.de/, http://www.systemcontrolinnovationlab.de/the-

dlr-visualization-library/
6https://docs.unity3d.com/Manual/GameObjects.html
7https://docs.unrealengine.com/en-us/Engine/Components
8https://threejs.org/docs/index.html#api/core/Object3D
9http://gameprogrammingpatterns.com/component.html

10http://www.stochasticlifestyle.com/type-dispatch-design-post-
object-oriented-programming-julia

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

175

2.1 Object3D
In Modia3D, component-based 3D modeling is performed
with Object3D objects. An Object3D object consists of
a 3D coordinate system that has associated, optional prop-
erties collected in the data container (see Figure 1). The

Figure 1. Object3D defined relatively to its parent.

code-snippet11 of the following constructor call12 creates a
new Object3D object obj:

1 obj = Object3D(parent, data, r=[0,0,0],
2 R=[1 0 0;0 1 0;0 0 1],fixed=true)

Hereby, obj is defined relative to a parent object3D,
with the position vector r and the rotation matrix R. It is
rigidly connected to its parent if fixed=true, and can
move freely if fixed=false. In the latter case, initial
position and rotation matrix is defined with r, R.

Argument data is of the abstract type Abstract-
Object3Ddata. Therefore, all objects can be used which
are a subtype of this type. There are further constructor
functions for Object3D, therefore the arguments parent
and data are also optional (e.g. line 3). An Object3D is
said to be a reference Object3D, if no parent Object3D is
given. The world-object3D can be defined as, for example

3 world = Object3D().

In Figure 2, the current abstract and concrete subtypes of
AbstractObject3Ddata are shown. Instances of the
concrete subtypes can be used for the positional argument
data. In Figure 2, the concrete types are printed in light
blue, abstract types in black, and types that are currently
under implementation are printed in grey color. The most
important concrete types are discussed below. Note, a
data object consists of a set of optional components, pro-
viding in a flexible way variants and different functionality.
All these components are positioned and moved with the
same concept - the coordinate system to which the com-
ponents are attached. The conceptual difference to current
Modelica is that the Modelica.Mechanics.MultiBody li-
brary defines coordinate systems and properties (such as
visualization data) with respect to various Part objects. As
a result, the equations to define coordinate systems relative

11For better reference every code-snippet is marked with a unique line
number on the left-hand side.

12When calling a Julia function, all optional keyword arguments
(name-value pairs) can be given in any order. They are set after the
positional arguments (here: parent and data).

AbstractObject3Ddata

AbstractVisualElement

AbstractGeometry
(with Material)

Sphere
Ellipsoid
Box
Cylinder
FileMesh
...

Solid HeatTransfer1D

Text
Grid
CoordinateSystem
FlexibleSurface
AbstractCamera
AbstractLight
AbstractEffect
AbstractPathDefinition
AbstractHeadUpDisplay

(without Material)

Figure 2. Overview of AbstractObject3Ddata types.

to each other are present many times in many different com-
ponents, whereas in Modia3D these equations are present
only once in the Object3D definition (and Object3D
objects support much more flexible part definitions).

2.2 Visual Objects
Visualization objects are subtypes of AbstractVisual-
Element, which is also a subtype of AbstractObject-
3Ddata. These elements are used for animation purposes
only. Basically, their Julia implementation is an interface
to the DLR Visualization library (Bellmann, 2009; Hellerer
et al., 2014). The concrete types which have a geome-
try and associated visualization properties are subtypes of
AbstractGeometry. Their material is defined with a
Material object. For example, the following constructor
call generates a new Material object:

4 vmat = Material(color=[0,0,255],
5 wireframe=false,transparency=0.5,
6 shininess=0.7,reflectslights=true)

Concrete subtypes with a geometry and a material are
shown in Figure 3.

Figure 3. Visual elements with Material.

The following example defines an Object3D, which is po-
sitioned at [0,0,0.8] in the world-object3D (line 3), is dis-
played with the visualization material vmat (lines 4 - 6),
and has a sphere geometry with diameter = 0.9 m.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

176

7 sphere = Object3D(world,
8 Sphere(0.9,material=vmat),
9 r=[0,0,0.8])

Additionally to the subtypes of AbstractGeometry,
Modia3D supports currently the concrete types shown in
Figure 4. These types do not have a Material object.
Here, a grid with 0.7 m length and 0.6 m width, is defined.

10 grid = Object3D(world,Grid(0.7,0.6))

It is positioned at the origin of the world-object3D.

Figure 4. Visual elements without Material.

Remark 1. All objects which are subtypes of Abstract-
VisualElement are mutable objects. Therefore, they
still can be changed after instantiation, especially during
simulation.

2.3 Solid Objects
The type Solid is directly derived from AbstractOb-
ject3Ddata and defines solid physical objects. A solid
object can have geometry, mass properties, can be visual-
ized and can be used in collision handling, and all of these
properties are optional. Solid objects are immutable to
guarantee constant mass properties during simulation. The
following constructor call creates a new Solid object.

11 solid = Solid(geo,massProperties,material,
12 contactMaterial=nothing)

The arguments have the following meaning:

geo defines the geometry of the solid. It is either
nothing13 (= no geometry defined) or it is a sub-
type of AbstractSolidGeometry.

massProperties defines the mass properties of the
solid. It is either nothing (= is massless) or there are
various options to define these properties (see lines 19
- 21 below).

material defines the visualization properties of geo.
It is either nothing (= geo is not visualized) or it is
a Material object (e.g. lines 4 - 6).

contactMaterial defines the contact response char-
acteristics of geo. It is either nothing (= geo is not
included in the collision handling) or it is a subtype
of AbstractContactMaterial.

Since all these properties are optional, there is a great
flexibility to define the desired solid. Below, more details
about the arguments of the solid constructor are given.

13In Julia, value nothing marks an empty value.

Argument: geo
Solid geometry objects geo are subtypes of the abstract
type AbstractSolidGeometry and are shown in Fig-
ure 5. For example, a SolidFileMesh object can be
defined with the following constructor call.

13 mesh = SolidFileMesh("pascal.obj",0.2)

Assuming that a file in obj-format is available as "pas-
cal.obj" and the mesh shall be scaled by a factor of
0.2.

Currently, Modia3D supports collision handling only for
convex objects. If a SolidFileMesh object is concave,
collision handling is performed with respect to the convex
hull of the mesh. Alternatively, the open source V-HCAD
library14 can be used to approximate a concave mesh by a
set of convex parts. Then, Modia3D utilizes these convex
parts in collision handling and the original concave mesh
for non-collision operations.

Figure 5. Solid geometry types.

The following functions15 compute key properties for
rigid-body computations or collision handling and they
are provided for all solid geometry objects displayed in
Figure 5.

volume(geo) returns the volume of a solid geometry
object geo.

centroid(geo) returns the position of the centroid
of geo. If the solid is homogeneous, the centroid’s
position is identical to the center of mass.

inertiaMatrix(geo,mass) returns the inertia ma-
trix of a solid geometry object geo with mass mass.

boundingBox!(geo,..) updates the bounding box
of geo. This operation is used for collision handling
(see below).

supportPoint(geo,..) returns the support point
of geo. This operation is a key property for collision
handling (see below).

In the following example some geometric properties of a
SolidSphere object with diameter D are computed with
the above mentioned functions.

14V-HCAD: https://github.com/kmammou/v-hacd
15As usual in Julia, function names with a ! at the end indicate that

one or more of the input arguments are changed by the function call.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

177

14 D = 0.3; density = 7700
15 geo = SolidSphere(D)
16 V = volume(geo)
17 m = density*V
18 IM = inertiaMatrix(geo,m)

Currently, only mesh-data from wavefront (*.obj) files are
supported. It is planned to generalize the support of meshes
as proposed in (Elmqvist et al., 2015b), to directly define
them in Modia3D and provide CSG (Constructive Solid
Geometry) operations on them.

Argument: massProperties

There are several variants to define the optional mass prop-
erties: mass, center of mass, and inertia matrix. Examples
of the different variants are:

19 mesh1 = Solid(SolidFileMesh(..),"Aluminium")
20 mesh2 = Solid(SolidFileMesh(..),2.1)
21 massProp = MassProperties(m=2.1,Ixx=0.1,..)
22 mesh3 = Solid(SolidFileMesh(..),massProp)

In the first case a string is given (line 19), such as
"Aluminium". This string is a key in a dictionary in
which some key data of materials is stored, such as density,
Youngs modulus, heat capacity, and thermal conductivity.
The density of the material is used together with the geom-
etry geo to compute the needed mass properties (see lines
14 - 18). Alternatively, a number (line 20) can be given that
is interpreted as the mass of the solid. Again, together with
the geometry geo the needed mass properties are calcu-
lated. Finally, also an instance of type MassProperties
(line 21) can be provided, in which all mass properties are
explicitly given.

Argument: contactMaterial

The contact material cmat (line 23) defines how a solid be-
haves in contact cases. At the moment elastic contacts can
be handled, with a spring - damper module. Therefore, a
spring constant c and a damper constant d can be provided,
as shown in the next example.

23 cmat = ElasticResponse(c=1e5,d=100.0)
24 sphere = Solid(SolidSphere(0.2),"Aluminium",
25 contactMaterial=cmat)

Example

A few examples are shown how solid objects can be de-
fined:

26 geo = SolidSphere(0.2)
27 vmat = Material(color=[0,0,255],
28 transparency=0.5)
29 cmat = ElasticResponse(c=1e5, d=100.0)
30 basicSphere = Solid(geo,"Aluminium",vmat,
31 contactMaterial=cmat)
32 sphere1 = Object3D(world, basicSphere,
33 r=[1.0,0.0,0.0],fixed=false)
34 sphere2 = Object3D(world, basicSphere,
35 r=[0.0,1.0,0.0],fixed=false)
36 sphere3 = Object3D(world, basicSphere,
37 r=[0.0,0.0,1.0],fixed=false)

In the example above, a sphere basicSphere is defined
that has a diameter of 0.2 m and is made of Aluminium. It
is visualized with material vmat, and takes place in colli-
sion handling using contact material cmat for the response
calculation. This definition is used to declare three spheres:
sphere1, sphere2, sphere3. These spheres can move
freely in space and are initially placed at different posi-
tions in the world-object3D (line 3). Note, although three
spheres are declared, all the position-independent prop-
erties of the spheres, like visualization material, contact
material etc. are defined only once by the reference object
basicSphere. In Modelica, one could construct some-
thing similar by using replaceable record constructors in
modifiers. The conceptual difference is that the data and
equations of a basicSphere Modelica model would be
present three times in the generated code and not once as
in the Modia3D code.

If only one sphere shall be defined, the above definition
(line 26 - 32) can also be given without auxiliary variables:

38 sphere = Object3D(world,
39 Solid(SolidSphere(0.2),"Aluminium",
40 Material(color=[0,0,255],
41 transparency=0.5),
42 contactMaterial=
43 ElasticResponse(c=1e5,d=100.0)),
44 r=[0.0,0.0,1.0],fixed=false)

2.4 Operations on Object3D
There are several functions that operate on Object3D ob-
jects, such as:

isVisible(object3D,renderer) returns true, if
the data object associated with the object3D can
be visualized (e.g. a solid-object where geo and
material are defined) and the visualization element
is supported by the utilized renderer

hasMass(object3D) returns true, if mass properties
are associated with the object3D.

canCollide(object3D) returns true, if an Ab-
stractSolid object is associated with the object3D,
together with an AbstractContactMaterial ob-
ject.

Depending on the underlying types of the elements of an
Object3D object, type-specific methods are called (based
on Julias multiple dispatch feature).

3 Assembly Objects
In the previous section it was shown how to define Ob-
ject3D objects and how to associate properties to an Ob-
ject3D in a very flexible manner. In this section the aggre-
gation of Object3Ds is discussed.

Hierarchical structures are defined with the Modia3D
macro @assembly (lines 45 - 48). A Julia macro is a
metaprogramming construct of Julia16. It generates an

16https://docs.julialang.org/en/stable/manual/metaprogramming/

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

178

abstract syntax tree of Julia code that is automatically com-
piled and executed at the line where the macro is called.

45 @assembly AssemblyName(..) begin
46 name = constructor(..)
47 < other statements >
48 end

The @assembly macro generates a new Julia type Assem-
blyName (it is a mutable struct) that (a) contains all
left-hand side "name" definitions as elements, (b) uses
the code of the @assembly for the constructor function
for its struct, and (c) initializes support for hierarchical
names of the elements of this new type. For example,

[Lx/2,0,0][-Lx/2,0,0]

obj0obj1 obj2

Figure 6. A solid bar with two additional Object3Ds.

the solid bar of Figure 6 consists of a beam element with
two additional Object3Ds. This can be achieved with the
following declarations:

49 @assembly Bar(;Lx=0.1,Ly=Lx/5,Lz=Ly) begin
50 obj0 = Object3D(Solid(SolidBeam(Lx,Ly,Lz),
51 "Aluminium",
52 Material(color="Blue"))
53 obj1 = Object3D(obj0,r=[-Lx/2,0.0,0.0])
54 obj2 = Object3D(obj0,r=[Lx/2,0.0,0.0])
55 end
56 bar = Bar(Lx=1.0)
57 visualizeAssembly!(bar)

The reference Object3D obj0 (line 50) is defined as a solid
with a SolidBeam geometry. The two other Object3Ds
- obj1, obj2 (lines 53 - 54) - have obj0 as parent Ob-
ject3D and their positions are defined according to Figure 6.
To check this definition, an instance of the new Bar type
is constructed (line 56) and it is an input argument of the
function call visualizeAssembly!(bar) that visual-
izes the assembly with the default renderer.

Since all left-hand side variables of @assembly Bar
are elements of the new type, these elements can be ac-
cessed via the bar instance (line 56) as, e.g. bar.obj1.
Since the code of an @assembly definition is used as a
constructor function, order matters and thus the statements
are executed in the given order17.

Assembly objects can also be elements in other assembly
objects and therefore hierarchical structures can be built.
For demonstration, the following planar four-bar mecha-
nism18 is defined. It consists of three bars and the ground

17The main reason of this property is to have a simple implementation
of the @assembly macro. With a more involved implementation,
the definition between begin ... end could be given in any
order and the constructor function could be generated from the sorted
statements, provided no algebraic loops are present.

18https://en.wikipedia.org/wiki/Four-bar_linkage

(= the fourth bar) connected by four revolute joints forming
a planar kinematic loop (see Figure 7).

58 @assembly Fourbar(;Lx=0.1) begin
59 world = Object3D(CoordinateSystem(0.6))
60 pos1 = Object3D(world,r=[Lx/2,0.0,Lx/2)
61 pos2 = Object3D(pos1,r=[Lx,0.0,0.0])
62 ground = Object3D(world,Box(..),..)
63 bar1 = Bar(Lx=Lx)
64 bar2 = Bar(Lx=Lx)
65 bar3 = Bar(Lx=Lx)
66 rev1 = Revolute(pos1,bar1.obj1,
67 phi_start=pi/2)
68 rev2 = Revolute(bar1.obj2,bar2.obj1,
69 phi_start=-pi/2)
70 rev3 = Revolute(bar3.obj2,bar2.obj2,
71 phi_start=-pi/2)
72 rev4 = Revolute(pos2,bar3.obj1,
73 phi_start=pi/2)
74 ...
75 end
76 fourbar = Fourbar(Lx=1.0)
77 visualizeAssembly!(fourbar)

rev1 rev4

rev3rev2 bar2

bar3

world

ground

bar1

Figure 7. Planar four-bar mechanism.

A revolute joint is defined, with the constructor

78 Revolute(object1,object2).

It constrains object2 (line 78), so that the z-axis of ob-
ject2 coincides with the z-axis of object1 (line 78) and
can rotate around it. Via additional keyword arguments, the
joint can be configured further. For example, phi_start
= angle initially rotates object1 along its z-axis for the
given angle to arrive at object2. The revolute joints are
visualized in Figure 7 with red cylinders.

Note, in Modelica and Modia a user has to treat one of
the revolute joints differently. For example defining one
of them to be a revolute cut-joint in a planar loop (Model-
ica model: RevolutePlanarLoopConstraint), since
otherwise a redundant set of equations would be generated
that cannot be handled with current symbolic engines.

Contrary, in Modia3D no special action is needed by the
user. Instead, there is the requirement that the configuration
defined by the assembly constructor must be consistent. For
example, if phi_start = piwould be defined for rev4,
then this start angle would not be consistent to the already
defined configuration, and an error would occur. However,
it would be possible to define the angle as phi_start

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

179

= NaN (= Not-a-Number), and the Revolute construc-
tor of rev3 would compute phi_start from the initial
position of bar3.obj2 and bar2.obj2. There might

Figure 8. Four-bar mechanism with different link lengths.

be situations in which it is not as simple as in Figure 7
to define a consistent initial configuration. In such cases,
Modia3D provides functions to determine kinematic quan-
tities in the initial configuration and utilizes them in later
constructor calls. For example, assume that the bars of a
four-bar mechanism do not all have the same lengths as in
Figure 8. The corresponding assembly object can be de-
fined by using functions that compute geometric properties
in the initial configuration.

79 @assembly Fourbar2(;Lx=0.1,Ly=Lx/5) begin
80 ...
81 bar1 = Bar(Lx=Lx,Ly=Ly)
82 bar2 = Bar(Lx=Lx,Ly=Ly)
83 rev1 = Revolute(pos1,bar1.obj1,
84 phi_start=pi/2)
85 rev2 = Revolute(bar1.obj2,bar2.obj1,
86 phi_start=-pi/2)
87 L3 = distance(pos2,bar2.obj2)
88 phi30 = planarRotationAngle(pos2,
89 bar2.obj2)
90 bar3 = Bar(Lx=L3)
91 rev3 = Revolute(bar3.obj2,bar2.obj2,
92 phi_start=NaN)
93 rev4 = Revolute(pos2,bar3.obj1,
94 phi_start=phi30)
95 ...
96 end

First, bar1,bar2 (lines 81 - 82) are defined with the Bar
assembly (lines 49 - 55) and as well as their connection
with revolute joints rev1,rev2 (lines 83 - 86). As a
result, the initial positions of bar1,bar2, as well as pos2
(line 61) on the ground are known. In a second step, the
distance L3 between the origin of pos2 and the origin of
bar2.obj2 is computed (line 87). If bar3 (line 87) is
placed between these two objects, it must have Lx=L3.
Furthermore, the angle phi30 (line 88) between the x-axis
of pos2 and the position vector from the origin of pos2
to the origin of bar2.obj2 is computed and used as start
angle for rev4.

Note, the result is similar to a system that is defined
by a parameterized CAD system: Whenever Fourbar2
is instanciated with different arguments (e.g. Lx=0.5 or
Lx=10.1), consistent initial configurations of the mecha-
nism are constructed always.

4 Actuator Objects
The main purpose of Modia3D is to model the 3D-part
of a system. All other parts of a system model shall be
defined with the equation-based modeling language Modia.
Modia3D and Modia shall be combined in the following
ways:

1. using Modia models in Modia3D (e.g. a Modia actua-
tor model that drives a Modia3D revolute joint),

2. using Modia3D models in Modia,

3. transforming Modia3D models to Modia equations
(to be used, e.g. in embedded systems), and

4. defining force elements directly with simple Julia
macros, mainly to develop the interface to Modia (but
without actually using Modia).

Currently, only item 4 has been implemented by providing
the Julia macros @signal and @forceElement. The us-
age of these macros is sketched below with two examples:

To move the generalized coordinate of a joint kinemati-
cally, a @signal macro with one output signal is defined:

97 @signal Sine(;y_off=0.5,w=1.0,A=1.0) begin
98 y = RealScalar(causality=Output)
99 end

100 function computeSignal(sine::Sine,sim)
101 sine.y.value = sine.y_off +
102 sine.A*sin(sine.w*sim.time)
103 end

Here, one output variable y (line 98) is declared as Real-
Scalar and it is computed in Julia function compute-
Signal(sine,sim) (line 100). All parameters that are
defined in the header declaration (line 97) as well as all vari-
ables of the SimulationState sim, e.g. sim.time,
sim.startTime, can be used for computing the signal
(lines 100 - 103). The new type Sine can be used in an
assembly component e.g. to drive one joint of the four-bar
mechanism (Figure 7).

104 @assembly MoveFourbar(;Lx=0.1) begin
105 fourbar = Fourbar(Lx=Lx)
106 sine = Sine(A=0.5,w=2.0)
107 flange = SignalToFlangeAngle(sine.y)
108 Modia3D.connect(flange, fourbar.rev1)
109 end

110 fourbar = MoveFourbar(Lx=1.0)
111 model = SimulationModel(fourbar,
112 analysis=KinematicAnalysis)
113 result = simulate!(model,stopTime=3.0)

In MoveFourbar an instance of Sine is created (line 106).
For connecting this instance with a revolute joint, a con-
verter from pure signals into a rotational flange is needed
(line 107). Here, sine.y (line 107) is associated with
flange.phi. The connect(..) statement (line 108)
copies the corresponding variables from flange.phi to
fourbar.rev1.phi.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

180

Function SimulationModel(..) (lines 111 - 112)
generates a simulation model that can then be simulated
with the generic simulate!(..) (line 113) function.
Since option analysis=KinematicAnalysis is de-
fined, the simulation model computes the positions of all
frames, but no velocities or accelerations and no forces or
torques are calculated. The kinematic simulation is done by
evaluating the assembly on a regular grid from time=0.0
up to time=3.0. At every time instant of this grid, all
computeSignal(..) functions of each assembly com-
ponent are called. This results in the kinematic simulation
of the four-bar mechanism. Note, since there is a kine-
matic loop, nonlinear algebraic equations are solved by the
simulate!(..) function.

The next example shows how a P-PI cascade controller
can be defined that drives a rotational flange of a Modia3D
assembly:

114 @forceElement Controller(;k1=10.0,k2=10.0,
115 T2=0.01,freqHz=0.5,A=1.0) begin
116 PI_x = RealScalar(...)
117 PI_derx = RealScalar(...)
118 sine_y = RealScalar(...)
119 phi = RealScalar(causality=Input)
120 w = RealScalar(causality=Input)
121 tau = RealScalar(causality=Output)
122 end

123 function computeTorque(c::Controller,sim)
124 c.sine_y.value = c.A*
125 sin(2*pi*c.freqHz*sim.time)
126 gain_y = c.k1*(c.sine_y.value -
127 c.phi.value)
128 PI_u = gain_y - c.w.value
129 c.PI_derx.value = PI_u/c.T2
130 c.tau.value = c.k2*(c.PI_x.value + PI_u)
131 end

The Controller model uses the angle phi and angular ve-
locity w as inputs (lines 119 - 120) to compute the driv-
ing torque tau (line 121) as output. This is performed
with a P-PI cascade controller where a sine is used as
a reference angle. Here, all parameters have to be de-
fined in a @forceElement model, and can be used for
computing the driving torque with function compute-
Torque(c,sim) (line 123). This function (lines 123 -
131) takes c as an instance of Controller and sim as an
instance of SimulationState as input values.

132 @assembly MoveFourbar2(;Lx=0.1) begin
133 fourbar = Fourbar(Lx=Lx)
134 c = Controller()
135 flange = AdaptorForceElementToFlange(
136 phi=c.phi, w=c.w, tau=c.tau)
137 Modia3D.connect(flange, fourbar.rev1)
138 end

139 fourbar2 = MoveFourbar2(Lx=1.0)
140 model = SimulationModel(fourbar2)
141 result = simulate!(model,stopTime=3.0)

In MoveFourbar2 an instance of Controller is created
(line 134). For connecting this instance with a revolute
joint (line 137), an adaptor between a force element and

a flange is needed. This is done with function Adaptor-
ForceElementToFlange(..) (lines 135 - 136) that
uses keywords phi, w, a, and tau (see line 136) to asso-
ciate the controller signals with the corresponding flange
variables. Constructor function SimulationModel(..)
generates a simulation model. Since no keyword argument
is provided, the default analysis=DynamicAnalysis
is used. Function simulate!(..) (line 141) performs
a dynamic simulation of the simulation model model. At
every time instant, all computeTorque(..) functions
of each assembly component are executed.

5 Prototype Implementation
In this section some details about the implementation of
the Modia3D prototype are given.

5.1 Handler Objects
Independent handler objects are responsible for the various
computations that have to be carried out. In a first step, the
components for the handler objects are identified.

When instantiating an assembly object, the parent-child-
relationships between the Object3Ds are updated and
stored in them. For example, when instantiating a Bar
assembly (lines 49 - 55), obj0 is the parent of obj1. How-
ever, when connecting bar2.obj1 to bar1.obj2 with a
revolute joint rev2 (lines 68 - 69), then the parent-child-
relationship is updated, so that Object3D bar1.obj2 be-
comes the parent of bar2.obj1, and bar2.obj1 be-
comes the parent of bar2.obj0.

During the update process, kinematic loops are also
identified. For example the revolute joint rev4 (lines 72
- 73) introduces a constraint between two Object3Ds that
are connected in a tree-structure having the same root-
object3D. Joints which close a loop are just referenced in
the corresponding Object3Ds, without changing the parent-
child-relationship of the Object3Ds. The first Object3D in
the top-most assembly that is not defined with respect to
another Object3D, is treated as the world-object3D. Due to
this approach, a tree of connected Object3Ds is constructed
having the world-object3D as its root. As an inspiration the
open-source Javascript library Three.js19, was used, to de-
sign a similar tree. The Modia3D Object3D data structure
is hereby similar to the Three.js base class Object3D.

In a second step, the kinematic loops are analyzed. Cur-
rently, the joints that close a kinematic loop are treated
as cut-joints. Hereby, the corresponding kinematic loop
is analyzed and if the loop is planar, a reduced set of
equations are used for the cut-joint. It is planned to sig-
nificantly improve this phase by analytically solving a
large class of loops with the technique described in (Ot-
ter et al., 2003) that is used in the Modelica Standard Li-
brary (MultiBody.Joints.Assemblies) and is based
on the more general characteristic pair of joints method

19https://threejs.org/: "Lightweight cross-browser JavaScript li-
brary/API used to create and display animated 3D computer graphics on
a Web browser".

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

181

(Woernle, 1988; Hiller and Woernle, 1987) where a kine-
matic loop is cut at two joints.

In a third step, the constructed tree is traversed and
the handler objects are created with the help of the utility
functions of section 2.4.

Collision Handler: All Object3Ds where the function
call canCollide(object3D) returns true are re-
ported to the collision handler. More details are given
in section 5.2.

Renderer Handler: All Object3Ds where the function
call isVisible(object3D,renderer) returns
true are collected in a vector of Object3Ds and this
vector is reported to the renderer handler. At every
communication point of a simulation, the specific
renderer functions are called to visualize the objects
associated with the Object3Ds in this vector.

Multibody Handler: All Object3Ds are collected to-
gether, in depth-first order, in one vector starting from
the world-object3D. During simulation, this vector of
Object3Ds is traversed forth and back to compute the
needed quantities. Additionally, in a second vector
the cut-joints are stored.

The multibody handler has currently two modes: In the
kinematic mode it computes the positions of all Object3Ds
and the generalized coordinates of all joints. This is useful
to just analyze the mechanism and visualize it to deter-
mine whether it is correctly assembled and kinematically
moves in the expected way. In the dynamic mode a DAE
(Differential-Algebraic-Equation) system of the following
form is generated:

000 =

[
fff d(ẋxx,xxx, t,zi > 0)
fff c(xxx, t,zi > 0)

]
(a)

zzz = fff z(xxx, t) (b)
JJJ =




∂ fff d

∂ ẋxx
∂ fff d

∂xxx


 is reg. (c)

(1)
where xxx = xxx(t) and the Jacobian (1c) is regular. Therefore
(1a) is an index 1 DAE. (1b) defines zero-crossing functions
zzz(t). Whenever a zi(t) crosses zero the integration is halted,
functions fff d , fff c (1a) might be changed (for example by
providing elastic material laws at a contact) and afterwards
integration is restarted. The transformation of a multi-
body system with kinematic loops to this form is sketched
in (Otter and Elmqvist, 2017). The DAE is solved with
Sundials IDA (Hindmarsh et al., 2005, 2015) that uses a
variable-step, variable-order BDF-integration method.

The transformation to equations (1) is performed in a
configurable way: All variables appearing in equation sys-
tem (1) must be declared as instances of RealScalar
or RealArray. These types contain all the attributes of
the ScalarVariable type of the FMI 2.0 standard20

(Blochwitz et al., 2012), as well as some additional at-
tributes to identify the type of the variable with respect to

20https://fmi-standard.org/

the variable categories introduced in (Otter and Elmqvist,
2017). The multibody handler traverses all assembly
objects (including actuator objects) and extracts the in-
formation about the variable objects. For example, a
RealScalar variable phi is declared in a revolute joint.
The corresponding constructor call defines that phi shall
be part of vector xxx. Whenever the integrator requires a
model evaluation, all elements of vector xxx are copied to
the corresponding variable definitions. Afterwards, the
multibody handler computes the residues, which are also
defined to be variables, and copies the values of the residue
variables back to the residue vector used by the integrator.

5.2 Collision Handling
Collision detection in Modia3D is based on the MPR
(Minkowski Portal Refinement) algorithm (Snethen, 2008),
which computes the shortest penetration depth of two con-
vex shapes. The MPR-algorithm is much simpler to im-
plement and has less numerical problems than the often
used GJK/EPA-standard algorithms (Gilbert et al., 1988;
Bergen, 2003), because it only works with triangles and
not with tetrahedrons.

DAE (1) generated by Modia3D is solved with a variable-
step integrator. Variable-step integrators are sensitive to
drastic changes of the DAE, as in the case of collisions.
To speed up the simulation and to improve the robustness
of the integration, Modia3D uses the distances between
convex shapes as zero-crossing functions zi(t) (1b). In
the original version of the MPR-algorithm (Snethen, 2008)
only penetration depths are determined. In Modia3D im-
provements of the MPR-algorithm are utilized that have
been proposed in (Kenwright, 2015; Neumayr and Otter,
2017), in particular to compute the distances of shapes
that are not in contact, treating special collision situations
properly and introducing a new termination condition to
speed up the algorithm in some situations.

In Modia3D collision handling of n potentially colliding
shapes is performed in the following (mostly standard)
way:

1. Broad Phase
The shapes are approximated by bounding volumes
where potential collisions can be very cheaply deter-
mined resulting in O(n2) cheap tests. When using
special data structures (such as octrees or kd-trees),
it is possible to reduce the number of cheap tests to
O(n log(n)).

2. Narrow Phase
For the potentially colliding shape pairs as identified
in the broad phase, the signed distances are computed
with the improved MPR-algorithm (Neumayr and Ot-
ter, 2017).

3. Response Calculation
If two shapes are penetrated, a force and/or torque is
applied at the contact point, such as a spring - damper

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

182

force element, depending on the penetration depth
(section 2.3).

The MPR-algorithm computes the contact points CA,CB,
the Euclidean distance δ if shapes are not in contact, and
otherwise the penetration depth δ (Figure 9). The distance

δCA CB
BA

Figure 9. Shapes A,B are not in contact.

δ calculated by the MPR-algorithm is used as zero-crossing
function zi for the integrator. This means it detects the
transition between penetration and non-penetration of a
shape pair. A brute force method for the integrator would
be to use the distances between any two shapes as zero-
crossing function, resulting in an O(n2) number of zero-
crossing functions. Since the number of crossing functions
would grow quadratically with the number of collision
objects, the maximum number of zero-crossing functions
is bounded by nz,max, which defines the maximum number
of objects that can be in contact at the same time instant.
This number can be adapted by the user. If more shapes get
in contact, the simulation is currently halted with an error
(alternatively, the simulation could be halted and could be
restarted with an enlarged z vector). The zero-crossing
functions are computed with the following scheme (for
more details, see (Neumayr and Otter, 2017)):

• The function selectContactPairs!(..) is
called before every integrator step.

– Execution of broad and narrow phase.
– Selection and ordering of nz ≤ nz,max shape pairs

according to their distances.

• The function getDistances!(..) is called when-
ever the integrator requests a new zero-crossing func-
tion evaluation.

– Execution of broad and narrow phase.
– Storing the distances of the contact pairs in

zzz that have been selected in the last call of
selectContactPairs!(..) and checking
that none of the remaining distances is negative.

The broad phase in Modia3D uses AABBs (= Axis Aligned
Bounding Boxes) (see e.g. (Bergen, 2003)). Each AABB
approximates one shape and only if the AABB’s are inter-
secting, the distance between these two possibly colliding
shape pairs is calculated in the narrow phase. In the narrow
phase, support points (Bergen, 2003; Snethen, 2008) are
computed. A support point is a point on a shape which is
farthest away in the search direction e and is computed as

142 supportPoint(geo,r_abs,R_abs,e) =
143 r_abs + R_abs’*(centroid(geo)
144 + supportPoint_ref(geo,R_abs*e))

where supportPoint_ref(..) is the shape-specific
function to compute a support point in the reference coor-
dinate system of the shape.

The AABB of a shape is calculated by calling the
supportPoint_ref function specialized for one axis
i = 1,2,3 in a particular axis direction dir =−1,1.

145 supportPoint_i(geo,r_abs,R_abs,i,dir) =
146 r_abs[i] + R_abs[:,i]’*(centroid(geo)
147 + supportPoint_ref(geo,dir*R_abs[:,i]))

Therefore, no shape specific AABB function is needed.
The best fitting AABB’s are not useful when zero-crossing
functions shall be computed, because if some surfaces or
edges of a shape are also parallel to an axis, and these
shapes would incidentally collide, they are already pen-
etrating each other (see Figure 10). Therefore, it will

A B AABB

Shape A,B

Figure 10. Best fitting AABB’s.

not be possible for the variable-step integrator to detect
the transition between penetration and non-penetration.
Hence to avoid such scenarios, each edge length of the
best fitting AABB gets enlarged by a specific factor of the
longest edge length. In Figure 11 there are four shapes
A1,A2,B1,B2 and each have its AABB’s shown as a grey
box. Collision handling for shape pairs is switched off,

joint joint

A

A2

A1

B2

B

B1

δ

Figure 11. Two rigidly attached shapes with AABB’s.

when shapes are rigidly connected to each other, or when
shapes are connected by a joint and the joint-specific option
canCollide is set to false (= the default setting). This
reduces the amount of possible collision pairs before the
broad phase is executed. For example, shapes A1,A2 in
Figure 12 are rigidly connected. So A1 cannot collide with
A2, but both shapes can still collide with all other shapes.
In Figure 12, the red cylinders characterize revolute joints.
Therefore, not 6 but only 2 shape pairs (A1−C and A2−C)

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

183

A1

A2

B

C

A

joint

joint

joint

Figure 12. Rigidly attached shapes and joints.

are checked in the broad phase. In Figure 11, there are two
rigidly attached shapes A, that consists of A1,A2, and B,
that consists of B1,B2. The joints, which connects them
to the ground are visualized with red cylinders. Without
any assumptions, there would be 6 possible pairs to check
in the broad phase. But by pre-processing the structure of
the computational tree, it is reduced to 4 pairs, that have
to be looked at in the broad phase whether the AABB’s
are intersecting. Here only for one pair A2 −B2 the narrow
phase (MPR-algorithm) has to be executed.

5.3 Compilation Time
All equations to compute the movement of Object3Ds and
joints are implemented in Julia functions that can be com-
piled once and then just called for the actual model. There-
fore, basically the same compiled code is used for any
model, independent of its size. Only the @assembly code
that describes which Object3Ds, joints etc. are used and
how they are connected and parameterized is compiled
for an actual model. But this code part is very small as
compared to all the other equations. Hence, compiling
a Modia3D model should be fast and nearly independent
of model size. In an equation-based modeling system the
equations of every instance need to be symbolically pro-
cessed and translated. Therefore, the translation time grows
with model size. To clarify this behavior, the following
experiment was carried out:

The mechanical part of the 6 degree of freedom r3-robot
present in the Modelica Standard library21 was used in a
comparison test. In Table 1 the translation/compilation
time (= time from requiring to simulate the model, until the
simulation starts) of OpenModelica (1.13.0 nightly build)
and of a commercial Modelica tool were compared with the
compilation time of the corresponding Modia3D r3-robot
model.

As expected, the simulation of the Modia3D model starts
nearly immediately even for large models, whereas a wait-
ing time is present for a Modelica model before simulation
starts and this can be significant for large models.

21Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.-
Components.MechanicalStructure

Number of robots
1 10 50 100

OpenModelica 17 s 194 s 3600 s —
commercial Modelica tool 5 s 20 s 80 s 170 s
Modia3D 0.3 s 0.4 s 0.5 s 0.6 s

Table 1. Translation/compilation time for 1...100 robots
(= 6...600 degrees of freedom) on a standard notebook.

6 Relation to other Work
Multibody systems software22 is designed to simulate me-
chanical systems, often in offline simulations. A large
number of multibody codes exist such as ADAMS, Recur-
Dyn, SIMPACK and many others23. Typically, specialized
integration methods based on variable-step integrators are
used. Furthermore, it is standard to support mechanisms
with kinematic loops in a numerically sound way.

Modia3D has these features of a multibody program.
However, the architecture of a typical multibody program
is centered around rigid or flexible bodies where points
on the body are specially marked and then objects (joints,
forces, visual elements, etc.) are connected to these mark-
ers. Modia3D instead is centered around component-based
design where optional components are associated to coor-
dinate systems. The advantage is that models with many
variants can be much more flexibly configured without
code-duplication. For example, in the Modelica Multi-
Body library there are many parts, such as BodyShape,
BodyBox etc. and every part defines a fixed variant (e.g.
BodyBox defines a rigid body and a visual shape from a
geometric box). Obviously, the number of manageable vari-
ants is limited by this design and similar code fragments are
used at many places (e.g. to locate a shape object relatively
to the part reference frame). Furthermore, it is planned to
extend Modia3D also in non-mechanical domains (such as
optionally adding heat transfer to a solid) which is straight-
forward with the component-based design. On the other
hand, Modia3D is an experimental prototype and features
are missing that are available in widely used multibody
codes and are important in industrial applications.

Game engines24, such as Unity or Unreal engine, are
used to develop games. Typically, fixed-step integrators
are used in game engines, collision handling is a key ele-
ment and simulation of mechanisms with kinematic loops
is either not or only approximately supported. Modia3D
supports collision handling in a similar way as in a game
engine (currently, only elastic response calculation is sup-
ported, but it is planned to add optional impulse-based re-
sponse computations). Due to the component-based design
it is easy to configure the geometries that shall be treated
in the collision handling (= by providing a contact mate-
rial). There had been several attempts to support collision
handling in Modelica, such as (Otter et al., 2005; Hofmann

22https://en.wikipedia.org/wiki/Multibody_system
23see e.g.: https://www.iftomm-multibody.org/software
24https://en.wikipedia.org/wiki/Game_engine

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

184

et al., 2014; Elmqvist et al., 2015b; Bardaro et al., 2017).
These approaches use external C or C++ programs for the
collision handling and interface these programs to Model-
ica. The drawback is that a close integration into a model is
hard. For example, new parts are provided that support col-
lision handling (existing parts, such as BodyBox do not get
this feature), and the same geometry is present three times:
For collision handling, for animation, and for computing
the rigid body properties. In Modia3D, a geometry, such
as a box, is only present once. In the constructor call it is
defined whether mass properties are computed from the
geometry, whether the geometry is shown in the animation
or whether it is utilized in collision handling, or any variant
of these options.

7 Conclusion
In this article a new technique is proposed to improve
modeling of 3D systems for a modeling language. Ingre-
dients from different communities are used: The basic
architecture is taken from game engines, in particular to
use component-based 3D modeling to achieve a very flexi-
ble way to build-up 3D systems, to model collisions and
to use various handlers for the different computational
tasks. Kinematic and dynamic simulation is performed
with multibody algorithms, in particular to simulate sys-
tems with kinematic loops, and by utilizing variable-step
integrators with zero-crossing functions. Constructing con-
sistent initial configurations is performed by using ideas
from parameterized CAD systems. The hierarchical model-
ing and naming of sub-components follows the Modelica/-
Modia approach. The equation-based modeling language
Modia shall be used to provide dynamic models from other
domains, e.g. as actuators to drive a joint. On the other
hand, it is planned that Modia3D models can be utilized as
components in a Modia model. As a résumé it can be noted
that the proposed approach seems to considerably improve
the 3D modeling features of an equation-based language
and could therefore be used as one building block of the
next Modelica generation.

Modia3D is still an early prototype and several impor-
tant parts are under development, especially the integration
with Modia is missing. Furthermore, the code was currently
mainly developed for its functionality and not yet tuned for
efficiency. For these reasons, benchmarks about the simu-
lation efficiency have not yet been performed, especially
also not for large models (e.g. sparse matrix handling in
the simulation engine was tested, but is not yet available in
the publicly available prototype).

References
G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Using

Modelica for advanced Multi-Body modelling in 3D graphi-
cal robotic simulators. In J. Kofranek and F. Casella, editors,
Proc. of the 12th International Modelica Conference. LiU
Electronic Press, May 2017. URL http://www.ep.liu.se/
ecp/132/097/ecp17132887.pdf.

T. Bellmann. Interactive Simulations and advanced Visualiza-
tion with Modelica. In Francesco Casella, editor, Proc. of
the 7th International Modelica Conference. LiU Electronic
Press, Sept. 2009. URL http://www.ep.liu.se/ecp/043/062/
ecp09430056.pdf.

G.v.d. Bergen. Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann Publishers, 2003.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia:
A Fresh Approach to Numerical Computing. SIAM Review,
59(1):65–98, 2017.

T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, and A. Viel. The Functional
Mockup Interface 2.0: The Standard for Tool indepen-
dent Exchange of Simulation Models. In Martin Otter and
Dirk Zimmer, editors, Proc. of the 9th International Mod-
elica Conference. LiU Electronic Press, Sept. 2012. URL
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf.

H. Elmqvist, S. E. Matsson, and C. Chapuis. Redundancies in
Multibody Systems and Automatic Coupling of CATIA and
Modelica. In Proceedings of the 7th International Model-
ica Conference; Como; Italy; 20-22 September 2009, pages
551–560. Linköping University Electronic Press, 2009.
URL http://www.ep.liu.se/ecp/043/063/ecp09430113.pdf.

H. Elmqvist, A. D. Baldwin, and S. Dahlberg. 3D Schemat-
ics of Modelica Models and Gamification. In Peter
Fritzson and Hilding Elmqvist, editors, Proc. of the
11th International Modelica Conference. LiU Electronic
Press, Sept. 2015a. URL http://www.ep.liu.se/ecp/118/057/
ecp15118527.pdf.

H. Elmqvist, A. Goteman, V. Roxling, and T. Ghandriz.
Generic Modelica Framework for MultiBody Contacts and
Discrete Element Method. In Peter Fritzson and Hilding
Elmqvist, editors, Proc. of the 11th International Model-
ica Conference. LiU Electronic Press, Sept. 2015b. URL
http://www.ep.liu.se/ecp/118/046/ecp15118427.pdf.

H. Elmqvist, T. Henningsson, and M. Otter. Systems Model-
ing and Programming in a Unified Environment based on
Julia. In Proc. of ISoLA Conference. Springer, Oct. 2016.
doi:10.1007/978-3-319-47169-3_15.

H. Elmqvist, T. Henningsson, and M. Otter. Innovations for
Future Modelica. In J. Kofranek and F. Casella, editors,
Proc. of the 12th International Modelica Conference. LiU
Electronic Press, May 2017. URL http://www.ep.liu.se/
ecp/132/076/ecp17132693.pdf.

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A
Fast Procedure for Computing the Distance Between
Complex Objects in Three-Dimensional Space. IEEE
Journal of Robotics and Automation, 4(2):193–203,
1988. URL https://graphics.stanford.edu/courses/cs448b-
00-winter/papers/gilbert.pdf.

M. Hellerer, T. Bellmann, and F. Schlegel. The DLR Visual-
ization Library - Recent development and applications. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154175 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

185

of the 10th International Modelica Conference. LiU Elec-
tronic Press, March 2014. URL http://www.ep.liu.se/ecp/
096/094/ecp14096094.pdf.

M. Hiller and C. Woernle. A Systematic Approach for Solving
the Inverse Kinematic Problem of Robot Manipulators. In
Proceedings 7th World Congress Th. Mach. Mech., 1987.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban,
D.E. Shumaker, and C.S. Woodward. SUNDIALS: Suite
of Nonlinear and Differential/Algebraic Equation Solvers.
ACM Transactions on Mathematical Software, 31(3):363–
396, September 2005.

A.C. Hindmarsh, R. Serban, and A. Collier. User Documenta-
tion for IDA v2.8.2. Technical Report UCRL-SM-208112,
Lawrence Livermore National Laboratory, 2015.

A. Hofmann, L. Mikelsons, I. Gubsch, and C. Schubert. Simu-
lating Collisions within the Modelica MultiBody Library.
In Hubertus Tummescheit and Karl-Erik Arzen, editors,
Proc. of the 10th International Modelica Conference. LiU
Electronic Press, March 2014. URL http://www.ep.liu.se/
ecp/096/099/ecp14096099.pdf.

B. Kenwright. Generic Convex Collision Detection
using Support Mapping. Technical report, 2015.
URL https://www.semanticscholar.org/paper/Generic-
Convex-Collision-Detection-using-Support-Kenwright/
4f0f2d95375db7cfdbfaa345847418789d8cb970.

A. Neumayr and M. Otter. Collision Handling with Variable-
step Integrators. In Proceedings of the 8th International
Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, EOOLT’17, pages 9–18. ACM, 2017.

R. Nystrom. Game Programming Patterns. Genever Benning,
2014. URL http://gameprogrammingpatterns.com/.

M. Otter and H. Elmqvist. Transformation of Differential Al-
gebraic Array Equations to Index One Form. In J. Kofranek
and F. Casella, editors, Proc. of the 12th International Mod-
elica Conference, May 2017. URL http://www.ep.liu.se/
ecp/132/064/ecp17132565.pdf.

M. Otter, H. Elmqvist, and S. E. Mattsson. The New
Modelica MultiBody Library. In P. Fritzson, edi-
tor, Proc. of the 3rd International Modelica Confer-
ence, Nov. 2003. URL https://www.modelica.org/events/
Conference2003/papers/h37_Otter_multibody.pdf.

M. Otter, H. Elmqvist, and J. Diaz Lopez. Col-
lision Handling for the Modelica MultiBody Li-
brary. In Gerhard Schmitz, editor, Proc. of the 4th
International Modelica Conference, March 2005.
URL https://modelica.org/events/Conference2005/
online_proceedings/Session1/Session1a4.pdf.

G. Snethen. Xenocollide: Complex collision made simple. In
Scott Jacobs, editor, Game Programming Gems 7, pages
165–178. Charles River Media, 2008.

C. Woernle. Ein systematisches Verfahren zur Aufstellung
der geometrischen Schliessbedingungen in kinematischen
Schleifen mit Anwendung bei der Rückwärtstransformation

für Industrieroboter. Fortschrittsberichte VDI. Reihe 18,
ISSN 0178-9457, 1988.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154175

186

The Deployable Structures Library

Cory Rupp Laura Schweizer
ATA Engineering, Inc., USA, {cory.rupp, laura.schweizer}@ata-e.com

Abstract
Deployable structures are an enabling technology for
many space- and ground-based structures and vehicles.
Analysis of deployment mechanisms and structural
dynamic responses in early design phases is key to
ensuring deployment reliability and overall structural
integrity. In this paper, a Modelica library is presented
that provides a number of building blocks to enable and
ease the development of models of deployable
structures. Several examples using the library are
presented that would be difficult or impossible to model
using other technologies.
Keywords: Modelica, deployable structures, flexible
structures, spacecraft, solar array

1 Introduction
Accurate modeling of multibody kinematics and
dynamics is critical for design and analysis of
deployable structures and mechanisms. This is
particularly true for expensive, highly engineered space-
based structures such as solar arrays, antennas, and
booms where deployment failure results in mission
failure. Not only is deployment the number one risk to
these systems, they also must meet stringent mass and
stiffness requirements that make structural dynamics
responses an important consideration in preliminary
design phases.

Existing software tools for performing multibody
simulations are often domain-specific and limited in
extensibility. The primary tool used in the aerospace
industry is ADAMS, a proprietary software package
provided by MSC. While ADAMS is primarily geared
toward multibody analysis, it can be extended by
integration with Simulink and some other domain-
specific tools. Although possible, implementing
multiphysics effects or specialized mechanisms is far
from trivial and largely beyond the intended scope of the
ADAMS toolset. On the other hand, Modelica,
specifically the MultiBody library of the Modelica
Standard Library (MSL), has far more freedom for the
user to add new capabilities for analysis of deployable
structures. Even so, the MSL is limited in the range of
structures it can model.

This paper presents a new Modelica library, the
Deployable Structures Library (DSL), which provides
specialized structural and mechanism components that
are useful for modeling deployable structures. This
library is largely an extension of the MSL MultiBody

library to expand its applicability. In addition to new
modeling capabilities, built into the library is a modeling
workflow that more closely follows the typical
structural engineering design and analysis process. With
the library being tailored to the engineering process, it
is hoped that structural engineers will be able to more
readily adopt the library and Modelica as a modeling
tool in general.

2 The Deployable Structures Library
The Deployable Structures Library contains a mix of
new modeling capabilities and reformulations or
extensions of existing MSL blocks to provide a toolset
for structural design and analysis engineers. The library
enables the analysis of many space-based deployable
structures and other difficult-to-analyze spacecraft
components, as well as ground-based structures. Many
of these systems include complex, one-off mechanisms
to actuate their movement. As such, it is imperative to
have a modeling technology such as Modelica that is
extensible and can be used to model the mechanism’s
behavior at a fundamental level. The goal of the library
is to make building models of these mechanisms easier
through use of a set of common building blocks.

The DSL is organized into several packages,
somewhat mimicking the organization of the MSL
MultiBody library. At the top level are the Examples,
Interfaces, Math, Parts, Properties, Utilities, and
Visualization packages, as shown in Figure 1. The most
relevant of these are described in the following sections.

Figure 1. Top-level view of the Deployable Structures
Library.

2.1 DSL_Globals
At the top level of the library is the DSL_Globals block.
This block is used as a Modelica inner model, holding

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154187 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

187

global parameters that enable specialized structural
analyses, including steady-state and quasi-static
analysis, to be performed. Components in the Parts
package reference this block with Modelica’s outer
construct to change their set of equations and model
different behavior. For example, the quasiStaticFactor
parameter will scale the mass values of all DSL
components, typically using a construct such as
parameter SI.Mass mass =
 if DSglb.quasiStatic then
 DSglb.quasiStaticFactor*rho*xprop.A*L
 else
 rho*xprop.A*L "Beam mass";

What this does is reduce the inertia consistently across
the entire simulation, thereby reducing the problem to a
quasi-static problem. It is equivalent to pushing the mass
matrix toward zero (i.e., 𝑀𝑀 → 0) in the standard
dynamics equation

𝑀𝑀�̈�𝑢 + 𝐶𝐶�̇�𝑢 + 𝐾𝐾𝑢𝑢 = 𝑓𝑓 (1)
leading to (assuming also 𝐶𝐶 → 0) the static equation

𝐾𝐾𝑢𝑢 = 𝑓𝑓 (2)
With this change, time-varying static structural
responses can be evaluated using a transient solver in a
Modelica vendor-independent manner.

2.2 Properties
To help reduce the barrier to adoption and
implementation of Modelica for engineers, much of the
library has been designed with the structural engineering
workflow in mind. As an example, typical structural
engineering analysis software is organized with material
and structural properties defined separately from the
actual structure model. As such, a single property only
needs to be defined once, thereby preventing model
bloat and modeling error. This concept is implemented
in the Properties package in a natural way through
Modelica record parameters, which are used by
structural elements in the library.

Within the Properties package are subpackages of
records that can be used for material property, beam
cross section, and cloth property definitions (Figure 2).
When a model is created, these records can be
implemented at the top level as parameters that are
passed down through the model to individual
Deployable Structures Library components. This
workflow is similar to modeling procedures used by
other structural engineering tools such as finite element
software packages where elements are given a material
property identifier that corresponds to a single property
definition. With such a process, fewer mistakes are
made because there are fewer opportunities for error.
This implementation in Modelica has the added benefit
that design studies with material, beam cross section, or
cloth properties can be performed easily.

Figure 2. The Properties subpackage of the DSL.

2.3 Parts
The Parts package contains a plethora of new and
extended components and mechanisms that can be used
to model deployable structures (Figure 3). The most
relevant and broadly applicable of these are discussed in
the following sections.

Figure 3. The Parts subpackage of the DSL.

2.3.1 Beams
It is virtually impossible to model deployable structures
without some kind of beam model. While the MultiBody
package in the MSL contains rigid components that can
be used to model rigid beams (namely, the BodyBox
block), changing the beam cross section requires
explicit (and error-prone) parameterization, and there is
no means to accurately model beam flexibility. Most
deployable structures, especially space-based structures,
contain lightweight and thin beam members, making it
absolutely necessary for beam cross sections to be
designed and beam flexibility included in models, as
beam deformation dramatically affects overall dynamic
motion and response.

To make it easier to model thin structural members,
the Parts package within the DSL contains a Beam block
that acts as a wrapper for both rigid and flexible beam
models. The block requires appropriate material and
cross-sectional properties as parameter inputs, which are
defined through blocks in the DSL.Properties

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154187

188

subpackage. The material properties are provided to the
Beam block through a MaterialProperties record, which
allows the user to define independent materials and pass
them to individual beams. The beam cross-sectional
properties can be passed to the Beam block either by
setting the dimensions of the cross section in a
BeamXProperties record and passing that record to the
beam or by setting combined properties such as the
bending rigidity EI and the torsional rigidity GJ in an
EAGJ_BeamProperty block and passing these to the
beam. In the case of the BeamXProperties records,
several predefined cross-sectional shapes are provided
in which cross-sectional moments of inertia are
automatically computed when the model is built. Beam
materials are currently assumed to be isotropic, and
cross-sections are assumed to be constant along the
length.

Whether a beam is modeled as flexible or rigid is
determined by setting the value of the Boolean rigid
parameter. This parameter selects between the
FlexBeam and RigidBeam blocks described next. The
beam model itself is essentially a dummy model layer
that implements either a FlexBeam or RigidBeam
depending on the value of the rigid Boolean parameter.
The Modelica code for this implementation layer looks
like this:
parameter Boolean rigid = false;
RigidBeam beamR(L=L, xprop=xprop, …) if
 rigid;
FlexBeam beamF(L=L, xprop=xprop, …) if not
 rigid;
equation
if rigid then
 connect(beamR.frame_a, frame_a);
 connect(beamR.frame_b, frame_b);
else
 connect(beamF.frame_a, frame_a);
 connect(beamF.frame_b, frame_b);
end if;

There is no requirement that all beams in a model be
flexible or all be rigid since the flag is set at the level of
the individual beam. However, efficiencies can be
gained when creating and debugging a model by first
using rigid beams and then later switching to a flexible
model through the use of a single top-level parameter
tied to all the beam rigid parameters.

2.3.2 Flexible Beam
The FlexBeam block provides a Bernoulli-Euler model
of a beam. The formulation of this block follows that of
Schiavo et al (2006), with some modifications to fit into
the overall scheme of the DSL and without the internal
element discretization (i.e., the block consists of a single
finite element). In particular, the beam cross-sectional
and material properties are passed in as parameter
blocks from the DeployStructLib.Properties
subpackage. While not as general as the DLR
FlexibleBodies library (2006) or that described by

Ferretti et al (2014), this Modelica-based flexible beam
model is intended to provide basic functionality when
flexibility is a concern in the analysis of deployable
structures.

The key assumption of Bernoulli-Euler beams is that
plane sections that are normal to the neutral axis of the
beam remain plane and normal to the axis after bending.
This implies that transverse shear effects are neglected
in forming the stiffness matrix; thus, this block is
primarily intended for modeling slender beams.

The mass matrix in the flexible beam can be
computed either as a lumped mass matrix, where all
mass is lumped into the beam degrees of freedom, or as
a consistent mass matrix following typical finite element
procedures through the Boolean parameter
useLumpedMassMatrix. In structural dynamics
analysis, the formulation of the mass matrix is often an
important consideration for accuracy, and often the
lumped mass matrix is used. The lumped mass matrix
for the particular finite element formulation used here,
however, is singular, as the inertia of the bending
degrees of freedom lumps to zero. This leads to singular
matrix errors during solving, for which the solution is to
add an MSL Body block to the beam tip with a small
mass value, which in effect adds rotational inertia terms
to the beam bending degrees of freedom, thereby
rectifying the singular matrix issue. Because this
modeling caveat is a nonstandard, non-intuitive
procedure, the useLumpedMassMatrix parameter is
false by default so that general users can use the flexible
beam block and need not understand the nuances of
finite element mass matrices. Corresponding
clarification on the use of the useLumpedMassMatrix
parameter is provided in the Beam block documentation.

Structural damping in the beam is computed using
Rayleigh damping; i.e., the damping is a weighted linear
combination of the stiffness and mass matrices.

A second flexible beam block, FlexBeamEAGJ, is
also provided. This block uses the same formulation as
the FlexBeam, but it allows the user to specify beam
properties such as the bending rigidity EI, rather than
separately specifying the material and cross-sectional
properties. This is useful for correlating models to test
data, especially when the beam under consideration has
a complicated cross section, is a compound beam, or is
built from composite materials.

2.3.3 Rigid Beam
The RigidBeam block ignores the stiffness of the beam
and assumes complete rigidity. It is based on the
BodyBox block in the MultiBody library of the MSL but
includes inertial calculations from material and cross-
section definitions using the same DSL.Properties
blocks as used in the FlexBeam model.

2.3.4 Variable Length Beam
The VariableLengthBeam block provides a flexible
beam model that can change in length over time and

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154187 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

189

simultaneously update its stiffness and inertia
properties. At each time step, the block recalculates the
inertia tensor of the beam, correctly accommodating
large changes in beam length. The cross-section of the
beam is assumed to be constant, so only the change in
length is included when the stiffness and inertia are
recalculated. The formulation is the same as that of the
FlexBeam block but with the addition that the length of
the beam is defined by an initial length parameter and a
length rate of change input provided by a
VariableLengthSource block (located in the Utilities
subpackage of the library) or a standard MSL source
block. The Modelica implementation of the variable
length is implemented as
parameter Real L_start = 1.0 "Start value
 for L";
Real L(start=L_start, fixed=true) “Beam
 length”;
Real dL “dL/dt”;
Modelica.Blocks.Interfaces.RealInput
 dL_in;
equation
 dL = der(L);
 dL = dL_in;

from which downstream variables such as the beam
mass, mass and stiffness matrices, and rigid body inertia
matrices are no longer parameters but real variables that
vary throughout the simulation.

It is important to note that additional terms attributed
to time derivatives of inertia, mass and stiffness
matrices, and other typically constant parameters are
neglected. As such, this simple (and perhaps simplistic)
implementation is restricted to analyses where the
change in length of the beam is slow. This rate of change
restriction can be generalized by ensuring that the rate
of change of structural natural frequencies is much
smaller than the natural frequencies themselves (i.e., the
system parameters could be described as quasi-static). It
can be argued that this assumption is valid for the vast
majority of deployable structures, in particular space-
based structures, as the deployment process often occurs
over the course of several minutes to keep structural
loads low. The VariableLengthBeam model, however,
should be used with care and could potentially be
extended to more general cases through implementation
of missing terms via derivations such as those provided
in Yang et al (2017).

The VariableLengthSource block used as input to the
VariableLengthBeam block is primarily for convenience
and outputs a user-defined change in length per unit time
for a given beam deployment sequence. The rate of
change is a parameter, so it is constant throughout the
simulation. The user can also set a minimum length and
a maximum length so that the beam length stops at a set
deployed distance.

2.3.5 Weak Joints
The Joints subpackage contains two “weak” joint
models: a WeakSpherical joint and a WeakRevolute
joint. Most joints in the MSL use strong constraints, e.g.,
the positions of frame_a and frame_b must be exactly
equal. Many deployable structures have kinematically
complicated systems of joints that may ultimately
connect in a kinematic loop. Handling of kinematic
loops is a Modelica vendor-dependent operation, so use
of a weak formulation overcomes these difficulties on
the Modelica side by allowing the user to break the
kinematic loop in a specific (and perhaps more
desirable) location.

In the weak joint formulation, frame_a and frame_b
are essentially connected by springs and dampers, the
stiffness and damping of which are parameters that the
user sets. The joints use a single value of stiffness and
damping for all three translation and rotation directions.

2.3.6 Rotational
The Rotational package of the DSL contains rotational
hard stops and rotational locks, both of which are
common components in deployable systems.

There are two rotational stop models in the DSL:
RotationalStop and DampedRotationalStop. These two
blocks use linear 1D rotational springs to model the
stiffness of a hard stop. When the hard stop is not
engaged, frame_b of the block is allowed to rotate freely
with respect to frame_a, and no torque is generated.
When frame_b moves past the given stop angle in the
direction opposite free-play, the rotational spring
engages and acts to stop the motion of frame_b. The
DampedRotationalStop block includes a rotational
damper in parallel with the rotational spring. Both the
damping coefficient and the spring stiffness are set by
the user. The rotational stop models do not prevent
frame_b bouncing against the stop. That is, if frame_b
hits the stop, it can rebound, undamped and unrestricted,
in the free-play direction, whether damping is included
or not.

The Rotational package also includes two rotational
lock models: RotationalLock and
DampedRotationalLock. Both of these blocks monitor
the angle of frame_b with respect to frame_a. Once that
angle moves past the user-specified locking angle, a
linear 1D spring engages to prevent further rotation in
the free-play direction. The stiffness of the spring is a
parameter set by the user. The DampedRotationalLock
model includes damping in addition to the spring
stiffness.

2.3.7 Springs
The Springs package contains several 3D linear springs
that are useful for modeling deployable structures. We
highlight several important blocks here.

The translational complement of the RotationalStop
block is the BarrierSpring block. The BarrierSpring

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154187

190

block provides a linear spring that acts only in
compression. The length of the spring is computed as
the distance between frame_a and frame_b in a user-
specified direction that is normal to the plane of the
hard-stop. Thus, as the spring length in the direction
normal to the hard stop shrinks, the compressive force
resisting that motion increases, effectively preventing
frame_b from colliding with or passing frame_a. Since
the spring does not act in tension, however, there is no
resistance to frame_b bouncing against the hard stop in
the extensional direction. The BarrierSpring block also
includes damping; the use of damping in the model can
be turned on by setting a nonzero damping coefficient.
The spring stiffness, as with the rotational block, is also
a user-specified parameter.

Many deployable structures are also tensioned
structures, so the TensionSpring block is provided for
modeling this type of behavior. This block reformulates
the MSL MultiBody.Forces.Spring block with a
semiLinear stiffness function to provide stiffness only
when the spring is in tension. The CompressionSpring
block is the compression-only complement to this block.

Deployable structures often contain some mechanism
to release the structure from its undeployed
configuration and begin the deployment process. The
ReleaseMechanism block in the Springs package
provides a method of modeling the release of the
stiffness that holds the structure in place, and it consists
of a 3D linear tension spring. When the spring is
engaged, it acts to pull frame_a and frame_b together. A
Boolean released variable can be set to true by the
simulation at any time, at which point the mechanism
will release, disengaging the spring. To reengage the
spring, the released flag is set to false. Damping can be
optionally specified by setting the damping coefficient
to a nonzero value, which can be helpful for minimizing
chatter in complex deployment mechanisms. Like the
spring stiffness, the damping force is only active when
the mechanism is not released.

2.3.8 Other Modeling Components
Several other modeling components are provided in the
DSL that help in the modeling effort of deployable
structures but are not significant enough for detailed
description. Among these is a Spool block that enables
modeling of spooled lanyards or similar gradual release
mechanisms, a GravityRamp function for use with
MultiBody.World that aids in quasi-static analysis by
slowly ramping up the gravitational acceleration over a
period of time, and a series of predefined Orient blocks
that are simplified versions of the MSL
MultiBody.Parts.FixedRotation block with preset
angles and rotation directions.

2.4 Cloth
To achieve high specific power (the ratio of generating
power to mass), space-based solar arrays often utilize

solar blankets in which solar cells are affixed to a
lightweight flexible fabric or cloth substrate. Because of
their ability to easily fold into a small volume, the solar
blankets also provide a high ratio of power to stowed
volume, another important metric for spacecraft design.
The downside to solar blankets is that they are very
flexible and thus require complex structural
mechanisms deploy and tension them. Naturally, their
flexibility also introduces significant kinematic and
dynamic behavior during the deployment process that
can potentially damage the spacecraft, the deployment
mechanism, or the solar blanket itself. One way this
process can go wrong was illustrated when the solar
blanket on the International Space Station (ISS) tore
during deployment (Wright, 2007).

To model the behavior of solar blankets and other
clothlike structures, the DSL provides the Cloth package
and corresponding modeling block (Figure 4). The
Cloth block is a high-level building block for creating a
discretized mesh of specially formulated membrane
finite elements on a defined surface geometry. The
membrane elements have displacement degrees of
freedom only, so bending moments are ignored in the
formulation, which is a suitable assumption for most
fabrics. Each membrane element node is connected to a
new Modelica Location connector consisting of only a
3D position in space and corresponding cut forces for
flow variables. The Location connector is defined as:
connector Location "Location of the
 component with one cut-force"
 SI.Position r_0[3] "Position vector from
 world frame to the connector frame
 origin, resolved in world frame";
 flow SI.Force f[3] "Cut-force resolved
 in world frame”
end Location;

The elements in the Cloth block are connected to each
other by connecting their Location interfaces. A lumped
mass approach is taken to model the fabric mass
distribution whereby point masses with Location
interfaces are connected to the Cloth element nodes.

Figure 4. The Cloth package of the DSL.

The formulation of the cloth membrane finite element
uses the relative displacement of nodes measured along
the element edge as the primary elemental degrees of
freedom 𝒒𝒒. In the Modelica model, this is implemented
as

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154187 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

191

equation
 d12 = location[1].r_0 - location[2].r_0;
 d23 = location[2].r_0 - location[3].r_0;
 d31 = location[3].r_0 - location[1].r_0;
 q = {Vectors.length(d23)-L[1],
 Vectors.length(d31)-L[2],
 Vectors.length(d12)-L[3]};

where d12 are relative displacement vectors between
nodes 𝑖𝑖 and 𝑗𝑗 and where 𝐿𝐿𝑖𝑖 are the undeformed edge
lengths. Elemental strains along an edge, the so-called
natural strains 𝝐𝝐, can be calculated as

𝝐𝝐 = [
𝜖𝜖1
𝜖𝜖2
𝜖𝜖3
] = [

1 𝐿𝐿1⁄ 0 0
0 1 𝐿𝐿2⁄ 0
0 0 1 𝐿𝐿3⁄

] [
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3
] = 𝑩𝑩𝑞𝑞𝒒𝒒 (3)

which are merely a transformation of Cartesian strains 𝒆𝒆
onto the element edges (Fellipa, 2017) assuming a
constant strain triangle element, i.e.,

𝝐𝝐 = [
𝜖𝜖1
𝜖𝜖2
𝜖𝜖3
] = [

𝑐𝑐12 𝑠𝑠12 𝑠𝑠1𝑐𝑐1
𝑐𝑐22 𝑠𝑠22 𝑠𝑠2𝑐𝑐2
𝑐𝑐32 𝑠𝑠32 𝑠𝑠3𝑐𝑐3

] [
𝑒𝑒𝑥𝑥𝑥𝑥
𝑒𝑒𝑦𝑦𝑦𝑦
2𝑒𝑒𝑥𝑥𝑦𝑦

] = 𝑻𝑻𝑒𝑒−1𝒆𝒆 (4)

where 𝑠𝑠𝑖𝑖 and 𝑐𝑐𝑖𝑖 are direction sines and cosines of the
element edges in the undeformed state. The Cartesian
strains are then related to Cartesian stresses via the
constitutive equation:

𝜎𝜎 = 𝑪𝑪𝒆𝒆. (5)
Variational analysis with strain energy (details not
shown here for brevity) then leads to

𝛿𝛿𝛿𝛿 = 1
2 (𝛿𝛿𝒆𝒆)

𝑇𝑇𝑪𝑪𝒆𝒆 = 1
2 (𝛿𝛿𝝐𝝐)

𝑇𝑇𝑪𝑪𝑛𝑛𝝐𝝐 (6)

where
𝑪𝑪𝑛𝑛 =

1
2 𝑻𝑻𝑒𝑒

𝑇𝑇𝑪𝑪𝑻𝑻𝑒𝑒. (7)

Substitution of (3) into (6) and adding in the
contribution of work due to external forces leads to

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 − 𝛿𝛿𝛿𝛿 = 1
2 (𝛿𝛿𝒒𝒒)

𝑇𝑇𝑩𝑩𝑞𝑞
𝑇𝑇𝑪𝑪𝑛𝑛𝑩𝑩𝑞𝑞𝒒𝒒

− (𝛿𝛿𝒒𝒒)𝑇𝑇𝒇𝒇𝑞𝑞
(8)

from which, after integration over the element volume
𝑉𝑉, one eventually finds the simple matrix relationship

𝑲𝑲𝑞𝑞𝒒𝒒 = 𝒇𝒇𝑞𝑞 (9)
where

𝑲𝑲𝑞𝑞 = 𝑉𝑉𝑩𝑩𝑞𝑞
𝑇𝑇𝑪𝑪𝑛𝑛𝑩𝑩𝑞𝑞 (10)

is the element stiffness matrix and 𝒇𝒇𝑞𝑞 are covariant
nodal forces along the element edges that are summed
at each node. In Modelica, these equations are written as
equation
 Kq * q = fq;
 -location[1].f =
 fq[2]*Vectors.normalize(d31) –
 fq[3]*Vectors.normalize(d12);
 -location[2].f =
 fq[3]*Vectors.normalize(d12) –
 fq[1]*Vectors.normalize(d23);
 -location[3].f =
 fq[1]*Vectors.normalize(d23) –
 fq[2]*Vectors.normalize(d31);

The primary advantage of this element formulation is

that because the primary variables 𝒒𝒒 are formed as
relative displacements, the stiffness matrix 𝑲𝑲𝑞𝑞 is
constant under any translation or rotation (i.e., during
the entire simulation). This makes the Modelica
implementation particularly simple and efficient
because the stiffness matrix is computed as a parameter
while relative displacements 𝒒𝒒 are readily calculated
from the Location connectors of the element. The
simplicity of the approach is particularly apparent in
light of the complexity that would be necessary for
implementing a total Lagrangian, corotational, or other
geometrically nonlinear finite element formulation in
Modelica.

Quadrilateral elements are formulated by overlaying
two pairs of triangle elements such that the common
edge of a pair crosses that of the other pair. In this case,
each element has half the prescribed thickness. This is a
not uncommon technique for creating quadrilateral
membrane elements. Further details about the
methodology used to develop the finite elements used in
the Cloth block are discussed in a forthcoming paper
(Rupp, 2018).

Discretization of the Cloth block is performed in
Modelica by defining the locations of points on a
quadrilateral patch and the number of divisions along
two adjacent edges of the patch. A Coons patch (a
simple bilinear interpolation approach) is then used to
define the individual elements. Stiffness matrices of
each element are then computed for the undeformed
(stress-free) state of each element in the patch as part of
the Modelica parameter evaluation procedure. A similar
procedure is used to set the mass value of each lumped
mass attached to the nodes, which replaces the
traditional mass matrix for the element. The conversion
of the mass matrix into discrete lumped masses is
performed so that inertial calculations can be easily
performed in the inertial (i.e., world) frame as opposed
to the local frame used to perform elemental stiffness
calculations. Initialization of the Cloth block is
performed by defining parameterized initial locations of
the four corners of the quadrilateral patch. In this way,
the cloth can be pre-tensioned during model
initialization. This mechanism also allows a folded
initial blanket state to be defined, which is a common
situation for many space-based solar array blankets.

The Cloth block is highly parameterized to allow for
changes in material properties (defined via the
Properties.ClothProperty record), thickness,
undeformed shape, and folding configuration. Allowing
for this design flexibility and setting up the
corresponding initialization of the problem is the most
complicated aspect of the Cloth block, as changing any
one of them will affect the entire cloth formulation. To
facilitate this process, several initializer functions have
been created that set the cloth stiffness and mass

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154187

192

matrices as well as interface positions in space based on
various input configuration parameters. The initializer
functions can handle several different cloth
configurations such as z-folds, no folds, triangle and
quadrilateral discretizations, and different boundary
conditions.

To improve the performance and relieve a bit of
processing effort from the Modelica compiler, the
element mass and stiffness matrix generation, as well as
the initial placement of nodes for the Cloth block, is
performed via a library of external “C” functions.
Modelica interfaces to these functions are found in the
Initializers subpackage.

The Cloth package provides a powerful modeling
capability for many structures that would otherwise be
difficult to model. The block has been validated through
comparison to test data gathered during deployment
testing of a state-of-the-art solar array (Rupp et al, 2016)
as well as via several numerical and analytical studies.

3 Examples
We now present three examples of deployable structures
that make use of the Deployable Structures Library.
Each example uses the Cloth modeling block—meaning
that they cannot be modeled using multibody dynamics
simulation codes (non-finite-element-analysis based)
other than Modelica or using only the MSL. Further
examples can be found in Rupp et al (2016).

3.1 Linear Deployment Solar Array
Space-based solar arrays are ubiquitous deployable
structures used in the aerospace industry as the primary
source of power for satellites, space stations, space-
based telescopes, etc. A common style of solar array
design is the linear deployment array in which a central
boom or mast is used to tension a solar blanket between
two cross-bars. An example is the solar array design
used onboard the ISS. These arrays are known for their
compact stowage volume and high specific power.

The central mast used in linear solar arrays is the
primary deployment mechanism for the array and can
take many forms. The ISS arrays use a foldable truss
design (Knight et al, 2012), the compact telescoping
array concept uses a telescoping boom consisting of
concentric tubes that are simultaneously moved relative
to each other via a motorized mechanism (Mikulas et al,
2015), and the recently developed MegaROSA design
uses roll-out booms (Hoang et al, 2016). To characterize
these different types of arrays without the need to
consider specific deployment mechanisms, NASA
developed the Government Reference Array (GRA) as a
reference design for studying the scalability of these and
other high-specific-power solar array designs (Pappa et
al, 2013).

To study this type of design, a Modelica model of the
GRA was created in which the central mast was
modeled using the DSL VariableLengthBeam block.

The cross-bars at the base and tip to which the solar
blanket attaches were modeled with FlexBeam blocks.
Each solar blanket was modeled with a Cloth block. The
Cloth blocks were connected to the array structure at the
trunk and tip beams only; there is no connection to the
mast beam. Deployment was simulated by changing the
length of the mast at a rate of 0.04 m/s. A visualization
of the simulated deployment process is shown in Figure
5, and the in-plane cut force at the mast base is shown in
Figure 6, where the sudden tensioning of the blanket
introduces high-frequency loading. Due to the changing
length of the central mast, it is not possible to perform
this simulation in any other available software tool.

Figure 5. Deployment sequence of GRA linear solar
array example.

Figure 6. Transverse force at base of GRA mast during
blanket tensioning event.

3.2 Origami Solar Array
One concept for large, deployable solar arrays that
NASA has investigated is based on origami—the
Japanese art of paper folding (Zirbel et al, 2013). The
shape and folding patterns of these origami solar arrays
are defined through three origami parameters, M, H, and
R, which control the number and position of the folds as
well as overall dimensions. Changing one parameter
changes the design of the array, which may in turn affect
stowed compactness, load distribution, and overall
deployability. Thus, utilizing a model that considers
these variables as design parameters is key for finding
an optimal origami solar array design.

To enable rapid iteration through various design
options, an origami solar array model was created using

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154187 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

193

Modelica and the Cloth block in the DSL. The model
was parameterized based on the three origami
parameters. The Cloth block is written such that creating
and parameterizing various configurations such as this,
and even completely different topologies, is simple to
accomplish.

The origami array model contains only the Cloth
block; there are no structural members, so all stiffness is
provided by the cloth itself. In this case, we are
exploiting the formulation of the Cloth in a way that
each segment of the origami array consists of a single
membrane element. As such, each segment acts as a
semi-rigid panel without bending degrees of freedom
and hinged at each edge. The model is constrained at the
center of the array and is deployed by forces pulling
radially outward on the tips of the array. Two
configurations were studied by varying the origami
parameter M, which controls the number of sides the
array has when stowed. Nothing else in the model was
changed. The deployment sequence for M = 6 is shown
in Figure 7, and the deployment sequence for M = 3 is
shown in Figure 8. Incidentally, the M = 3 design suffers
from binding due to the geometric layout of the origami
faces, which is readily apparent during the dynamic
simulation.

Figure 7. Origami solar array deployment sequence with
origami parameters M = 6, H = 2, R = 2.

Figure 8. Origami solar array deployment sequence with
origami parameters M = 3, H = 2, R = 2.

3.3 Solar Sail
Solar sails have long been proposed as a space
propulsion technology, but only recently with the
availability of inexpensive cubesat platforms have they
been demonstrated in actual spaceflight. As such, solar
sail design has yet to gain much flight heritage, and the
means by which a sail is deployed can vary widely
between design concepts. Solar sails are large,
gossamer-thin reflective blankets that harness solar
radiation pressure to exert small amounts of thrust on the
spacecraft. Integrated over time, the thrust can translate
into significant accelerations, possibly enabling
interstellar travel (Landis, 1999).

One particular concern of solar sails is the blanket
tensioning process. Because the sails are thin (on the
order of tenths of millimeters), they are prone to tearing
if excessive force is applied. However, if the sails are
not taut, wrinkles in the reflective fabric will diffusely
reflect solar radiation, resulting in a loss of momentum
imparted by the radiation pressure.

A Modelica model using the Cloth block and the
VariableLengthBeam block was created to examine
forces exerted on the blanket during the tensioning
process. The sail was modeled as a single, square Cloth
block. The four deploying booms were modeled with
VariableLengthBeam blocks fixed to each other at the
center of the structure where the spacecraft bus would
be located, and the sail was connected to the booms
through extensional springs at each corner of the sail.
This simulation started at the instant when the sail is
fully deployed but not yet tensioned and ended when the
booms reach their final predetermined length. The start
and end states of the sail are depicted in Figure 9. The
sail, which is initially square in its undeformed state,
stretches at the corners and exhibits a catenary shape
along its edges. This is the expected behavior for such a
system and demonstrates how the DSL Cloth model can

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154187

194

be used to perform structural analysis of solar sail
structures.

Figure 9. The solar sail model in its untensioned (left)
and tensioned states (right).

4 Conclusions
This paper presents a Modelica library for the analysis
of deployable structures. The library provides modeling
blocks useful for creating models of deployment
mechanisms and structures unique to deployable
systems, particularly those used on spacecraft. In
particular, a modeling capability for structural cloths or
fabrics is presented that is not available in any other
multibody dynamics software package.

The Deployable Structures Library is open-source
and available via the github page
https://github.com/ATAEngineering/DeployStructLib,
which will likely be linked to via the Modelica
Association website at https://modelica.org/libraries.
While the library should work for any Modelica
implementation per the Modelica standard, it was
developed using OpenModelica and has not been tested
using other software. External contributions and bug
fixes or reports are encouraged.

Acknowledgements
This work was funded under Phase I and Phase II Small
Business Innovation Research (SBIR) contracts
sponsored by the National Aeronautics and Space
Administration (NASA). The authors would like to
thank technical monitors Geoffrey Rose and Richard
Pappa at NASA Langley Research Center.

References
C. Fellipa. 2017. Introduction to Finite Element Methods

course material, Chapter 15: Three-Node Plane Stress
Triangles. https://www.colorado.edu/engineering/CAS/
courses.d/IFEM.d/IFEM.Ch15.d/IFEM.Ch15.pdf

G. Ferretti, A. Leva, and B. Scaglioni. Object-oriented
modelling of general flexible multibody systems.
Mathematical and Computer Modeling of Dynamical
Systems, 20(1): 1-22, 2014. doi:
10.1080/13873954.2013.807433.

A. Heckmann, M. Otter, S. Dietz, and J.D. López. The DLR
FlexibleBodies library to model large motions of beams and
of flexible bodies exported from finite element programs. In

Proceedings of 5th Modelica Conference. Vienna, Austria,
September 2006.

B. Hoang, W. White, B. Spence, S. Kiefer. Commercialization
of Deployable Space Systems' roll-out solar array (ROSA)
technology for Space Systems Loral (SSL) solar arrays. In
Proceedings of 2016 IEEE Aerospace Conference. Big Sky,
MT, 2016. doi: 10.1109/AERO.2016.7500723.

N. F. Knight Jr., K. B. Elliott, J. D. Templeton, K. Song, J. T.
Rayburn. FAST Mast Structural Response to Axial
Loading: Modeling and Verification. In Proceedings of
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. Honolulu, HI, April
2012. doi: 10.2514/6.2012-1952.

G.A. Landis. 1999. Advanced Solar- and Laser-pushed
Lightsail Concepts. Final Report, NASA Institute for
Advanced Concepts. http://www.niac.usra.edu/files/
studies/final_report/4Landis.pdf

M. Mikulas, R. Pappa, J. Warren, and G. Rose. Telescoping
Solar Array Concept for Achieving High Packaging. In
Proceedings of the 2nd AIAA Spacecraft Structures
Conference. Kissimmee, FL, January 2015.

R. Pappa, G. Rose, T. Mann, J. Warren, M. Mikulas, T.
Kerslake, T. Kraft, J. Banik. Solar Array Structures for 300
kW-Class Spacecraft. Space Power Workshop, 2013.
(https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2014
0000360.pdf)

C. J. Rupp. 2018. The Relative Finite Element Method. In
Prep.

C. J. Rupp, L. Schweizer, and D. Murphy. Rapid Parametric
Analysis and Design of Space-Based Solar Arrays. In
Proceedings of the 3rd AIAA Spacecraft Structures
Conference. San Diego, CA, January 2016.

F. Schiavo, L. Viganò, and G. Ferretti. Object-oriented
modelling of flexible beams. Multibody System Dynamics,
15(3): 263–286, 2006. doi: 10.1007/s11044-006-9012-8.

J. Wright. 2007. https://www.nasa.gov/content/astronaut-
scott-parazynski-works-near-solar-array

S. Yang, Z. Deng, J. Sun, Y. Zhao, and S. Jiang. 2017. A
Variable-Length Beam Element Incorporating the Effect of
Spinning. Latin American Journal of Solids and Structures,
14(8): 1506-1528. doi:10.1590/1679-78253894

S. A. Zirbel, R. J. Lang, R. W. Thomson, D. A. Sigel, P. E.
Walkemeyer, B. P. Trease, S. P. Magleby, L. L. Howell.
Accomodating Thickness in Origami-Based Deployable
Arrays. Journal of Mechanical Design, 135, 2013. doi:
10.1115/1.4025372.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154187 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

195

Modelica language – a promising tool for publishing and sharing
biomedical models

Jiří Kofránek1, Filip Ježek1, Marek Mateják1,
1Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Czechia

{kofranek, matejak.marek, jezekf}@gmail.com

Abstract
Current biomedical models are so extensive that their
description (and reproducibility) requires more than a
set of equations. Journal papers are thus frequently ac-
companied by electronic enclosures with detailed model
descriptions, or even better, with a complete model source
code. Specific electronic archives associated with specific
languages and publicly accessible simulation platforms
for the creation and archiving of biomedical models have
been set up, however each of them has some disadvan-
tage and an agreement on a common language for model
sharing is missing. This paper reviews the usage of the
languages for physiological modeling and discusses the
advantages of the Modelica language in the area of physi-
ological simulations.

Keywords: Physiology, Integrative models, Physiome
project, Biomedical models archiving, Biomedical models
publishing

1 The origin - a web of physiological
regulations
In 1972 the medical journal Annual Review of Physiology
published a paper (A. C. Guyton, Coleman, & Granger,
1972) which, at first glance, was absolutely different from
typical physiological papers published at those times. A
substantial part of the paper consisted of an extensive lay-
out in a pasted-in enclosure. The layout, full of lines and
interconnected elements, reminded slightly of the layouts
of electric systems (Fig. 1). However, instead of electrical
components, the layout displayed interconnected comput-
er blocks (multipliers, dividers, adders, integrators, func-
tional blocks) representing mathematical operations on
physiological quantities (Fig. 2).

Bundles of connecting conductors between the blocks
expressed, at first glance, complex feedback connection
of physiological quantities. The blocks were grouped into
18 units representing interconnected physiological sub-
systems (Fig. 3). This was an entirely novel approach to
the description of physiological regulations of the circu-
latory system and its broader physiological context and
links to the other body subsystems – kidneys, regulation
of volume and electrolyte equilibrium, etc., by means of
graphical mathematical symbols. The complex systems
of mathematical equations were replaced by a graphi-
cal representation of the mathematical relations. This

syntax allowed connections between the various physi-
ological quantities to be represented by interconnected
blocks standing for mathematical operations. Thus the
entire layout was a formalized description of physi-
ological interrelations in the circulatory system using a
graphically represented mathematical model. The model
description itself consisted mainly of a basic (still fully
illustrative) picture. Any comments and justifications of
the mathematical relation formulations were brief only.
This required the reader (having a solid physiological and
mathematical background) to fully concentrate in order to
gain an understanding of the meaning of the formalized
relations between/among the physiological quantities.

Multiplier
Divider

Summator Integrator

Guyton

Simulink

Functional block



s
1



Guyton

Simulink


Guyton

Simulink






GuytonSimulink

-4
0

20

50-4
0

20

50

Simulink

+
+
-

+
+
-

Guyton

Figure 2. Individual elements in the scheme of the Guyton’s
model represent mathematical operations whose connections
represent graphically expressed mathematical equations.
Blocks in the original Guyton notation (1972), and the same
blocks in Simulink (1990).

Figure 1. Diagram of Guyton’s model (Guyton et al., 1972).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154196

196

A monography (Arthur C. Guyton, Jones, & Coleman,
1973) in which many of the approaches were explained
in more detail was published a year later and a further
monograph, by Guyton et al. (Arthur C. Guyton, Taylor,
& Granger, 1975), presenting a reasonably detailed expla-
nation of the mathematical formalization of the body fluid
dynamics description, appeared in 1975.

2. Formalization of physiological
relations – the PHYSIOME Project
Guyton’s model was a milestone of sorts, applying a sys-
tem approach to physiological regulations and describing
the dynamics of interrelations between/among physi-
ological subsystems by means of a system of graphically
represented mathematical equations. Guyton’s graphical
diagram marked the emergence of an area of physiologi-
cal research into the interconnected physiological systems
in the living body, now referred to as “integrative physiol-
ogy” (Coleman & Summers, 1997; Mangourova, Ring-
wood, & Van Vliet, 2011; Reinhardt & Seeliger, 2000).

Much as how theoretical physics strives to describe
physical reality and explain the results of experimental
research, “integrative physiology” tries, based on experi-
mental results, to set up a formalized description of the
interconnections of physiological regulations and explain
their function both in the healthy body and during the de-
velopment of various diseases.

Formalization, i.e. replacement of a verbal descrip-
tion of physiological systems with the precise language
of mathematics, is closely linked to the issue of computer
modeling. It is an asset of the formal description that de-
ductions regarding the behavior of a system described by
formalized tools are made based on the rules of a formal-
ized language, i.e. by solving the equations of a mathe-
matical model. This is a task that can be left to a computer
– the computer solves equations describing the biological
reality – and so it is computer simulation that is involved.

The concept of formalization started later and progress
is somewhat slower in biological and medical sciences
than in physics, chemistry and technology, because bio-
logical systems are much more complex. While the for-
malization process in physics started as early as the 17th
century, formalization in medical and biological sciences
came only together with cybernetics and computer sci-
ence. This field of science uses computer models set up
based on a mathematical description of the biological re-
ality.

Formalized description of physiological systems is cur-
rently the subject of the international PHYSIOME Project
(http://www.physiome.org), successor to the GENOME
Project whose outcome consisted in a detailed description
of the human genome. The aim of the PHYSIOME Proj-
ect is to provide a formalized description of physiologi-
cal functions (Bassingthwaighte, 2000; P. Hunter, 2016;
Peter J. Hunter, Crampin, & Nielsen, 2008; P. J. Hunter,
Li, McCulloch, & Noble, 2006; P. Hunter, Robbins, &
Noble, 2002; Omholt & Hunter, 2016). Physiome makes
efforts to apply the formalized approach in order to inte-
grate our knowledge, from the cell level to the organ level
to the whole-body level, with a view to gaining insight
into how all that works as a whole. The European initia-
tive in this area is represented by the The International
Union of Physiological Sciences (IUPS) http://www.iups.
org/physiome-project/. The work of the IUPS Physiome
Project has been boosted by the European Commission-
funded VIRTUAL PHYSIOLOGICAL HUMAN INI-
TIATIVE project (under the virtual physiological human
institute http://www.vph-institute.org/), aiming, among
other things, to apply the formalized approach to human
physiology in clinical medicine and to use computer mod-
els in pre-clinical trials.

Integrative models of laboratory animals have been de-
veloping lately in addition to the integrative models of
human physiology. For example, the aim of the VIRTU-
AL RAT project (http://www.virtualrat.org/) is to set up a
complex model of the laboratory rat, which can readily be
validated against experimental data on laboratory animals
(Beard et al., 2012).

3. New modeling environments
In the meantime, general software simulation environ-
ments emerged, enabling models to be developed in a
graphical format and allowing them to be debugged and
ultimately verified. Among them is the widely used Mat-
lab/Simulink tool from Mathworks, enabling a simulation
model to be composed from various pre-defined compo-
nents visually by drag-and-drop into the simulation net-
works. The Simulink blocks are very similar to the ele-
ments used by Guyton for a formalized representation of
physiological relations. They actually differ in the graphi-
cal format only.

Figure 3. Interconnected physiological subsystems in the
Guyton’s model (Guyton et al., 1972).

Circulatory dynamics

Delivery of oxygen
to the tissues non-

muscle tissues

Blood flow to non-
muscle tissues

Autonomic
nervous control

Systolic volume
and heart rate

Exchange in
lungs

Erythrocytes
and blood
viscosity

Hypertrophy
and heart
damage

Tissue fluid
pressure and

tissue gel

Transcapillary
exchange

Intracellular
fluid and

electrolytes

Aldosterone

Angiotensin

Antidiuretic
hormone

Thirst and drinkingKidneys

Bl
oo

d
ve

ss
el

s
re

la
xa

tio
nBlood flow and PO2

in muscles
O2

O2

O2
O2

O2

O2

H2O

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154196 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

197

abled the behavior of the model to be tested.

This however introduces additional problem in ver-
sioning - the published version may produce different re-
sults than the later, usually further updated, provided on
request.

It is a generally adopted principle that if a result is
described in a scientific journal, then the experimental
design must be reproducible at another workplace. The
reproducibility principle plays a key role in scientists’ ef-
forts to disclose the secrets of Nature.

Actually, however, it is often violated in scientific pub-
lications dealing with biomedical models. This is not al-
ways a mistake of the authors – frequently just some letter
or index is omitted, and it is then very difficult for the
reader to understand the model or even to implement it.

The reviewers do not reimplement the models from the
description (as they usually have the underlying code ac-
cessible on request) and thus the equations could easily
contain a mistake.

Also, biomedical models are often so complex that the
limited space allocated for the paper allows the authors
just to present the basic model equations (and sometimes
not all of them) and no space remains for additional infor-
mation (starting values of variables of state, all parameter
values, solver settings etc.) that is needed to set up the
model at another workplace. Also, a number of articles do
synthese multiple models together, be it an extension of
their previous research or adopted from literature. The de-
tails of combining the old (and referenced) with the newly
presented do often raise a number of issues.

From our teaching experience, around 80 % of models
implemented based solely on a description in a published
article were incomplete or contained some error, which
makes the model unusable.Nielsen et al. also support our
observation of difficult reproducibility (Nielsen, Nilsson,
& Matheson, 2012). A scientific paper describing a model
should thus be accompanied by a digital enclosure (acces-
sible on the Internet) containing a detailed description of
the model structure, including the values of all parameters
and most of all containing a complete source code in a
common, formal programming language, adequate for the
reader to be able to run the model, reproduce the model
results and to potentially use the model as a basis for their
own work where appropriate. The sharing of the complete
source code is becoming common practice and even a re-
quirement in a number of journals publishing scientific
papers on computer models, especially the open-access
ones.

5. Repositories of biomedical system
models
A serious obstacle arises if a model is published in a

This similarity of Guyton’s approach and philosophy of
Simulink software inspired us to revive the old traditional
Guyton’s diagram by means of Simulink and transform it
into a functional simulation model (Jiří Kofranek & Rusz,
2010). The appearance of the Simulink model could be
nearly identical with that of the initial layout (Fig. 4).

Simulation visualization contained a number of errors
(or rather “graphical typos”) in the initial layout. This
poses no problem in a drawn picture, but the moment you
try to revive it in Simulink, the model collapses as a whole
immediately.

4. Model presentation in scientific
publications
Guyton’s diagram is just an illustrative picture condens-
ing a system of equations describing a complex model
into a graphic form. Since the description contained er-
rors, it was difficult to reproduce the model based on the
graphical diagram only. However, the authors made the
model program in Fortran available on request, which en-

8

Obr. 6 – Detailnější zobrazení centrální struktury Guytonova modelu v původní grafické notaci (horní část obráz-
ku) a v simulinkové implementaci (dolní část obrázku) vyjadřující průtoky agregovanými částmi krevního řečiště

a činnost srdce jako pumpy.

NON-MUSCLE OXYGEN DELIVERY

269

268

261

260

270

262

263

264

271

272

265

266

267

259

258

257

256

255

POV

OSV

POT

RDO

MO2

DOB

QO2POTP1O

P4O

02M

AOM

271

NON-MUSCLE LOCAL BLOOD FLOW CONTROL

if (POD<0) {POJ=PODx3.3}

278 277 276 275 274 273

285 282 281 280 279

290

284

283
284b286287

288

289

AR1

AK1

POB

POK

POD
POV

ARM

AR1
AR3

PON

POA

A2K

AR2

POJ

POZ

POC

A3K

AR3

POR

VASCULAR
STRESS

RELAXATION

65

64

63

62
61

VV7

VV7

VV1

VV2

VVE

SRK

VV6

195

196

197

198

199

200

201

202

203

205
206

207

208

209

210

211

212

213 214

215

216

217

218

219

220

221

222

KIDNEY DYNAMICS AND EXCRETION
THIRST AND DRINKING

192 193 194

190 191

Z10 Z11

STH

TVD

POT

ANTIDIURECTIC HORMONE CONTROL

181

180179
178177

175 176 182
183

184

185

158A

186

187

188
189

AHM AH4

AH2 AH1

AHC

AH

CNZ

CN8

CNR

CNA

PRA
AHZ

AH7

AHY

AH8AU

CIRCULATORY DYNAMICS

VIM

AUM

AUM

VIM

AUM

BFN1
2

3

4

36

35

31

32
33

PGS

RSM

38

34

37

RVS
43

42 41A

41

40

39

VBD

VVE

5 6

7 8 9

DAS

QAO30

QLO

LVM

HPL
HMD

QLN

29
59

58

28

50

16

PA2

60

PLA

24

25

26

27

VVS

QLO

AUH

HMD

QRO

QRO

AUH

VPE
PPA

PL1

PPA

RPV

RPT

RPT

PP1

54
53

55
56

57

52

51

23
22 21

20
19 18

48
49

46
45

47

44

10

11

12

13

14
15

LVM

CAPILLARY MEMBRANE DYNAMICS
66

67

68

69

70 71

74
73

62
61

80

79

7877

75

74

72

RVS

BFN
PVG

PVS

VB

VP

VRC

PTC

PPC
PIF

CFC

VPDVUD

DFP

TVD

VP

CPK
CPI

CP1

CPP

CPP PRP

VP

CPR
LPK

DLP

PPD
DP0

DPL

DPP

DPC

ANGIOTENSIN CONTROL

154 155 156 157 158

159

160161

162163

153b
153a

CNA CNE
ANM

AN1

ANT

ANC

AN2
AN3

AN5
ANM

REK

RFN

TISSUE FLUIDS, PRESSURES AND GEL

105 PTC

108

107

106

109

104

110

103102

112

113

98

97

96

99

929190
89

93
94 95

100

101

86

85

84

83
87

88

111

DPL

VTL

CPI

PIF

PLD

PTT

GP1

GPD

GPR

VG

VIF PTS

PIF

GPD

DPL

VTC

VTL

VID

VTS

VTD

PTT

DPI
VIF

IFP

GP2

VGD

VG

V2D

PG2
PGC

PTC

PIF

PIFPTS

PRM
CHY

HYL

VG

PGR

PGP

PGH

ALDOSTERONE CONTROL

165 166

167

164

168

169

170

171

172173174
AM AM5

AM3
AM2

AMC

AMT

AM1AMP

KN1CKE

CNA

ANM

AMR

ELECTROLYTES AND CELL WATER

114 115

116

117 118
119

120

121

126
125

122
123 124

127

128129130

131

135134133
132

CKI CCD

CNA
VIC

VID
VIC

KI

KCD KIE KIR

KE1

AM

CKEKE
KED

KCD

KID

KOD

REK

NED
NAE

CNA

VTW

VIC

VEC

STH
NID

VP

VPF

VTS

HEART HYPERTROPHY OR DETERIORATION

340

341

342

343

344 349

348

347

346

345

350

351

352

PA

PPA4

HPL
HPR

PP3

PPA
HSL HSR

POT

DHM

HMD

RED CELLS AND VISCOSITY

329

330

331

332

333
334

335

336

337

338

339
POT

PO1

POY

PO2

RC1

RCD

VRC

RKC

RC2
VRC

VB

HM

HM2

VIE

VIM

336c

336b

PULMONARY DYNAMICS AND FLUIDS

PLA

136

137

138

139

140

141

142

143

144

145
152

146

147

148

149

150

151

PPA

PCP

PPC

POS

PPI

CPF

PFI

PLF

DFP VPF

PPI

PLF

PLF

PPO

POS

CPN

VPF
PPR

PPD

PPN

PPC

CPP

AUTONOMIC CONTROL

292
291

294
293

296
297298

295

307
303302

301

305

304
308

309

310
311

312
313

315

314

316317

318
319

320

POQ
POT

PA

EXE

POQ
P2O

Z12
EXC

AUCPA1

A1B

AUB

AUN

AU8

AUK AU2

AU6

DAU

Z8

AUJ

AUL
VV9

VVR

AUH

AUM

AVE

AUY

AUD

AUV
AU9

AU

HEART RATE AND STROKE VOLUME

328
327 323

322

321324
325326

SVO

QLO

HR

PRA

AU
HMD

MUSCLE BLOOD FLOW CONTROL AND PO2

227

226

225

224

223

228

229

230

231

232

233

234

235

238
236

237239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

OSA

OVA

BFM

RMO

BFM

PK1

PK2

DVS

PVO

PMO

PM5

RMO

QOM

PMO

PM3

PK3

PM4

P2O

P3O

EXC

AOM

02A

AU
AMM

POE

POM

PDO

PVO

POV

POT

ARM

OVA

P2O

AOM

AMM

AMM

VVE

VV7

VUD

RBF

RFN

NOD

AU

VVR

AUH

AUM

AVE

SVO

HM

BFN

VPF
HM

OVA

PPC
REK

CNEAUM AHM

AM

AHM

PA

NOD

DPC

AUZ

ARM

VIM

AUM

ANM
AVE

RBF

PC

VVR

VV7

AUH

HMD

HSR

HPR

STH

TVD

VTL

AHM

ANM

CNE

AM

VID

CKE

CNA

VTW

PC
VB

VP

DPC

CPP

VTC

VTL

DPL

PTC

CPI

VTS

PIF

HPR

HPL

HMD

VIM

HM

VRC

DFP

VPF

PPD

BFN

BFM

RVS

PVS

PRA

QLO
PLA

PPA

PA

HSL

PPC
VTC

PC

GP3
APD

algebraic
loop

breaking

algebraic
loop

breaking

AAR-afferent arteriolar resistance [torr/l/min]
AHM-antidiuretic hormone multiplier, ratio of normal effect
AM-aldosterone multiplier, ratio of normal effect
AMC-aldosterone concentration
AMM-muscle vascular constriction caused by local tissue control, ratio to resting state
AMP-effect of arterial pressure on rate of aldosterone secretion
AMR-effect of sodium to potassium ratio on aldosterone secretion rate
AMT-time constant of aldosterone accumulation and destruction
ANC-angiotensin concentration
ANM-angiotensin multiplier effect on vascular resistance, ratio to normal
ANN-effect of sodium concentration on rate of angiotensin formation
ANP-effect of renal blood flow on angiotensin formation
ANT-time constant of angiotensin accumulation and destruction
ANU-nonrenal effect of angiotensin
AOM-autonomic effect on tissue oxygen utilization
APD-afferent arteriolar pressure drop [torr]
ARF-intensity of sympathetic effects on renal function
ARM-vasoconstrictor effect of all types of autoregulation
AR1-vasoconstrictor effect of rapid autoregulation
AR2-vasoconstrictor effects of intermediate autoregulation
AR3-vasoconstrictor effect of long-term autoregulation
AU-overall activity of autonomic system, ratio to normal
AUB-effect of baroreceptors on autoregulation
AUC-effect of chemoreceptors on autonomic stimulation
AUH-autonomic stimulation of heart, ratio to normal

DLP-rate of formation of plasma protein by liver [g/min]
DOB-rate of oxygen delivery to non-muscle cells [ml O2/min]
DPA-rate of increase in pulmonary volume [l/min]
DPC-rate of loss of plasma proteins through systemic capillaries [g/min]
DPI-rate of change of protein in free interstitial fluid [g/min]
DPL-rate of systemic lymphatic return of protein [g/min]
DPO -rate of loss of plasma protein [g/min]
DRA-rate of increase in right atrial volume [l/min]
DVS-rate of increase in venous vascular volume [l/min]
EVR-postglomerular resistance [torr/l]
EXC-exercise activity, ratio to activity at rest
EXE-exercise effect on autonomic stimulation
GFN-glomerular filtration rate of undamaged kidney [l/min]
GFR-glomerular filtration rate [l/min]
GLP-glomerular pressure [torr]
GPD-rate of increase of protein in gel [l/min]
GPR-total protein in gel [g]
HM-hematocrit [%]
HMD-cardiac depressant effect of hypoxia
HPL-hypertrophy effect on left ventricle
HPR-hypertrophy effect on heart, ratio to normal
HR-heart rate [beats/min]
HSL-basic left ventricular strength
HSR-basic strength of right ventricle
HYL-quantity of hyaluronic acid in tissues [g]
IFP-interstitial fluid protein [g]
KCD-rate of change of potassium concentration [mmol/min]
KE-total extracellular fluid potassium [mmol]
KED-rate of change of extracellular fluid potassium concentration [mmol/min]
KI-total intracellular potassium concentration [mmol/l]

KID-rate of potassium intake [mmol/min]
KOD-rate of renal loss of potassium [mmol/min]
LVM-effect of aortic pressure on left ventricular output
MMO-rate of oxygen utilization by muscle cells [ml/min]
M02--rate of oxygen utilization by non-muscle cells [ml/min]
NAE-total extracellular sodium [mmol]
NED-rate of change of sodium in intracellular fluids [mmol/min]
NID-rate of sodium intake [mmol/min]
NOD-rate of renal excretion of sodium [mmol/min]
OMM-muscle oxygen utilization at rest [ml/min]
OSA-aortic oxygen saturation
OSV-non-muscle venous oxygen saturation
OVA-oxygen volume in aortic blood [ml O2/l blood]
OVS-muscle venous oxygen saturation
O2M-basic oxygen utilization in non-muscle body tissues [ml/min]
PA-aortic pressure [torr]
PAM-effect of arterial pressure in distending arteries, ratio to normal
PC-capillary pressure [torr]
PCD-net pressure gradient across capillary membrane [torr]
POP-pulmonary capillary pressure [torr]
PDO-difference between muscle venous oxygen PO2 and normal venous oxygen PO2 [torr]
PFI-rate of transfer of fluid across pulmonary capillaries [l/min]
PFL-renal filtration pressure [torr]
PGC-colloid osmotic pressure of tissue gel [torr]
PGH-absorbency effect of gel caused by recoil of gel reticulum [torr]
PGL-pressure gradient in lungs [torr]
PGP-colloid osmotic pressure of tissue gel caused by entrapped protein [torr]
PGR-colloid osmotic pressure of interstitial gel caused by Donnan equilibrium [torr]
PIF-interstitial fluid pressure [torr]
PLA-left atrial pressure [torr]

PLD-pressure gradient to cause lymphatic flow [torr]
PLF-pulmonary lymphatic flow [torr]
PMO-muscle cell PO2 [torr]
POD-non-muscle venous PO2 minus normal value [torr]
POK-sensitivity of rapid system of autoregulation
PON-sensitivity of intermediate autoregulation
POS-pulmonary interstitial fluid colloid osmotic pressure [torr]
POT-non-muscle cell PO2 [torr]
POV-non-muscle venous PO2 [torr]
POY-sensitivity of red cell production
POZ-sensitivity of long-term autoregulation
PO2-oxygen deficit factor causing red cell production
PPA-pulmonary arterial pressure [torr]
PPC-plasma colloid osmotic pressure [torr]
PPD-rate of change of protein in pulmonary fluids
PPI-pulmonary interstitial fluid pressure [torr]
PPN-rate of pulmonary capillary protein loss [g/min]
PPO-pulmonary lymph protein flow [g/min]
PPR-total protein in pulmonary fluids [g]
PRA-right atrial pressure [torr]
PRM-pressure caused by compression of interstitial fluid gel reticulum [torr]
PRP-total plasma protein [g]
PTC-interstitial fluid colloid osmotic pressure [torr]
PTS-solid tissue pressure [torr]
PTT-total tissue pressure [torr]
PGV-pressure from veins to right atrium [torr]
PVG-venous pressure gradient [torr]
PVO-muscle venous PO2 [torr]
PVS-average venous pressure [torr]
QAO-blood flow in the systemic arterial system [l/min]

QLN-basic left ventricular output [l/min]
QLO-output of left ventricle [l/min]
QOM-total volume of oxygen in muscle cells [ml]
QO2-non-muscle total cellular oxygen [ml]
QPO-rate of blood flow into pulmonary veins and left atrium [l/min]
QRF-feedback effect of left ventricular function on right ventricular function
QRN-basic right ventricular output [l/min]
QRO-actual right ventricular output [l/min]
QVO-rate of blood flow from veins into right atrium [l/min]
RAM-basic vascular resistance of muscles [torr/l/min]
RAR-basic resistance of non-muscular and non-renal arteries [torr/l/min]
RBF-renal blood flow [l/min]
RC1-red cell production rate [l/min]
RC2-red cell destruction rate [l/min]
RCD-rate of change of red cell mass [l/min]
REK-percent of normal renal function
RFN-renal blood flow if kidney is not damaged [l/min]
RKC-rate factor for red cell destruction
RM0-rate of oxygen transport to muscle cells [ml/min]
RPA-pulmonary arterial resistance [torr/l/min]
RPT-pulmonary vascular resistance [torr/l/min]
RPV-pulmonary venous resistance [torr/l/min]
RR-renal resistance [torr/l/min]
RSM-vascular resistance in muscles [torr/l]
RSN-vascular resistance in non-muscle, n/minon-renal tissues [torr/l/min]
RVG-resistance from veins to right atrium [torr/l/min]
RVM-depressing effect on right ventricle of pulmonary arterial pressure
RVS-venous resistance [torr/l/min]
SR-intensity factor for stress relaxation
SRK-time constant for stress relaxation

STH-effect of tissue hypoxia on salt and water intake
SVO-stroke volume output [l]
TRR-tubular reabsorption rate [l/min]
TVD-rate of drinking [l/min]
VAS-volume in systemic arteries [l]
VB-blood volume [l]
VEC-extracellular fluid volume [l]
VG-volume of interstitial fluid gel [l]
VGD-rate of change of tissue gel volumes [l/min]
VIB-blood viscosity, ratio to that of water
VIC-cell volume [l]
VID-rate of fluid transfer between interstitial fluid and cells [l/min]
VIE-portion of blood viscosity caused by red blood cells
VIF-volume of free interstitial fluid [l]
VIM-blood viscosity (ratio to normal blood)
VLA-volume in left atrium [l]
VP-plasma volume [l]
VPA-volume in pulmonary arteries [l]
VPD-rate of change of plasma volume [l]
VPF-pulmonary free fluid volume [l]
VRA-right atrial volume [l]
VTC-rate of fluid transfer across systemic capillary membranes [l/min]
VTD-rate of volume change in total interstitial fluid [l/min]
VTL-rate of systemic lymph flow [l/min]
VTW-total body water [l]
VUD-rate of urinary output [l/min]
VV7-increased vascular volume caused by stress relaxation [l]
VVR-diminished vascular volume caused by sympathetic stimulation [l]
VVS-venous vascular volume [l]
Z8-time constant of autonomic response

AUK-time constant of baroreceptor adaptation
AUL-sensitivity of sympathetic control of vascular capacitance
AUM-sympathetic vasoconstrictor effect on arteries
AUN-effect of CNS ischemic reflex on auto-regulation
AUV-sensitivity control of autonomies on heart function
AUY-sensitivity of sympathetic control of veins
AUZ-overall sensitivity of autonomic control
AVE-sympathetic vasoconstrictor effect on veins
AlK-time constant of rapid autoregulation
A2K-time constant of intermediate autoregulation
A3K-time constant of long-term autoregulation
A4K-time constant for muscle local vascular response to metabolic activity
BFM-muscle blood flow [l/min]
BFN-blood flow in non-muscle, non-renal tissues [l/min]
CA-capacitance of systemic arteries [l/torr]
CCD-concentration gradient across cell membrane [mmol/l]
CHY-concentration of hyaluronic acid in tissue fluids [g/l]
CKE-extracellular potassium concentration [mmol/l]
CKI-intracellular potassium concentration [mmol/l]
CNA-extracellular sodium concentration [mmol/l]
CNE-sodium concentration abnormality causing third factor effect [mmo/l]
CPG-concentration of protein in tissue gel [g/l]
CPI-concentration of protein in free interstitial fluid [g/l]
CPN-concentration of protein in pulmonary fluids [g/l]
CPP-plasma protein concentration [g/l]
CV-venous capacitance [l/torr]
DAS-rate of volume increase of systemic arteries [l/min]
DFP-rate of increase in pulmonary free fluid [l/min]
DHM-rate of cardiac deterioration caused by hypoxia
DLA-rate of volume increase in pulmonary veins and left atrium [l/min]

LIST OF VARIABLES

upper limit 8

upper limit 8
lower limit 4

upper limit 8

upper limit 15.0
lower limit 0.4

upper limit 1

lower_limit_0

lower limit 6

lower limit 50

lower limit 5

lower limit 4

lower limit 3

lower limit 0.95

lower limit 0.7
lower limit 0.5

lower limit 0.3

lower limit 0.2375

lower limit 0.2

lower limit 0.0003

lower limit 0.0001

lower limit 0

lower limit 0

lower limit .005

lower limit .001

12

12

171

3

210

1

0

2

2400

1600

1

1

1

75

25

2130

3550

1

11.4

0.7

0

1

0.7

1

1

Xo
2400

RVM = f(PP2)

0
0

1.4

50

RAR
30.5

RAM
96.3

QRN = f(PRA)

0
-4

15

20

QRF
0.6

QLN = f(PLA)

0
-4

15

20

PTT = (VTS/12)^2 (u/12)^2

PTS = f(VIF)

0
0

20

10

PPI = 2 - (0.15/VPF)2-(0.15/u)

PP3^0.1u^0.625

POT^3u^3

0.33

PM1^2 u^2

PC^3

u^3

PA4^0.625u^0.625

P40^3u^3

P3O^3 u^3

10
u

10
u

sqrt

10
u

LVM = f(PA2)

0
0

1.4

260

1
sxo

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s

xo

1
sxo

1
s

xo

1
s xo

1
s

xo

1
s

xo

1
s

xo
1
s

xo

1
s xo

1
sxo

1
s xo

1
s xo

1
s xo

1
s xo

1
s

xo

1
s xo

1
s

1
s

1
sxo

1
sxo

1
s

xo

1
s

xo

1
s xo

1
s

GF4
5

0.01095

0.3229

0.9899

2.86

99.96

1

15.22

0.02244
5.085

0.09925

3.781

2.782

1.014

2.86

7.866e-008

0.01252

40

-4.842e-010

2

40

0.9897

1

1

1

-6.328

11.99

20.15

7.987

5.038

0.03826
0.001899

0.001902

16.81
69.77

0.0384

3.004

5.004
16.81

198.7

39.99

142.1

5

3.454e-006

1.002

10

1.004

1

0.001003

1.002

0.9457

0.07039

1

1.001

1

2.949

1.001

0.1005

1.211

1.211

0.001008

7.999

0.0005

4.0

3.3

0.042

150.1152

1.6379

0.00047

85

512

0.007

1.6283e-007

0.007 0.4

0.1

1.79

0.4

0.4

0.003550.495

5

2.738

1

0.026

1

0.035720

0.85

0.0048
0.30625

3.25

5

1717

1

0.38

0.005
0.1

0.1

100

1

0.0007

0.00333

2

1

139

0.3333

0.0785

6

0.14

6

8.25 4

57.14

0.009

0.01

1

1

1

0.125

0.00781

18
51.66

31.67

8.0001

0.0250.001

1000

0.8

1

33

0.5

11

15

0

5

100

1

2.8

0

0.301

0.3

2.9

3.7

28

5
17

0.002

0.04

70

3

0.3

1

1

2.95

1

1

1

0

0

0.0125

40

0.1

2688

1

2

1 1

1

20

-6.3

0.04

0.002

5

1

12

142

5

0

1

10

1

1

0

1

20

1.2

1.2

0.1

0.001

0

1

0.04

20

0

0.002

1

0.001

0

5

-6.3

2

3.72.8

2.9

0.001

1

0.06

1

51

1

1

1

0

2.95

17

1.2

40

1

1

1

1

1

1.6

40

1

1

8

1

8

100

5

0

1

1

70

28

0

15

1

5

8

8

8

200

15100

0.04

0

0.002

1

12

3

0.0125

1

0.1

8

1

142

5

100

11520

1

1.2

142

40
1

8

142

0

1

1

1

168

1

1

10

1

1
28

100

0.3

1

1

1

1

40
0.0125

200

2.8

40

1

800

2500

122

1

57.14

5

0.5

1

8
40

0.08

5
1

0.25

0.15

1

32

0.5 1

40

2

0.21

6

0.0005

1

1

1.24

1

8

3

1

0.5
1

0.85

0.15

0.7

60

0.3

3.159

8

0.4

0.375

0.000225

0.0003

11
0.0003

0.4667

1

0.0125

0.55

40

0.333
1.5

0.00092

8.25

100

0.0000058

464e-7

512

0.0025

6

57600

15

57600

100

2850

0.01

140

0.013

8.0001

0.0028

0.00014

0.00042

0.1

0.00352

20.039

19.8

-0.017

60

9

-1

0.25

24.2

-5.9

57

0.4

0.1

0.004
7.8

0.25

0.013332

51

CV
0.0825

CNY
6

CNX
2.5

CN7
0.2

CN2
0.0212

CHY^2u^2

AUN calculation

PA1 AUN

AUN CALCULATION

 when PA1<50: AUN=6
 when 20>PA1<50: AUN=0.2*(50-PA1)

 when PA1>=50: AUC=0

AUJ^AUZ

uv

AUC calculation

PA1 AUC

AUC CALCULATION

 when PA1<40: AUC=1.2
 when 40>PA1<80: AUC=0.03*(80-PA1)

 when PA1>=80: AUC=0

AUB^3u^3

AUB calculation

PA1 AUB

AUB CALCULATION

 when PA1<40: AUB=1.85718
 when 40>PA1<170: AUB=0.014286*(170-PA1)

 when PA1>=170: AUB=0

ARF
1.5

AMP = f(PA)
00

4

200

1

(1.2/RFN)^3

(1.2/u)^3

 VVS

1
s

xo

 VRA 1
s

xo

 VPA

1
s

xo

 VLA 1
s

xo

1
sxo

1
s

xo

 VAS3

1
s

xo

1
sxo

1
s xo

1
s xo

lower limit 0.35

lower limit 0

VIM

VIM

AAR

AAR

AAR

RR

RFN

GLP

PPC

PFL

GFN

GFR

TRR

VUD

AHM

AM

AM

NOD

EVR

RBF

ANU

ANU

RAR

VAS

VAS VAE

PA

PA

PAMPAM

RAM

PGS
RSN

BFM

QAO

RV1

RV1

VVS VV8

PVS

PVS

PVS

PVS

QVO
QVO

QVO

DVS

QLO

QLN

QLN

DLA

VLA

VLA

VLE

PLA

PLA

PLA

VB

RVM

RVM

QRN

RVG

DRA

VRA

VRA

PRA

PRA

PR1

PR1

PP2

VPA

VPA
PGL

QPO

QPO

RPA

CPA

RFN

GF3
GF3

Figure 4. Circulatory dynamics - detailed representation
of the central structure of the Guyton model in the original
graphical notation (upper part of the figure) and in our Simu-
link implementation (bottom of the figure), which shows
blood flows through aggregated parts of the circulatory sys-
tem, and action of the heart as a pump (Jiří Kofranek & Rusz,
2010).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154196

198

modeling language requiring a commercial license (such
as Matlab/Simulink by MathWorks), because the reader
must be a licensee of the particular system to be able to
just reproduce the model results.

This is why considerable efforts have been made within
the international PHYSIOME Project to create simulation
languages appropriate for describing biomedical models
and saving them in specific databases – model reposito-
ries. Publicly available tools for creating and launching
models programmed in such languages were also created
in this context.

So, for instance, the Virtual Cell project (http://vcell.
org) has been set up for visualization and simulation of
the cell metabolism and cell signal paths. That project was
developed by the Center for Cell Analysis & Modeling, at
UConn Health, University of Connecticut (USA). Quite a
large group of users exists now around that project. The
Virtual Cell developmental environment is interlinked
with a number of databases and with the list of diverse
models. This environment works on the client-server
principle .

The “Bio Tapestry” project of Caltech (California
Institute of Technology), Eric Davidson’s laboratory, is
designed for modeling regulatory gene networks (where
expression of the various genes is blocked/activated by
transcription factors which, in turn, result from the ex-
pression of other genes) (http://www.biotapestry.org).
Regulatory gene networks look sort of like status au-
tomata (gene expression depending on the presence of the
relevant transcription factors) – the gene expression may
result in the formation of a protein, which can also be a
transcription factor. A gene network editor and simulator
can visualize the stepwise changes in the expression of
the various genes and, based on a comparison with the
experimental data, help explain the complex processes
taking place particularly during embryonic development.
Once again, this tool is interlinked with electronic model
archives and has its own user community.

Two large global centers maintaining extensive physi-
ological model databases are currently involved in the
PHYSIOME Project.

The first center (founded by Jim Bassingthwaighte)
is administered by Washington University in Seattle
and uses the specifically created JSim language for the
model database(Butterworth, Jardine, Raymond, Neal, &
Bassingthwaighte, 2013). A description of the language,
installation sources and tutorials are available at: http://
www.physiome.org/jsim.

The environment for the creation and launching of
models written in JSim is based on Java, owing to which
it can be easily installed on different platforms. This en-
vironment can be used to modify and launch models from
an extensive model database: http://www.physiome.org/

jsim/models.

The other large physiological system model database is
maintained by the University of Auckland, New Zealand
(https://unidirectory.auckland.ac.nz/profile/phun025).
Petr Hunter, founder of the database, has built a top-rank-
ing workplace in New Zealand – halfway between Amer-
ica and Europe (http://www.abi.auckland.ac.nz/en.html).

This institution uses the CellML language (Cooling
& Hunter, 2015; Cuellar et al., 2003; Garny et al., 2008;
Lloyd, Lawson, Hunter, & Nielsen, 2008) to describe the
models: http://www.cellml.org. The tools for browsing,
creating and launching models in CellML are available at
https://www.cellml.org/tools. A tool for converting from
CellML to JSim also exists. OpenCell is a tool for CellML
simulation: https://www.cellml.org/tools/opencell.A large
database of models has been created in CellML and is
available at: https://models.physiomeproject.org. The
models were taken from the literature and reprogrammed
into CellML (or JSim). Each model is accompanied by
reasonably detailed documentation. A model download-
ed from the database in CellML can be simulated in the
OpenCell environment.

However, the development of specialized simulation
tools is limited by the funding allocated for the physi-
ological research.

6. Equation-based languages
Both JSim and CellMl are causal, block-oriented lan-
guages. The same characteristics also applies to Simulink
(from Mathworks), frequently used to model biomedical
systems.

The main problem with block-oriented languages lies
in the fact that a simulation network consisting of hierar-
chically connected blocks is a graphical representation of
a chain of input value transformations to output values.
This means that an exact algorithm for the calculation
chain from the input values to the output values must be
defined when creating a model.

As a consequence of the requirement of a fixed con-
nection direction from the inputs to the outputs, the con-
nection of the blocks reflects the calculation procedure
rather than the structure of the modeled reality itself.

Where complex models are involved, deriving the cau-
sality of the calculation (i.e. deriving the algorithm for
calculation of the output variables from the input vari-
ables) is by no means a straightforward task.

This problem is addressed by modern equation-based,
or acausal, modeling languages. Unlike block-oriented
languages, where the structure of the hierarchic block
connections represents more the calculation method than
the reality being modeled. the structure of the models in
Modelica reflects the very structure of the reality mod-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154196 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

199

eled (compare Fig. 4 in block-oriented language and Fig.
5 in Modelica). Owing to this, even complex models are
adequately transparent and understandable in Modelica
(Ježek, Kulhánek, Kalecký, & Kofránek, 2017).

A model should be understandable not only to the de-
velopment team members but also to others. If only the
authors understand their model, they will hardly obtain
the necessary feedback or new impulses for their work
from the scientific community.

This is of great importance with respect to the creation
of complex integrative physiology models. When using
block-oriented languages (be it Simulink or specifically
created open-source languages for the documentation
of biomedical models – JSim or CellML), the resulting
complex program is not very comprehensible. It is largely
only the authors who are able to understand their complex
models. Modelica solves this problem efficiently, and in-
tegrative models of human physiology in Modelica have
the potential for wider use within the scientific commu-
nity.

Nowadays, the principles of equation-based approach
are further implemented also in other products. E.g. Sim-
Scape (Mathworks, MA, USA) software package extends
the commonly used Matlab/Simulink environment with
the multidomain physical system modeling capabilities,
useful also for biomedical engineering (de Canete, Saz-

Orozco, Moreno-Boza, & Duran-Venegas, 2013; Ngo,
Dahlmanns, Vollmer, Misgeld, & Leonhardt, 2018)

7. Modelica – a language suitable for
publishing and sharing biomedical
models
Modelica, initially developed as an academic project in
collaboration with small developmental companies at the
universities in Lund and in Linköping, soon emerged as a
highly effective and efficient tool for modeling complex
models with potential application in mechanical engineer-
ing and in the automotive and aircraft industries.

Owing to this, the development of Modelica eventu-
ally gained support from the commercial sector, but the
language itself is developed by an independent nonprofit
association (see www.modelica.org). The Modelica As-
sociation gathers a number of key commercial as well as
academic players, which ensures the stability of the plat-
form and its relative independence on business decision
of individual companies.

The speed at which this new simulation language
spread to the various industries and was adopted by di-
verse commercial developmental environments is strik-
ing. Thanks to adoption by commercial sector, the lan-
guage and both proprietary and open-source tools are
already mature enough to guarantee reliable modeling
platform. Several commercial as well as noncommercial
developmental tools using this language currently exist
(see www.modelica.org/tools).

Modelica users are therefore not confined to licensed
commercial developmental tools: in fact, mature open-
source developmental tools for this language exist now
(e.g. OpenModelica, available at openmodelica.org, and
JModelica, available at jmodelica.org/).

Thus, the effort spent on developing and maintaining
own simulation platform is now unnecesary. Develop-
ment driven by a number of high-tech industry (automo-
tive, energy and aerospace) also guarantees small risk of
stale development or platform discontinuation.

Modelica therefore appears to be a highly promising
tool for publishing and sharing models. Some researchers
have already adopted Modelica as their prefered model-
ing tool, e. g.(Heinke, Pereira, Leonhardt, & Walter, 2015;
Maksuti, Bjällmark, & Broomé, 2015), even switched
from the SimScape (de Canete, 2015), or use the general
model exchange functional mockup interface, based on
Modelica initiative (Gesenhues et al., 2017). The devel-
opers of the most complete physiological model Hum-
mod are also considering using Modelica implementation
to make the model easier to maintain (R. Hester, personal
communication, August 2018). However, the penetration
of Modelica in physiological research is still not massive.

Figure 5. The same part of the model as in Figure 4, but
implemented in Modelica. The model contains connected in-
stances of two pumps (of the right and left heart ventricle),
elastic vascular compartments, and resistances. Upon its
comparison with Fig. 3, it can be seen that the model struc-
ture in Simulink corresponds rather to a computational algo-
rithm, while the model structure in Modelica shows more of
the structure itself of the modelled reality. Figure was adapt-
ed from (Kofránek, Mateják, & Privitzer, 2011).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154196

200

8. Application libraries for biomedical
simulations in Modelica
The proliferation of Modelica was facilitated by the exis-
tence of libraries for the most diverse areas, which appre-
ciably simplify model formation for the given application
domain. A model is set up by interconnecting instances of
library components, like – figuratively speaking – build-
ings made of Lego bricks.

The majority of current libraries serve physical and
technological applications. New libraries had to be cre-
ated for models in the biomedical domain.

This is why we have created Physiolibrary (Marek
Mateják et al., 2014), intended for model creation in phys-
iology (see http://physiolibrary.org).

Physiology is a very progressive discipline, that exam-
ines how the living body works. And there is no surprise,
that all processes in the human body are driven by physi-
cal laws of nature in several physical domain (see Tab 1
and Tab 2). And it is a great challenge to join many old
empirical experiments with the ‘new’ physical principles.
We hope, that this library helps the unflagging effort of
Physiologists to exactly describe the processes and in-
clude their hypothesis.

The Physiolibrary contain basic physical laws in Hu-
man Physiology usable for cardiovascular circulation,
metabolic processes, nutrients distributions, thermoregu-
lation, gases transport, electrolytes and acid-base regula-
tions, water distributions, hormonal or pharmacological
regulations.

Chemical processes also have to be modeled in the bio- medical area, and so we created the Chemical library as
well (Matejak, Tribula, Ježek, & Kofranek, 2015).

Table 2. Analogies of selected Physiolibrary components
based on connectors from Table 1 compared with electrical
components in the Modelica Standard Library. To define the
mathematical analogies in Table 2 we use the symbols e for
effort (for connector nonflow variables) and f for flow (for
connector flow variables). If there are more connectors in a
component, they are differentiated by index. Unfortunately
many elementary components in Physiolibrary do not have
analogies through these domains. The special definitions
in Physiolibrary include, for example, the components for
chemical reaction, for hydrostatic pressure, for Henry’s solu-
bility of gas in liquid, for Donnan’s equilibrium of electro-
lytes on membrane etc. Table 1 and 2 were presented in (M.
Mateják & Kofránek, 2015).

 find incompatible physical quantities in connections
or equations

 recalculate the physical units in dialogs or in outputs

 increase the precision of results and speed up the
calculations

Using physical quantities the compiler generates a warning

or even an error every time a user tries to, for example, use

pressure in a place where the model expects volume.

Setting parameters using dialogs during the

implementation of model can be greatly simplified by

specifying the physical units. Some Modelica environments

can recalculate many non-SI units into expected SI unit

inside models. So, if the user uses any Physiolibrary type for

his parameter or his variable then these automatic unit

recalculations are available.

To ensure the compatibility of all Modelica libraries and
models all values must be calculated in SI units during the
simulation. This rule can generate strange dimensions for
some values. For example, the SI unit for volume is cubic
meter, but body compartments are typically measured in
milliliters. So the numbers used for calculation will be a
million times smaller than the physiologist normally uses.
However, this does not matter, because for these types
Physiolibrary defines a ‘nominal’ attribute, which translates
the tolerance level from SI units back to the typical nominal
values used in physiology.

B. Connectors and Components

Each connector in Physiolibrary defines one physical
domain (see Table 1). As seen in Table 2, most of th
components have analogies throughout the domains. For
example, the resistor in electrical circuits has an analogy in the
chemical domain as diffusion, because the molar flow of a
substance is driven by the concentration gradient in the same
way an electric current is driven by the voltage gradient. To
define the mathematical analogies in Table 2 we use the
symbols e for effort (for connector nonflow variables) and f for
flow (for connector flow variables). If there are mo
connectors in a component, they are differentiated by index.

Table 1, Physical connectors in my Physiolibrary compared with

electrical connector in the Modelica Standard Library

connectors from Table 1 compared with electrical components in

the Modelica Standard Library

Unfortunately many elementary components in
Physiolibrary do not have analogies through these domains.
The special definitions in Physiolibrary include, for example,
the components for chemical reaction, for hydrostatic
pressure, for Henry’s solubility of gas in liquid, for Donnan’s
equilibrium of electrolytes on membrane etc.

For each connection of n connectors the Modelica
compiler will automatically generate one equation as an

Connector: flow variable nonflow variable

Chemical
molar flow

[mol.s-1]

concentration

[mol.m-3]

Hydraulic
volumetric flow

[m3.s-1]

pressure

[Pa]

Thermal
heat flow

[W]

temperature

[K]

Osmotic
volumetric flow

[m3.s-1]

osmolarity

[mol.m-3]

Population
change

[s-1]

size

[1]

Electrical
electric current

[A]

electric potential

[V]

Resistance Accumulation Stream

f1=G*(e1 - e2)

f1+f2=0

�� 𝒇𝒇 �
a=C*e

�� 𝒇𝒇 {�𝑭𝑭��, 𝑭𝑭� � �
�𝑭𝑭��, 𝑭𝑭� � �

f1+f2=0

G..conductance C..capacitance F..stream flow

Chemical

diffusion

Substance
Solution flow

Hydraulic

resistance

Elastic vessel

not applicable

Heat convection Heat

Heated mass flow

Semipermeable

membrane
Osmotic cell

not applicable

not applicable

Population

Growth,

Differentiation

Electrical

resistor

Electrical

capacitor

not applicable

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. Received March 30, 2015.

Table 1. Physical connectors in Physiolibrary compared with
electrical connector in the Modelica Standard Library. Each
connector in Physiolibrary defines one physical domain.
As seen in Table 2, most of the components have analogies
throughout the domains. For example, the resistor in electri-
cal circuits has an analogy in the chemical domain as diffu-
sion, because the molar flow of a substance is driven by the
concentration gradient in the same way an electric current is
driven by the voltage gradient.

Connector: flow variable nonflow variable

Chemical molar flow
[mol.s-1]

concentration
[mol.m-3]

Hydraulic volumetric flow
[m3.s-1]

pressure
[Pa]

Thermal heat flow
[W]

temperature
[K]

Osmotic volumetric flow
[m3.s-1]

osmolarity
[mol.m-3]

Population change
[s-1]

size
[1]

Electrical electric current
[A]

 electric potential
[V]

 find incompatible physical quantities in connections
or equations

 recalculate the physical units in dialogs or in outputs

 increase the precision of results and speed up the
calculations

Using physical quantities the compiler generates a warning

or even an error every time a user tries to, for example, use

pressure in a place where the model expects volume.

Setting parameters using dialogs during the

implementation of model can be greatly simplified by

specifying the physical units. Some Modelica environments

can recalculate many non-SI units into expected SI unit

inside models. So, if the user uses any Physiolibrary type for

his parameter or his variable then these automatic unit

recalculations are available.

To ensure the compatibility of all Modelica libraries and
models all values must be calculated in SI units during the
simulation. This rule can generate strange dimensions for
some values. For example, the SI unit for volume is cubic
meter, but body compartments are typically measured in
milliliters. So the numbers used for calculation will be a
million times smaller than the physiologist normally uses.
However, this does not matter, because for these types
Physiolibrary defines a ‘nominal’ attribute, which translates
the tolerance level from SI units back to the typical nominal
values used in physiology.

B. Connectors and Components

Each connector in Physiolibrary defines one physical
domain (see Table 1). As seen in Table 2, most of th
components have analogies throughout the domains. For
example, the resistor in electrical circuits has an analogy in the
chemical domain as diffusion, because the molar flow of a
substance is driven by the concentration gradient in the same
way an electric current is driven by the voltage gradient. To
define the mathematical analogies in Table 2 we use the
symbols e for effort (for connector nonflow variables) and f for
flow (for connector flow variables). If there are mo
connectors in a component, they are differentiated by index.

Table 1, Physical connectors in my Physiolibrary compared with

electrical connector in the Modelica Standard Library

connectors from Table 1 compared with electrical components in

the Modelica Standard Library

Unfortunately many elementary components in
Physiolibrary do not have analogies through these domains.
The special definitions in Physiolibrary include, for example,
the components for chemical reaction, for hydrostatic
pressure, for Henry’s solubility of gas in liquid, for Donnan’s
equilibrium of electrolytes on membrane etc.

For each connection of n connectors the Modelica
compiler will automatically generate one equation as an

Connector: flow variable nonflow variable

Chemical
molar flow

[mol.s-1]

concentration

[mol.m-3]

Hydraulic
volumetric flow

[m3.s-1]

pressure

[Pa]

Thermal
heat flow

[W]

temperature

[K]

Osmotic
volumetric flow

[m3.s-1]

osmolarity

[mol.m-3]

Population
change

[s-1]

size

[1]

Electrical
electric current

[A]

electric potential

[V]

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. Received March 30, 2015.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154196 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

201

Those libraries are a result of our many years’ experi-
ence in the implementation of extensive hierarchical mod-
els of human physiology in Modelica (Ježek et al., 2017;
Jiri Kofranek, Matejak, & Privitzer, 2011), the HumMod
model in particular.

The HumMod model, set up in international collabora-
tion by a group of collaborators and disciples of A. Guy-
ton at the Mississippi University Medical Center, USA,
(R. Hester, Brown, Husband, & Iliescu, 2011; R. L. Hes-
ter, Coleman, & Summers, 2008) is probably the most
extensive existing model of integrated physiological sys-
tems of human physiology. The authors do not keep the
structure secret: the model source text (containing over
5,000 variables) can be downloaded from the project web
pages: http://hummod.org. The source text is written in a
specific XML markup language. The whole mathematical
model is offered as an open-source tool. The user is free to
download both the source text and the translator into their
computer from the web page and to launch the model on
their own computer (Fig. 6 and 7). The user is in a posi-
tion to modify the model to suit their purpose. A problem
is in the fact that the XML source texts of the entire model
are written in thousands of files located in hundreds of
folders, and gaining insight into the mathematical relation
by browsing through thousands of interlinked XML files
is very difficult.

It appears that the comprehensibility of the descrip-
tions of complex integrative models is one of the factors
limiting their adoption by the scientific community. If the
creators are the only ones to understand their model, any
possibility of technical communication with other scien-
tists is considerably limited. And so is the potential for
a wider use within the broad scientific community. So,
the development of methodologies that will make the de-
scription of the structure of complex hierarchical models
so clear that a wide group of users can understand it is
gaining in importance.

Specific browsers allowing the relations in the model
to be browsed have been created in order to facilitate un-
derstanding of the HumMod model (Wu, Chen, Pruett, &
Hester, 2013). Even so, the equations in the model and
their interrelations are rather difficult for the user to un-
derstand. One of the ways to make understanding com-
plex hierarchic models easier is to use the Modelica lan-
guage. This is why we decided to re-implement the entire
complex model of the US authors in Modelica.

Model re-implementation in Modelica makes the mod-
el structure much clearer (see Fig. 8), the source code re-
sembling hierarchic physiological schemes. Making the
model clearer also helped detect some errors in the initial
US implementation of the HumMod model. We modified
HumMod and extended it mainly in the area of model-
ing blood gas transfer and homeostasis of the inner en-
vironment, the acid-base equilibrium in particular (Jiri
Kofranek et al., 2011).

Our version of the HumMod model, called Physi-
omodel, is being developed as an open-source tool. The
model source texts (i.e. equations, values of all constants,
etc.), which constitute a formalized representation of the

Figure 7. The user can compile and run the HumMod model.
Using a widely branched menu, hundreds of variables can be
monitored during simulation experiments.

Figure 6. HumMod simulator has been distributed with a
compiler, loader and the source code written in thousands of
XML files.

Compiler and loader
for HumMod model

Source code of
HumMod

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154196

202

Cardiovascular System

Systemic CirculationPeripheral Circulation

HumMod Main

Kidney Circulation Splanchnic Circulation

Figure 8. Illustration of a part of the source text of our HumMod implementation in Modelica. The source text resembles
hierarchical physiological schemes. Image adapted from http://www.physiomodel.org/

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154196 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

203

8 Conclusions
Let us sum up the factors owing to which Modelica is a
language suitable for publishing and sharing biomedical
models:

1. Modelica is a modeling language, not a proprietary
product owned by a commercial company (such as,
e.g. Mathworks’ Matlab and Simulink).

2. Publicly accessible noncommercial developmental
tools (such as OpenModelica and JModelica) exist
for Modelica and are mature and reliable enough,
the development is driven by well funded indus-
tries.

3. Modelica includes application libraries facilitating
biomedical system modeling.

4. The model structure in the acausal Modelica lan-
guage is clear, reflecting more the structure of the
original modeled than that of the calculation and
enabling extensive hierarchic models to be set up.

5. Modelica may be broadly used in a number of ap-
plication domains. Further Modelica developments
are aimed at satisfying the requirements of the in-
dustries and are not dependent on grant funds from
the PHYSIOME Project.

Acknowledgements
The authors appreciate the partial funding of this work

by PRVOUK P/24/LF1 and MPO FV20628

References
Bassingthwaighte, J. B. (2000). Strategies for the physiome

project. Annals of Biomedical Engineering, 28(8), 1043–
1058.

Beard, D. A., Neal, M. L., Tabesh-Saleki, N., Thompson, C.
T., Bassingthwaighte, J. B., Shimoyama, M., & Carlson,
B. E. (2012). Multiscale modeling and data integration in
the virtual physiological rat project. Annals of Biomedical
Engineering, 40(11), 2365–2378.

Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L.,
& Bassingthwaighte, J. B. (2013). JSim, an open-source
modeling system for data analysis. F1000Research, 2, 288.

Coleman, T. G., & Summers, R. L. (1997). Using mathematical
models to better understand integrative physiology. Journal
of Physiology and Biochemistry, 53, 45–46.

Cooling, M. T., & Hunter, P. (2015). The CellML Metadata
Framework 2.0 Specification. Journal of Integrative
Bioinformatics, 12(2), 260.

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P.,
Nickerson, D. P., & Hunter, P. J. (2003). An Overview of
CellML 1.1, a Biological Model Description Language.
Simulation, 79(12), 740–747.

de Canete, J. F. (2015). Object-Oriented Programming for
Modeling and Simulation of Systems in Physiology.
International Journal of Medical, Health, Biomedical,
Bioengineering and Pharmaceutical Engineering, 9(4),

physiological relations, are publicly available at http://
www.physiomodel.org.

9. Community for biomedical model
evolution in Modelica
International cooperation in combination with the open-
ness of result sharing is a driving force of scientific de-
velopment in today’s globalized world. As experience
shows, the development of complex software systems is
conditional on the existence of the widest possible user/
developer community to provide feedback and ensure fur-
ther innovation of the complex products through coopera-
tive efforts, with the ultimate use in commercial applica-
tions. This is why the development of projects with open
source codes has become so popular lately.

The creation of extensive models of physiological sys-
tems is not just a purely scientific issue: they also poten-
tially can be used in commercial applications. Medical
simulators, which are based on a validated human physi-
ology model (like aircraft simulators are based on an ad-
equately faithful aircraft model), are a good example.

The development of complex integrated physiology
models may be optimal if open scientific development is
combined with the exploitation of business opportunities
and financing by the commercial sector.

The creation of OpenModelica (https://openmodelica.
org) within an open community may serve as a model in
this area. The development of the products is managed
by a consortium joining together universities, commer-
cial companies and individual developers (Open Source
Modelica Consortium - see https://openmodelica.org/
home/consortium). The consortium members include
both large companies and small developmental enterpris-
es. Research is funded from member fees, the height of
which depend on the company size as well as on the num-
ber of sold products developed by using the OpenMod-
elica licenses. A reasonably large community combining
users with many cooperating developers has concentrated
around OpenModelica, resulting in a well-performing
open-source product which is competitive in the existing
environment of expensive commercial Modelica imple-
mentations. Commercial companies are free to use any
part of the OpenModelica environment and expand it as
appropriate, also during the development of competitive
commercial implementations of the Modelica language
(this is why companies such as Wolfram and MapleSoft
have joined the consortium).

It is conceivable that an association of the academic
community and commercial companies built on simi-
lar foundations and called, say, “Physiomodelica Open
Source Consortium”, may ensure further development of
integrative physiology models in the future.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154196

204

343–346.
de Canete, J. F., Saz-Orozco, P. del, Moreno-Boza, D., &

Duran-Venegas, E. (2013). Object-oriented modeling and
simulation of the closed loop cardiovascular system by
using SIMSCAPE. Computers in Biology and Medicine,
43(4), 323–333.

Garny, A., Nickerson, D. P., Cooper, J., Weber dos Santos,
R., Miller, A. K., McKeever, S., … Hunter, P. J. (2008).
CellML and associated tools and techniques. Philosophical
Transactions. Series A, Mathematical, Physical, and
Engineering Sciences, 366(1878), 3017–3043.

Gesenhues, J., Hein, M., Ketelhut, M., Habigt, M., Rüschen,
D., Mechelinck, M., … Abel, D. (2017). Benefits of
object-oriented models and ModeliChart: modern
tools and methods for the interdisciplinary research on
smart biomedical technology. Biomedizinische Technik.
Biomedical Engineering, 62(2), 111–121.

Guyton, A. C., Coleman, T. G., & Granger, H. J. (1972).
Circulation: overall regulation. Annual Review of
Physiology, 34, 13–46.

Guyton, A. C., Jones, C. E., & Coleman, T. G. (1973).
Circulatory physiology: cardiac output and its regulation.
Philadelphia: WB Saunders, 1973.

Guyton, A. C., Taylor, A. E., & Granger, H. J. (1975). Circulatory
Physiology II. Dynamics and control of the body fluids (Vol.
2). Saunders.

Heinke, S., Pereira, C., Leonhardt, S., & Walter, M. (2015).
Modeling a healthy and a person with heart failure
conditions using the object-oriented modeling environment
Dymola. Medical & Biological Engineering & Computing,
53(10), 1049–1068.

Hester, R., Brown, A., Husband, L., & Iliescu, R. (2011).
HumMod: a modeling environment for the simulation
of integrative human physiology. Frontiers in
Physiology. Retrieved from http://journal.frontiersin.org/
article/10.3389/fphys.2011.00012

Hester, R. L., Coleman, T., & Summers, R. (2008). A multilevel
open source integrative model of human physiology. The
FASEB Journal, 22(1 Supplement), 756.8–756.8.

Hunter, P. (2016). The Virtual Physiological Human: The
Physiome Project Aims to Develop Reproducible,
Multiscale Models for Clinical Practice. IEEE Pulse, 7(4),
36–42.

Hunter, P. J., Crampin, E. J., & Nielsen, P. M. F. (2008).
Bioinformatics, multiscale modeling and the IUPS
Physiome Project. Briefings in Bioinformatics, 9(4), 333–
343.

Hunter, P. J., Li, W. W., McCulloch, A. D., & Noble, D. (2006).
Multiscale modeling: physiome project standards, tools,
and databases. Computer, 39(11), 48–54.

Hunter, P., Robbins, P., & Noble, D. (2002). The IUPS human
Physiome Project. Pflugers Archiv: European Journal of
Physiology, 445(1), 1–9.

Ježek, F., Kulhánek, T., Kalecký, K., & Kofránek, J. (2017).
Lumped models of the cardiovascular system of various
complexity. Biocybernetics and Biomedical Engineering,
37(4), 666–678.

Kofránek, J., Mateják, M., & Privitzer, P. (2011). Complex
model of integrated physiological systems - a theoretical

basis for medical training simulators. Mefanet Report, 4,
22–59.

Kofránek, J., Matejak, M., & Privitzer, P. (2011). Hummod-large
scale physiological models in modelica. In Proceedings of
the 8th International Modelica Conference; March 20th-
22nd; Technical Univeristy; Dresden; Germany (pp. 713–
724). Linköping University Electronic Press.

Kofránek, J., & Rusz, J. (2010). Restoration of Guyton’s diagram
for regulation of the circulation as a basis for quantitative
physiological model development. Physiological Research,
59(6), 897.

Lloyd, C. M., Lawson, J. R., Hunter, P. J., & Nielsen, P. F.
(2008). The CellML Model Repository. Bioinformatics ,
24(18), 2122–2123.

Maksuti, E., Bjällmark, A., & Broomé, M. (2015). Modelling
the heart with the atrioventricular plane as a piston unit.
Medical Engineering & Physics, 37(1), 87–92.

Mangourova, V., Ringwood, J., & Van Vliet, B. (2011).
Graphical simulation environments for modelling and
simulation of integrative physiology. Computer Methods
and Programs in Biomedicine, 102(3), 295–304.

Mateják, M., & Kofránek, J. (2015). Physiomodel - an
integrative physiology in Modelica. In 2015 37th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 1464–1467).

Mateják, M., Kulhánek, T., Šilar, J., Privitzer, P., Ježek, F.,
& Kofránek, J. (2014). Physiolibrary-Modelica library
for physiology. In Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden
(pp. 499–505). Linköping University Electronic Press.

Matejak, M., Tribula, M., Ježek, F., & Kofáanek, J. (2015).
Free Modelica Library for Chemical and Electrochemical
Processes. In Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-
23, 2015 (pp. 359–366). Linköping University Electronic
Press.

Ngo, C., Dahlmanns, S., Vollmer, T., Misgeld, B., & Leonhardt,
S. (2018). An object-oriented computational model to study
cardiopulmonary hemodynamic interactions in humans.
Computer Methods and Programs in Biomedicine, 159,
167–183.

Nielsen, T. A., Nilsson, H., & Matheson, T. (2012). A formal
mathematical framework for physiological observations,
experiments and analyses. Journal of the Royal Society
Interface, 9(70), 1040–1050.

Omholt, S. W., & Hunter, P. J. (2016). The Human Physiome:
a necessary key for the creative destruction of medicine.
Interface Focus, 6(2), 20160003.

Reinhardt, H. W., & Seeliger, E. (2000). Toward an Integrative
Concept of Control of Total Body Sodium. News in
Physiological Sciences: An International Journal of
Physiology Produced Jointly by the International Union
of Physiological Sciences and the American Physiological
Society, 15, 319–325.

Wu, K., Chen, J., Pruett, W. A., & Hester, R. L. (2013). Hummod
browser: An exploratory visualization tool for the analysis
of whole-body physiology simulation data. In 2013 IEEE
Symposium on Biological Data Visualization (BioVis) (pp.
97–104). ieeexplore.ieee.org.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154196 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

205

The OpenModelica Integrated Modeling, Simulation and
Optimization Environment

Peter Fritzson1, Adrian Pop1, Adeel Asghar1, Bernhard Bachmann1, Willi Braun2, Robert Braun1,
Lena Buffoni1, Francesco Casella3, Rodrigo Castro6, Alejandro Danós6, Rüdiger Franke7,

Mahder Gebremedhin1, Bernt Lie8, Alachew Mengist1, Kannan Moudgalya5, Lennart Ochel1,
Arunkumar Palanisamy1, Wladimir Schamai9, Martin Sjölund1, Bernhard Thiele1,

Volker Waurich4, Per Östlund1
1PELAB – Programming Environment Lab, Dept. of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden
2FH Bielefeld, Bielefeld, Germany

3Dept. Electronics and Information, Politecnico di Milano, Milan, Italy
4TU Dresden, Dresden, Germany

5IIT Bombay, Mumbai, India
6Dept. Computer Science, Universidad de Buenos Aires, Argentina

7ABB AG, DE-68309 Mannheim, Germany
8University of South-Eastern Norway, Porsgrunn, Norway

9Danfoss Power Solutions GmbH & Co. OHG, Offenbach, Germany

peter.fritzson@liu.se, adrian.pop@liu.se

Abstract
OpenModelica is currently the most complete open-
source Modelica- and FMI-based modeling, simulation,
optimization, and model-based development
environment. Moreover, the OpenModelica
environment provides a number of facilities such as
debugging; optimization; visualization and 3D
animation; web-based model editing and simulation;
scripting from Modelica, Python, Julia, and Matlab;
efficient simulation and co-simulation of FMI-based
models; compilation for embedded systems; Modelica-
UML integration; requirement verification; and
generation of parallel code for multi-ore architectures.
The environment is based on Modelica and uses an
extended version of Modelica for its implementation.
This overview paper intends to give an up-to-date brief
description of the capabilities of the system, and the
main vision behind its development.
Keywords: Modelica, OpenModelica, MetaModelica,
FMI, modeling, simulation, optimization, development,
environment, compilation, embedded system, real-time

1 Introduction
The OpenModelica environment was the first open
source Modelica environment supporting the Modelica
modeling language (Modelica Association 2017)
(Fritzson 2014). Its development started in 1997
resulting in the release of a flattening frontend for a core
subset of Modelica 1.0 in 1998. After a pause of four
years, the open source development resumed in 2002.
An early version of OpenModelica is described in
(Fritzson et al 2005). Since then the capabilities of

OpenModelica have expanded enormously. The Open
Source Modelica Consortium which supports the long-
term development of OpenModelica was created in
2007, initially with seven founding organizations. The
scope and intensity of the open source development has
gradually increased. At the time of this writing the
consortium has fifty-three supporting organizational
members. The long-term vision for OpenModelica is an
integrated and modular modeling, simulation, model-
based development environment with additional
capabilities such as optimization, sensitivity analysis,
requirement verification, etc., which are described in the
rest of this paper. The previous overview paper about
OpenModelica was published 2005. The current paper
intends to give a more up-to-date overview of the system
and the vision and goals behind its development.

This paper is organized as follows. Section 2 presents
the idea of integrated environment, Section 3 the goals
for OpenModelica, Section 4 an overview of the
OpenModelica environment, Section 5 and its
subsections give more details about OpenModelica and
its subsystems, Section 6 presents related work and
Section 7 the conclusions.

2 Integrated Interactive Modeling
and Simulation Environments

An integrated interactive modeling and simulation
environment is a special case of programming
environments with applications in modeling and
simulation. Thus, it should fulfill the requirements both
from general integrated interactive environments and

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

206

from the application area of modeling and simulation
mentioned in the previous section.

The main idea of an integrated programming
environment in general is that a number of programming
support functions should be available within the same
tool in a well-integrated way. This means that the
functions should operate on the same data and program
representations, exchange information when necessary,
resulting in an environment that is both powerful and
easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g., without re-
computing everything from scratch, and maintains a
dialogue with the user, including preserving the state of
previous interactions with the user. Interactive
environments are typically both more productive and
more fun to use than non-interactive ones.

There are many things that one wants a programming
environment to do for the programmer or modeler,
particularly if it is interactive. Comprehensive software
development environments are expected to provide
support for the major development phases, such as:
 Requirements analysis
 Design
 Implementation
 Maintenance

A pure programming environment can be somewhat
more restrictive and need not necessarily support early
phases such as requirements analysis, but it is an
advantage if such facilities are also included. The main
point is to provide as much computer support as possible
for different aspects of systems development, to free the
developer from mundane tasks so that more time and
effort can be spent on the essential issues.

Our vision for an integrated interactive modeling and
simulation environment is to fulfill essentially all the
requirements for general integrated interactive
environments combined with the specific needs for
modeling and simulation environments, e.g.:
 Specification of requirements, expressed as

documentation and/or mathematics
 Design of the mathematical model
 Symbolic transformations of the mathematical

model
 A uniform general language for model design,

mathematics, and transformations
 Automatic generation of efficient simulation code
 Execution of simulations
 Debugging of models
 Design optimization
 Evaluation and documentation of numerical

experiments
 Graphical presentation

 Model and system structure parameterization
 Variant and version handling, traceability

3 Goals for OpenModelica
The computational and simulation goals of the
OpenModelica tool development include, but are not
limited to, the following:
 Providing a complete open source Modelica-based

industrial-strength implementation of the Modelica
language, including modeling and simulation of
equation-based models, system optimization, and
additional facilities in the programming/modeling
environment.

 Providing an interactive computational environment
for the Modelica language. It turns out that with
support of appropriate tools and libraries, Modelica
is very well suited as a computational language for
development and execution of numerical
algorithms, e.g. for control system design and for
solving nonlinear equation systems.

The research related goals and issues of the
OpenModelica open source implementation of a
Modelica environment include, but are not limited to,
the following:
 Development of a complete formal specification and

reference implementation of Modelica, including
both static and dynamic semantics. Such a
specification can be used to assist current and future
Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

 Language design, e.g. to further extend the scope of
the language, e.g. for use in diagnosis, structural
analysis, system identification, integrated product
development with requirement verification, etc., as
well as modeling problems that require partial
differential equations.

 Language design to improve abstract properties
such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

 Improved implementation techniques, e.g. to
enhance the performance of compiled Modelica
code by generating code for parallel hardware.

 Improved debugging support for equation based
languages such as Modelica, to make them even
easier to use.

 Improved optimization support, with integrated
optimization and modeling/simulation. Two kinds:
parameter-sweep optimization based on multiple
simulations; direct dynamic optimization of a goal
function without lots of simulations, e.g., using
collocation or multiple shooting.

 Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

207

 Visualization and animation techniques for
interpretation and presentation of results.

 Integrated requirement modeling and verification
support. This includes the ability to enter
requirements formalized in a kind of Modelica style,
and to verify that the requirements are fulfilled for
selected models under certain usage scenarios.

The OpenModelica effort started by developing a rather
complete formal specification of the Modelica language.
This specification was developed in Operational
Semantics, which still is the most popular and widely
used semantics specification formalism in the
programming language community. It was initially used
as input for automatic generation of the Modelica
translator implementations which are part of the
OpenModelica environment. The RML compiler
generation tool (our implementation of Operational
Semantics) (Fritzson et al, 2009) was used for this task.

However, inspired by our vision of integrated
interactive environments with self-specification of
programs and data, and integrated modeling and
simulation environments), in 2005 we designed and
implemented an extension to Modelica called
MetaModelica (Pop and Fritzson, 2006), (Fritzson, Pop,
Sjölund, 2011). This was done in order to support
language modeling and specification (including
modeling the language itself), in addition to the usual
physical systems modeling applications of Modelica, as
well as applications requiring combined symbolic-
numeric capabilities. Modeling the semantics in itself
was also inspired by functional languages such as
Standard ML (Milner 1997), and OCaml (OCaml org,
2018). Moreover, it was an investment into a future
Modelica becoming a combined symbolic-numeric
language such as Mathematica, but more efficient and
statically strongly typed.

This language extension has a backwards-compatible
Modelica-style syntax but was initially implemented on
top of the RML compiler kernel. The declarative
specification language primitives in RML with single-
assignment pattern equations, possibly recursive case
records (in MetaModelica called uniontypes) and match
expressions, fit well into Modelica since it is a
declarative equation-based language. In 2006 our whole
formal specification of Modelica static and translational
semantics, at that time about 50 000 lines, was
automatically translated into MetaModelica. After that,
all further development of the symbolic processing parts
of the OpenModelica compiler (the run-time parts were
mainly written in C), was done in MetaModelica.

At the same time we embarked on an effort to
completely integrate the MetaModelica language
extension into the Modelica language and the
OpenModelica compiler. This would enable us to
support both Modelica and MetaModelica by the same
compiler. This would allow modeling the Modelica tool
and the OpenModelica compiler using its own language.

This would get rid of the limitations of the RML
compiler kernel and the need to support two compilers.
Moreover, additional tools such as our Modelica
debugger can be based on a single compiler.

Such an ability of a compiler to compile itself is
called compiler bootstrapping. This development turned
out to be more difficult and time-consuming than
initially expected; moreover, developers were not
available for a few years due resource limitations and
other priorities. Finally, bootstrapping of the whole
OpenModelica compiler was achieved in 2011. Two
years later, in 2013, all our OpenModelica compiler
development was shifted to the new bootstrapped
compiler (Sjölund, Fritzson, Pop, 2014), (Sjölund,
2015), after automatic memory reclamation (garbage
collection), separate compilation, and a new efficient
debugger had been achieved for our new compiler
platform.

More recently, we have had an effort to restructure
and rewrite the frontend part of the OpenModelica
compiler (OMC). The reasons were two-fold: to support
the exact Modelica semantics required to simulate
certain models even though the semantics at that time
was not clearly specified by the Modelica language
specification (Modelica Association 2017), and to
achieve much higher compilation speed for large and
complex models. This work turned out to more difficult
than expected. Fortunately, recently, a lot of progress
has been made and a release of a preliminary version of
this new frontend as part of OMC now appears feasible
late fall 2018.

4 The OpenModelica Environment
At the time of this writing, the interactive
OpenModelica environment primarily consists of the
following components and subsystems:
 A graphical and textual model editor, OMEdit. This

is a graphical connection editor for component
based model design by connecting instances of
Modelica classes. The editor also provides text
editing. Moreover, the OMEdit GUI provides a
graphical user interface to simulation and plotting
(OMPlot). See Section 5.2.

 An interactive session handler, OMShell, that
parses and interprets commands and Modelica
expressions for evaluation. The session handler also
contains simple history facilities, and completion of
file names and certain identifiers in commands.
There is also a Python variant of the interactive
session handler called OMPython that supports the
same commands in Python. Very recently, similar
session handlers for Julia, called OMJulia, and
Matlab, called OMMatlab, have been implemented.
See Section 5.10.

 A Modelica compiler, OMC, translating Modelica to
lower level code such as C code, with a symbol table

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

208

containing definitions of models, functions, and
variables. Such definitions can be predefined, user-
defined, or obtained from libraries. See Section 5.1.
There is also a compilation mode to generate low-
footprint code for embedded systems, see Section
5.13.

 An execution and run-time module. This module
currently executes compiled binary code from
translated models and functions. It includes
numerical solvers as well as event handling facilities
for the discrete and hybrid parts of the Modelica
language. See Section 5.6.

 Debuggers and performance analyzers. These tools
provide source-level Modelica debugging on
equation models (Section 5.5), algorithmic model
code (Section 5.4), as well as performance analysis
of models (Section 5.5).

 Textual model editors. Any text editor can be used.
Among the OpenModelica tools, text editing of
models is supported by OMEdit (Section 5.2), by
the OpenModelica MDT Eclipse plug-in (Section
5.6), and by the interactive electronic book
OMNotebook (Section 5.7).

 An interactive electronic book, OMNotebook. This
tool provides an active electronic book facility
supporting chapters, sections, execution of
simulation models, plotting, etc. One book,
DrModelica, for teaching Modelica to the beginner,
is automatically opened by default. The user can
define his/her own books. This tool is useful for
developing interactive course material. See Section
5.7.

 Jupyter notebook for OpenModelica. More recently,
the Python-based Jupyter notebook has appeared,
supporting a number of languages. Therefore we

have also developed a Jupyter notebook for
OpenModelica (OSMC 2018a) using Modelica
scripting. However, Python scripting together with
the OMPython package is used in the Jupyter
notebooks presented in (Lie et al, 2016)

 An interactive web-based electronic book,
OMWebbook. This is similar to OMNotebook, but
model editing and simulation is in a web-browser.
Simulation is performed by a simulation server. See
Section 5.8.

 An optimization module using parameter sweeps,
called OMOptim. This tool performs optimizations
by running several simulations for different
parameter settings while searching for the optimum
value of a user-specified goal function. See Section
5.17.

 A dynamic optimization module. Direct
optimization (without running lots of simulations)
of a whole solution trajectory using collocation or
multiple shooting. A goal function can be
formulated to be optimized under the constraints of
a selected model. See Section 5.17.

 Requirement verification and ModelicaML Eclipse
plug-in. This plug-in contains a Modelica-UML
profile that allows integrated requirement
verification and cyber-physical hardware-software
modeling by combining hardware modeling in
Modelica with software modeling using UML. The
tool contains a UML to Modelica translator that
makes it possible to simulate combined UML-
Modelica models. Moreover, automatic (dynamic)
verification of formalized requirements against
selected scenarios is supported by ModelicaML or
by a Modelica-based approach without using UML.
See Section 5.15 and Section 5.16.

Figure 1. The architecture of the OpenModelica environment. Arrows denote data and control flow.

Simulation
Execution

OMEdit Graphic
and Textual

Model Editor

OMNotebook
Interactive
Notebooks

Debugger

OMC
Interactive Compiler

Server

ModelicaML
UML/Modelica
and requirement

verification

MDT
Eclipse Plugin

OMOptim
Optimization

3D
Visualization

OMShell
Modelica
Scripting

OMPython
Python

Scripting

OMSimulator
FMI Simulation

OMJulia
 Julia
Scripting

OMWebbook
 Interactive
 Notebooks

OMMatlab
 Matlab
 Scripting

 OMSens
sensitivity
 analysis OMSysident

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

209

 MDT Eclipse plug-in. The MDT (Modelica
Development Tooling) Eclipse plug-in for Modelica
library and model compiler textual development,
project support, cross-referencing, building
executables, debugging, etc. See Section 5.6.

 3D animation visualization. This is provided by a
special module in OpenModelica, and uses the
standard Modelica MBS library 3D graphical
annotations. See Section 5.3.

 FMI Import and Export. A model (including models
from other tools, even non-Modelica ones) can be
imported or exported according to the FMI
(Functional Mockup Interface) standard as an FMU
(Functional Mockup Unit).

 OMSimulator FMI-based simulation and co-
simulation subsystem. This recently added
subsystem, which also can be run stand-alone
separated from the OpenModelica compiler,
supports efficient simulation and co-simulation of
single or composite FMUs. FMUs can also be
connected using a graphical editor to form
composite FMUs. See Section 5.12.

 OMSens. Sensitivity analysis subsystem that allows
both single-parameter and multi-parameter analysis,
the latter based on robust optimization techniques.
Specification of the analysis and display of results
can be made interactively via OMEdit in the current
prototype. An early prototype not yet integrated in
OMEdit is described in (Danós et al, 2017).

 OMSysIdent. A parameter system identification
module, using system identification vs

measurement data to determine the best model
parameter values for a certain model (OSMC
2018c).

 MetaModelica language extension. This is used for
modeling/specification of languages (including the
Modelica language) and for Modelica programming
of model transformations (Pop and Fritzson, 2006),
(Fritzson, Pop, Sjölund, 2011). Related to this, there
are discussions in the Modelica Design group about
possible extensions to the Modelica language that
would enable definition some language constructs
in a Modelica core library instead of being
hardcoded in the compiler.

 Parallelization and ParModelica language
extension. ParModelica is used for explicit
algorithmic parallel Modelica programming with
compilation to both multi-core CPU platforms and
GPGPU platforms (including NVIDIA). See
Section 5.18.

5 OpenModelica Subsystems
The relationships between the main OpenModelica
subsystems is depicted above in Figure 1. Their
functionality is briefly described in the following.

Figure 2. OMEdit on the Modelica.Electrical.Analog. Examples.ChuaCircuit model. Center: Model connection diagram. Upper
right: information window. Lower right: plot variable browser will a small popup re-simulate menu on top.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

210

5.1 OMC – The OpenModelica Model
Compiler

OMC is the OpenModelica compiler which translates
Modelica models into C/C++ code (or Java or C# code
using experimental code generators), which is compiled
and executed to perform simulations. The
OpenModelica compiler is generated from formal
specifications in RML (earlier) or MetaModelica
(currently). At the time of this writing the
OpenModelica compiler (OMC) is generated from a
specification of about two hundred thousand lines of
MetaModelica. Moreover, OMC is able to compile
itself, i.e., it is bootstrapped.

5.2 OMEdit – the OpenModelica Graphic
Model Editor and Simulator GUI

OMEdit is the OpenModelica graphic model editor
(Figure 2), (Asghar et al, 2011). In addition to
graphic/textual model editing and browsing, it also
provides model text editing, simulation, parameter
update, debugging, and plotting capabilities.

Using OMEdit to perform simulations and plotting
simulation results is depicted in Figure 3 below.

Figure 3. OpenModelica simulation of the V6Engine
model with 11000 equations. Plotting simulation results
using OMEdit. Left: Model browser. Right: Plot variable
browser. Bottom: message browser window.

5.3 3D Animation and Visualization
The OpenModelica 3D animation and visualization is a
built-in feature of OMEdit to animate based on 3D
shapes defined by the MSL Muilti-Body library. It
provides visualization of simulation results and
animation of geometric primitives and CAD-files. There
is also support for FMI-based visualization (Waurich
and Weber, 2017).

Figure 4. OpenModelica 3D animation of a simulated
excavator.

5.4 The OpenModelica Algorithm Debugger
The OpenModelica algorithm debugger (Figure 5),
(Pop, 2008), (Sjölund, 2015) is available for use either
from OMEdit or from the MDT Eclipse plug-in. The
debugger provides traditional debugging of the
algorithmic part of Modelica, such as setting
breakpoints, starting and stopping execution, single-
stepping, inspecting and changing variables, inspecting
all kinds of standard Modelica data structures as well as
MetaModelica data structures such as trees and lists.

Figure 5. The OpenModelica algorithmic code debugger
viewed from the MDT Eclipse plug-in. The OMEdit
version of the debugger looks about the same. A
breakpoint has been set in the function which is called
from the small model called SimulationModel.

5.5 The OpenModelica Equation Model
Debugger and Performance Analyzer

The OpenModelica equational model debugger (Figure
6), (Pop, Sjölund, et al, 2014), (Sjölund, 2015) is
available for use from OMEdit. It provides capabilities
for debugging equation-based models, such as showing
and explaining the symbolic transformations performed
on selected equations on the way to executable
simulation code. It can locate the source code position
of an equation causing a problem such as a run-time
error, traced backwards via the symbolic
transformations. Moreover, a performance analyzer tool
is also included in OpenModelica and integrated with
the debugger.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

211

Figure 6. The OpenModelica equation model debugger.
Left: equations view where equations and symbolic
transformations can be vied. Right: source view where the
erroneous equation is pointed out.

5.6 Run-time Solver Module and DAEMode
The OpenModelica execution and run-time solver
module executes compiled binary code from translated
models and functions. It includes numerical solvers as
well as event handling facilities for the discrete and
hybrid parts of the Modelica language.

A recent extension of this module is the DAEMode
used for solving very large models. This is part of an
emerging trend in Modelica tools of handling large-
scale models, with hundreds of thousands or possibly
millions of equations, (Casella, 2015). OpenModelica
has pioneered this field by introducing sparse solvers in
the solution chain: KLU for linear algebraic equations,
Kinsol for nonlinear algebraic equations, and IDA for
causalized differential equations. It also introduced the
direct use of IDA as differential-algebraic equation
solver, skipping the traditional causalization step, which
is computationally more efficient for certain classes of
systems. The largest system handled so far is an electro-
mechanical power system model with about 600.000
differential-algebraic equations, (Braun et al, 2017).

5.7 OMNotebook and DrModelica
OMNotebook (Figure 7) (Fernström et al, 2006) is a
book-like interactive user interface to OpenModelica
primarily intended for teaching and course material. It
supports sections and subsections to any level, hiding
and showing sections and cells, interactive evaluation
and simulation of Modelica models and plotting results.
The DrModelica (Lengquist-Sandelin, 2003) interactive
Modelica teaching course was the first main application,
at that time based on Mathematica notebooks.

Figure 7. The OMNotebook electronic notebook showing
part of the DrModelica document (course-material) for
learning Modelica. Top: The DrModelica document start
page. Bottom: The VanDerPol sub-document showing a
cell with a Modelica model, simulation commands, and
plot results.

5.8 OMWebbook – Interactive Web-based
Editable and Executable Book

OMWebbook (Figure 8) (Moudgalya et al, 2017),
(Fritzson et al, 2018), is an interactive web-based
electronic book. This is similar to OMNotebook, but
textual model editing and simulation is performed in a
web-browser. Simulation is performed by a dedicated
simulation server. Thus, the user need not install
OpenModelica on a computer. Editing and simulation
can even be done from smartphones or tablets.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

212

Figure 8. OMWebbook with editable models,
simulations, and plots.

5.9 MDT Eclipse Plug-in
The MDT (Modelica Development Tooling) Eclipse
plug-in (Figure 9) (Pop et al, 2006), (Pop 2008), is an
Eclipse-based textual development environment for
Modelica and MetaModelica model development.

It provides the usual facilities for software
development such as browsing, building, cross
referencing, syntax checking, and showing useful
information such as types, function signatures, etc.

MDT is primarily used for development of medium
to large scale Modelica projects, such as Modelica
libraries written in standard Modelica and the
OpenModelica compiler (currently containing more
than 200 packages) written in MetaModelica.

Figure 9. The OpenModelica MDT (Modelica
Development Tooling) Eclipse plug-in.

5.10 Python, Julia, and Matlab Scripting
Scripting APIs to OpenModelica is also provided for the
languages Python (Python 2018), Julia (Julia org, 2018),
and Matlab (MathWorks 2018), through the subsystems
OMPython (Lie et al, 2016), OMJulia and OMMatlab
(OSMC 2018a). This gives the user the possibility to use
Modelica together with the rich set of facilities and
libraries in these languages, e.g. for tasks such as control
design and post processing of simulation results.

5.11 Spoken Tutorials for OpenModelica
A number of interactive audio-video based spoken
tutorials (www.spoken-tutorial.org) have been
developed which provide step-by-step teaching about
how to use OpenModelica and develop simple models.
(Moudgalya et al, 2017). They are not part of the
OpenModelica installer and system, but mentioned here
since they provide important functionality to learn
OpenModelica and Modelica.

5.12 OMSimulator – FMI-based Simulation
and Composite Model Editor

OMSimulator, version 2.0, is an OpenModelica
subsystem that provides efficient simulation and co-
simulation of models in the (pre-compiled) FMI
standard FMU (Functional Mockup Unit) form. Thus,
models from non-Modelica tools compiled into FMUs
can also be included and simulated. Furthermore,
models that cannot be exported as FMUs can be
integrated in a simulation using tool-to-tool co-
simulation. This is provided via wrappers to models in
tools such as ADAMS, Beast, Simulink, Hopsan, or co-
simulation of FMUs with embedded solvers. The system
can optionally be used with TLM (Transmission Line
Modeling) connectors, which give numerically more
stable co-simulation.

Figure 10. The OpenModelica OMSimulator composite
model editor including 3D animation.
The earlier version OMSimulator 1.0, was already
available in OpenModelica 1.12.0 released 2017

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

213

(Fritzson, Braun, and Hartford, 2018), (OSMC 2018b),
but in that version TLM-connectors were mandatory and
pure FMI model-exchange based simulation was
missing.

Moreover, OMSimulator contains a composite model
editor integrated in OMEdit, that allows combining
external models (FMUs, both model-exchanged and co-
simulated ones) into new composite models.

This editor, an extension of OMEdit (Figure 10), also
provides 3D visualization of connected mechanical
model components which can be FMUs, Modelica
models, etc., or co-simulated components. 3D animation
of simulated FMUs is possible (right part of Figure 10).
A composite model is saved as an XML file according
to the SSP (Systems and Structure Parameterization)
standard (Modelica Assocaition 2018), (OSMC 2018c).

5.13 Embedded System Support
OpenModelica provides code generation of real-time
controllers from Modelica models, for small foot-print
platforms such as Arduino boards. (Berger et al, 2017),
or in tools for RexRoth PLCs (Menager et al, 2014).

One example of code generation to small targets is
the Single board heating system (Figure 11) from IIT
Bombay (Arora, Kannan Moudgalya, and Malewar,
2010). It is used for teaching basic control theory, and
usually controlled by a serial port (set fan value, read
temperature, etc). OpenModelica can generate code
targeting the ATmega16 on the board.

The program size is 4090 bytes including LCD driver
and PID-controller (out of 16 kB flash memory
available). The ATmega16 we target has 1 kB SRAM
available for data (stack, heap, and global variables). In
this case, only 130 bytes is used for data variables.

Figure 11. The SBHS (Single Board Heating System), an
example embedded target system for OpenModelica.

To simplify interfacing of low-level devices from
Modelica, OpenModelica supports the
Modelica_DeviceDrivers library (Thiele, Beutlich,
Waurich, Sjölund, and Bellmann, 2017), which is a free
library for interfacing hardware drivers that is developed
primarily for interactive real-time simulations. It is
cross-platform (Windows and Linux). Using this
library, modeling, parameterization and configuration
can be done at a high level of abstraction using

Modelica, avoiding the need for low level C
programming.

5.14 Model-based Control, Synchronous
Modelica, and C++ Run-time

OpenModelica is one of the (currently) two Modelica
tools that support synchronous Modelica (Modelica
Association, 2017), implemented both on top of the
OpenModelica C run-time and C++ run-time. This can
be used for model-based control, using Modelica and
FMI, (Franke et al, 2017), and using the OpenModelica
C++ run-time (Franke et al, 2015).

5.15 ModelicaML Modelica-UML Profile
and Eclipse Plug-in

ModelicaML (Figure 12), (Schamai, 2013), (Schamai et
al, 2014) is an Eclipse plug-in and Modelica-UML
profile for the description of system architecture and
system dynamic behavior. It is based on an extended
subset of the OMG Unified Modeling Language (UML)
as well as Modelica, and is designed for Modelica code
generation from graphical models such as state
machines and activity diagrams, supporting
hardware/software co-modeling and system
requirement verification against selected scenarios. The
current prototype has not been updated recently and only
works together with an old version of Eclipse.

Figure 12. The ModelicaML Eclipse plug-in and UML-
Modelica profile for integrated software-hardware
modeling and requirements verification.

5.16 Requirement Verification
OpenModelica supports requirement verification using
the vVDR approach (virtual Verification of Designs vs.
Requirements), (Schamai, 2014<, Schamai et al, 2015).
It was first introduced in the ModelicaML Eclipse plug-
in mentioned previously, using a combination of UML
and Modelica for requirement specification. Recently, a
Modelica-only version of vVDR has been designed and
implemented in OpenModelica, using requirement
specification in Modelica, and a vVDR Modelica library
(Buffoni et al, 2014; Buffoni et al, 2017).

It is a simulation-based approach that can be used to
verify (Figure 13) different design alternatives against
sets of requirements using different scenarios. The tool

Structure

Behavior

Requirements

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

214

automatically generates verification models in
Modelica, performs the simulations, compares the
results, and generates a report about verification results.

Figure 13. Simulation-based requirement verification for
the two-tanks example. Requirement r001 regarding the
level of tank2 is violated twice (shown in red).

5.17 Design Optimization
Two forms of design optimization tool support are
available with OpenModelica: a) the traditional
parameter sweep static design optimization using many
simulation runs, or b) direct dynamic optimization of a
full trajectory. The first method is supported by the
OMOptim tool (Figure 14), (Thieriot et al, 2011).

Figure 14. The OpenModelica OMOptim tool for
parameter sweep optimization. Top: selecting variables,
objectives, parameters. Bottom: A result plot with a Pareto
optimization of two goal functions.

The second approach, dynamic optimization (Figure
15), (Bachmann et al, 2012), (Åkesson, 2008),
formulates an optimization problem directly on a whole
trajectory which is divided into trajectory segments
(Figure 15, top) whose shapes are determined by
coefficients which are initially not determined.

During the optimization process these coefficients are
gradually assigned values which make the trajectory
segments adjust shape and join into a single trajectory
with a shape that optimizes the goal function under the
constraints of fulfilling the model equations. Figure 15
(bottom) shows the relative speedup of performing
dynamic optimization of a goal function for a small
BatchReactor model using parallel versions of the
dynamic optimization methods multiple shooting and
multiple collocation running on a multi-core computer.
Optimization algorithms from the Ipopt library
(Wächter and Biegler, 2006), are employed for part of
the optimization mechanism.

Figure 15. Top: Dynamic optimization formulates the
whole trajectory in terms of trajectory segments whose
shapes are adjusted during optimization. Bottom: Relative
speedups and computation times of the complete dynamic
optimization process for the BatchReactor example model
using parallel multiple shooting or multiple collocation in
OpenModelica on 1, 2, 4, and 8 cores.

5.18 Parallelization and Multi-Core
Work on generating parallel code from Modelica
models has been ongoing for OpenModelica during
several years. Automatic extraction of task parallelism
and automatic scheduling is one approach that has been

⬚
𝑡𝑡 0

 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

ℎ1

ℎ2 ℎ3

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

215

investigated (Figure 16), (Aronsson 2006), (Walther et
al, 2014). Another approach is the ParModelica
language extension (Gebremedhin 2011) that allows
generation of OpenCL code for data-parallel platforms
such as the NVIDIA graphics cards. A third approach,
which is now integrated with the above approaches is
dynamic load balancing partly based on the running
simulation. (Gebremedhin and Fritzson, 2017).

Figure 16. Example of speedup of parallel code from
OpenModelica for the Fluid.Examples.Branching.
DynamicPipes model.

6 Related Work
Since OpenModelica is a Modelica environment it has
of course been influenced by other Modelica tools. The
most influential of these tools is Dymola (Elmqvist et al,
1996), (Brück et al, 2002), (Dassault Systèmes 2013),
which was the first full-scale industrial-strength
Modelica environment. Certain aspects have also been
influenced by the MathModelica environment (Fritzson
2006), later renamed and further developed to Wolfram
System Modeler (Wolfram Research 2018), InterLisp,
Mathematica (Wolfram 2003), and ObjectMath
(Fritzson, et al, 1995) have influenced the design of
OpenModelica as an integrated symbolic-numeric
environment. Recently, the rapidly developing
symbolic-numeric Julia language (Bezanson 2017),
(Julia org, 2018) has appeared, with similar goals as
MetaModelica.

7 Conclusions
OpenModelica has been developed into a powerful open
source tool suite for modeling, simulation, and model-
based development. Still some challenges are being
worked on and remain to be addressed, for example very
large models with several million equations. The
debugger can be further improved to find additional
kinds of numeric/symbolic errors. Integration aspects
between tool functionalities can be further enhanced.
Just-in-time compilation would improve the system’s
interactive properties. Two large recent OpenModelica
efforts are the OMC new frontend development for
100% coverage and greatly enhanced compilation
speed, and the OMSimulator tool for efficient large-

scale FMI-based simulation. Recently OMJulia has been
introduced that provides OpenModelica access from
Julia. More powerful integration options between Julia
and OpenModelica are also being considered in order to
benefit from the Julia libraries and infrastructure.

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENPROD, MODRIO, and OPENCPS projects and in
the Vinnova RTISIM project. Support from the Swedish
Government has been received from the ELLIIT project.
The OpenModelica development is supported by the
Open Source Modelica Consortium. Many students,
researchers, engineers have contributed to the
OpenModelica system. There is not room here to
mention all these people, but we gratefully acknowledge
their contributions.

References
Peter Aronsson. Automatic Parallelization of Equation-Based

Simulation Programs. Linköping Studies in Science and
Technology, Ph.D. Thesis No. 1022. June 14, 2006.
URN: urn:nbn:se:liu:diva-7446

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter
Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,
and Wladimir Schamai. An Open Source Modelica Graphic
Editor Integrated with Electronic Notebooks and Interactive
Simulation. In Proc. of the 8th International Modelica
Conference 2011, pp. 739–747. Modelica Association,
March 2011.Linköping University, Sweden, 2010.

Inderpreet Arora, Kannan Moudgalya, Sachitanand Malewar.
A low cost, open source, single board heater system. In
Proc. 4th IEEE International Conference on E-Learning in
Industrial Electronics (ICELIE), Nov 7-10, 2010. IEEE
Xplore, DOI: 10.1109/ICELIE.2010.5669868

Bernhard Bachmann, Lennart Ochel, Vitalij Ruge, Mahder
Gebremedhin, Peter Fritzson, Vaheed Nezhadali, Lars
Eriksson, Martin Sivertsson. Parallel Multiple-Shooting
and Collocation Optimization with OpenModelica. In
Proceedings of the 9th International Modelica Conference
(Modelica'2012), Munich, Germany, Sept.3-5, 2012

Lutz Berger, Martin Sjölund, Bernhard Thiele. Code
generation for STM32F4 boards with Modelica device
drivers. In Proc.of 8th International Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools, Munich, Germany, Dec 1, 2017. Published by ACM
Digital Library. doi:10.1145/3158191.3158204

Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B.
Shah. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 59: 65–98. 2017 doi: 10.1137/141000671.

Willi Braun, Francesco Casella, and Bernhard Bachmann
Solving Large-scale Modelica Models: New Approaches
and Experimental Results using OpenModelica, In Proc
12th Int. Modelica Conference, May 15-17, 2017, Prague,
Czech Republic, pp. 557-563, doi:10.3384/ecp17132557

Dag Brück, Hilding Elmqvist, Sven-Erik Mattsson, and Hans
Olsson. Dymola for Multi-Engineering Modeling and
Simulation. In Proceedings of the 2nd International

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

216

Modelica Conference, Oberpfaffenhofen, Germany, Mar.
18–19, 2002

Lena Buffoni and Peter Fritzson. Expressing Requirements in
Modelica. In Proceedings of the 55th Scandinavian
Conference on Simulation and Modeling (SIMS’2014),
available at www.scan-sims.org. Aalborg, Denmark, Oct
21-22, 2014.

Lena Buffoni, Adrian Pop, and Alachew Mengist. Traceability
and Impact Analysis in Requirement Verification. In
Proc.of 8th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, Munich,
Germany, Dec 1, 2017. Published by ACM Digital Library.
doi:10.1145/3158191.3158207

Francesco Casella. Simulation of Large-Scale Models in
Modelica: State of the Art and Future Perspectives. In
Proceedings of the 11th International Modelica
Conference, Sept 21-23 2015, Versailles, France, pp. 459-
468, doi:10.3384/ecp15118459

Alejandro Danós, Willi Braun, Peter Fritzson, Adrian Pop,
Hugo Scolnik, and Rodrigo Castro. Towards an
OpenModelica-based Sensitivity Analysis Platform
Including Optimization-driven Strategies. In Proc.of 8th
International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools, Munich,
Germany, Dec 1, 2017. Published by ACM Digital Library.
doi:10.1145/3158191.3158206

Hilding Elmqvist, Dag Bruck, and Martin Otter. Dymola—
User's Manual. Dynasim AB, Research Park Ideon, SE-223
70, Lund, Sweden, 1996

Dassault Systèmes. Dymola. Systems Engineering Overview.
https://www.3ds.com/products-services/catia/products/dymola/

Accessed Sept. 3, 2018.
Anders Fernström, Ingemar Axelsson, Peter Fritzson, Anders

Sandholm, Adrian Pop. OMNotebook – Interactive
WYSIWYG Book Software for Teaching Programming. In
Proc. of the Workshop on Developing Computer Science
Education – How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Sweden, March
10, 2006.

Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi
Braun, and Bernhard Bachmann. Model-based Control with
FMI and a C++ Runtime for Modelica. In Proceedings of
the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015. Published by LIU
Electronic Press. doi:10.3384/ecp15118339

Rüdiger Franke, Sven Erik Mattsson, Martin Otter, Karl
Wernersson, Hans Olsson, Lennart Ochel, and Torsten
Blochwitz. Discrete-time Models for Control Applications
with FMI. In Proceedings of the 12th International
Modelica Conference, Prague, Czech Republic, May 15-17,
2017. Published by LIU Electronic Press. doi:
10.3384/ecp17132507

Peter Fritzson, Lars Viklund, Dag Fritzson, and Johan Herber.
High Level Mathematical Modeling and Programming in
Scientific Computing, IEEE Software, pp 77–87, July 1995.

Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David Broman.
The OpenModelica Modeling, Simulation, and Software
Development Environment. In Simulation News Europe,
44/45, December 2005. See also:
http://www.openmodelica.org. An earlier version in

Proceedings of the 46th Conference on Simulation and
Modelling of the Scandinavian Simulation Society
(SIMS2005), Trondheim, Norway, October 13-14, 2005.

Peter Fritzson. MathModelica - An Object Oriented
Mathematical Modeling and Simulation Environment.
Mathematica Journal, Vol 10, Issue 1. February. 2006.

Peter Fritzson, Adrian Pop, David Broman, Peter Aronsson.
Formal Semantics Based Translator Generation and Tool
Development in Practice. In Proc. of the 20th Australian
Software Engineering Conference (ASWEC 2009), Gold
Coast, Queensland, Australia, April 14 – 17, 2009.

Peter Fritzson, Adrian Pop, and Martin Sjölund. Towards
Modelica 4 Meta-Programming and Language Modeling
with MetaModelica 2.0. Technical reports in Computer and
Information Science, No 10, Linköping University
Electronic Press. February 2011. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361

Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
1250 pages. ISBN 9781-118-859124, Wiley IEEE Press,
2014.

Peter Fritzson, Bernhard Bachmann, Kannan Moudgalya,
Francesco Casella, Bernt Lie, Jiri Kofranek, Massimo
Ceraolo, Christoph Nytsch Geusen, Luigi Vanfretti,
(editors). Introduction to Modelica with Examples in
Modeling, Technology, and Applications. Published by
Linköping University Electronic Press, series ”Linköping
University Interdisciplinary Studies” with ISSN 1650-9625.
On-line: http://omwebbook.openmodelica.org/ Accessed
Sept 3, 2018.

Dag Fritzson, Robert Braun, and Jan Hartford. Composite
modelling in 3-D mechanics utilizing Transmission Line
Modelling (TLM) and Functional Mock-up Interface (FMI)
Modeling, Identication and Control, Vol. 39, No. 3, pp.
179-190, 2018.

Peter Fritzson, Bernhard Bachmann, Kannan Moudgalya,
Francesco Casella, Bernt Lie, Jiri Kofranek, Massimo
Ceraolo, Christoph Nytsch Geusen, Luigi Vanfretti,
(editors). Introduction to Modelica with Examples in
Modeling, Technology, and Applications Published by
Linköping University Electronic Press, series ”Linköping
University Interdisciplinary Studies” with ISSN 1650-9625.
On-line: http://omwebbook.openmodelica.org/ Accessed
Sept 3, 2018.

Mahder Gebremedhin. ParModelica: Extending the
Algorithmic Subset of Modelica with Explicit Parallel
LanguageConstructs for Multi-core Simulation. Master
Thesis, Department of Computer and Information Science,
Linköping University, Oct. 2011. URN: urn:nbn:se:liu:diva-
71612

Mahder Gebremedhin and Peter Fritzson. Parallelizing
Simulations with Runtime Profiling and Scheduling, In
Proc..of 8th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, Munich,
Germany, 2017. Published by ACM.

Julia org. Julia Language Documentation, Release 1.0.
Accessed August 31, 2018, www.julialang.org

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter
Fritzson, and Peter Bunus. DrModelica - An Interactive
Tutoring Environment for Modelica. In Proceedings of the

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

217

3rd International Modelica Conference, Nov. 3-4,
Linköping, Sweden, 2003

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena
Buffoni, Arunkumar Palanisamy, Martin Sjölund, Adeel
Asghar, Adrian Pop, Peter Fritzson. API for Accessing
OpenModelica Models From Python. In Proceedings of the
9th Eurosim Congress on Modelling and Simulation,
EuroSim2016, Oulu, Finland, September 12-16, 2016.
Published by IEEE, ISBN 978-1-5090-4119-0, pp. 707--
713; http://eurosim2016.

MathWorks. Matlab product overview.
https://www.mathworks.com/products/matlab.html
Accessed Sept 3, 2018.

Nils Menager, Niklas Worschech, and Lars Mikelsons. A
Toolchain for Rapid Control Prototyping using Rexroth
Controllers and Open Source Software. In Proceedings of
the 10th International Modelica Conference
(Modelica'2014), Lund, Sweden, March.10-12, 2014.

Robert Milner, Mads Tofte, Robert Harper, and David
MacQueen, The Definition of Standard ML - Revised. MIT
Press. ISBN: 0-262-63181-4. Year 1997

Modelica Association. Modelica: A Unified Object-oriented
Language for Physical Systems Modeling, Language
Specification Version 3.4. April 10, 2017. URL
http://www.modelica.org/

Modelica Association. SSP – MA Project for System
Structure and Parameterization of Components for Virtual
System Design. https://www.modelica.org/projects
Accessed Sept 3, 2018.

Kannan Moudgalya, Bhargava Nemmaru, Kaushik Datta,
Priyam Nayak, Peter Fritzson, and Adrian Pop. Large Scale
Training through Spoken Tutorials to Promote and use
OpenModelica. . In Proceedings of the 12th International
Modelica Conference (Modelica'2017), Prague, Czech
Republic, May, 15-17, 2017.

OCaml org. OCaml web site. https://ocaml.org/ Accessed Sept
3, 2018.

OSMC. OpenModelica Users Guide, latest version.
https://www.openmodelica.org/doc/OpenModelicaUsersG
uide/latest/ Accessed September 3, 2018a.

OSMC. OMSimulator 1.0 documentation. Chapter 6 in
https://www.openmodelica.org/doc/OpenModelicaUsersG
uide/OpenModelicaUsersGuide-v1.12.0.pdf Accessed
September 3, 2018b.

OSMC. OMSimulator 2.0 documentation:
https://openmodelica.org/doc/OMSimulator/html/
Accessed September 3, 2018c.

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani. OpenModelica Development
Environment with Eclipse Integration for Browsing,
Modeling, and Debugging. In Proceedings of the 5th
International Modelica Conference (Modelica'2006),
Vienna, Austria, Sept. 4-5, 2006.

Adrian Pop and Peter Fritzson, MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In D. Lightfoot and C. Szyperski, editors,
Modular Programming Languages, Vol. 4228 of Lecture
Notes in Computer Science, pages 211{229. Springer
Berlin / Heidelberg, 2006.DOI:10.1007/11860990 14.

Adrian Pop. Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages. Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1183, June 5, 2008.

Adrian Pop and Peter Fritzson. MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In Proceedings of Joint Modular Languages
Conference 2006 (JMLC2006) LNCS 4228, Springer
Verlag. Jesus College, Oxford, England, Sept 13-15, 2006.

Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson,
Francesco Casella. Integrated Debugging of Modelica
Models. Modeling, Identication, and Control, Vol 35, No 2,
pp. 93-107, DOI: http://dx.doi.org/10.4173/mic.2014.2.3,
ISSN 1890-1328, Aug 2014.

Python Software Foundation. Python Programming Language
web page. https://www.python.org/ Accessed Sept 3, 2018.

Wladimir Schamai. Model-Based Verification of Dynamic
System Behavior against Requirements - Method,
Language, and Tool. Linköping Studies in Science and
Technology, Dissertation No. 1547, Nov 12, 2013. DOI:
10.3384/diss.diva-98107

Wladimir Schamai, Lena Buffoni, Peter Fritzson. An
Approach to Automated Model Composition Illustrated in
the Context of Design Verification. Modeling,
Identification and Control, Vol. 35, No. 2, pp. 79-91, ISSN
1890-1328, Aug. 2014

Wladimir Schamai, Lena Buffoni, Nicolas Albarello, Pablo
Fontes De Miranda, and Peter Fritzson. An Aeronautic Case
Study for Requirement Formalization and Automated
Model Composition in Modelica. In Proceedings of the 11th
International Modelica Conference (Modelica'2015), Paris,
France, September, 21-23, 2015

Martin Sjölund, Peter Fritzson, and Adrian Pop.
Bootstrapping a Compiler for an Equation-Based Object-
Oriented Language. DOI: 10.4173/mic.2014.1.1.
Modeling, Identification and Control, Vol 35, No 1, pp 1-
19, 2014.

Martin Sjölund. Tools and Methods for Analysis, Debugging,
and Performance Improvement of Equation-Based Models.
Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1664, June 1, 2015.

Bernhard Thiele, Thomas Beutlich, Volker Waurich, Martin
Sjölund, and Tobias Bellmann. Towards a Standard-
Conform, Platform-Generic and Feature-Rich Modelica
Device Drivers Library. In Proc. of the 12th Int. Modelica
Conference, Prague, Czech Republic, May 2017.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari,
Peter Fritzson, Rajiv Singh, and John John Kocherry.
Towards Design Optimization with OpenModelica
Emphasizing Parameter Optimization with Genetic
Algorithms. In Proceedings of the 8th International
Modelica Conference (Modelica'2011), Dresden, Germany,
March.20-22, 2011.

Marcus Walther, Volker Waurich, Christian Schubert, and
Ines Gubsch. Equation based parallelization of Modelica
models. In Proceedings of the 10th International Modelica
Conference (Modelica'2014), Lund, Sweden, March.10-12,
2014.

Volker Waurich and Jürgen Weber. Interactive FMU-Based
Visualization for an Early Design Experience. In Proc. of

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

218

the 12th Int. Modelica Conference, Prague, Czech Republic,
May 2017.

Stephen Wolfram. The Mathematica Book, 5th Ed. Wolfram
Media, Inc, 2003.

Wolfram Research. Wolfram System Modeler Documentation
and Overview. http://www.wolfram.com/system-modeler/
Accessed September 3, 2018.

Andreas Wächter and Lorenz. Biegler, On the Implementation
of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Programming,
Mathematical Programming 106 (2006) 25-57. Also:
(Ipopt) https://projects.coin-or.org/Ipopt

Johan Åkesson. Optimica—An Extension of Modelica
Supporting Dynamic Optimization. In Proc. of 6th
International Modelica Conference 2008. Modelica.
Association, March 2008

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

219

Modelica on the Web

Tamas Kecskes1 Patrik Meijer1 Janos Sztipanovits1 Peter Fritzson2 Adrian Pop2 Arunkumar
Palanisamy2

1Institute for Software Integrated Systems, Vanderbilt University, USA,
{tamas.kecskes,patrik.meijer,janos.sztipanovits}@vanderbilt.edu

2PELAB - Programming Environment Lab, Dept. of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden, {peter.fritzon,adrian.pop,arunkumar.palanisamy}@liu.se

Abstract
Modelica has been around as a language from the late
1990’s and since then a range of compilers and editors
have emerged. Currently none of these environments pro-
vide a web-based user interface and follow the approach of
requiring each end-user to install the application (typically
together with a set of dependencies) on their local ma-
chine. This in itself may or may not be of major concern.
Of more importance is their current lack of a seamless col-
laborative approach to modeling. This paper presents the
first web-based collaborative graphical and textual mod-
eling environment for Modelica based on WebGME and
OpenModelica. Graphical composition of Modelica mod-
els from component libraries is supported via WebGME.
Textual editing of the composite model is possible via
OMWebBook.
Keywords: web-based modeling, collaborative modeling,
metamodeling, WebGME, OpenModelica

1 Introduction
In the first part of this paper a web-based, online, col-
laborative Modelica (Fritzson and Engelson, 1998; Fritz-
son, 2014) modeling environment will be presented. It
builds on WebGME (Generic Modeling Environment) and
currently existing Modelica compilers, specifically Open-
Modelica and JModelica.org. This paper will demonstrate
how WebGME, and to a certain degree metamodeling in
general, can be used to rapidly create tailored modeling
environments. The environment already includes key as-
pects such as collaboration, centralization of storage and
distribution of computing resources.

This paper also gives an overview of OMWebBook and
the potential integration points between these two web-
based Modelica editors.

1.1 Terms and Acronyms used in this Paper
• Metamodel: defines the language and processes

from which to form a model.

• DSML (Domain Specific Modeling Language):
special-purpose languages designed to solve a partic-
ular range of problems.

• Strong relationship: child node is
existence-dependent on the parent node.

• Meta-node: a node in a WebGME model
hierarchy that is also part of the metamodel.

• Attribute: textual or numerical information
as part of a node.

• Pointer: a named, directed, one-to-one relationship
among nodes

• FCO: first class object that represents the atomic
building block of a model in WebGME.

• ROOT: a container element that embeds all content
of a project.

2 WebGME Background
WebGME is a web-based, visual modeling framework de-
veloped at Vanderbilt University (Maróti et al., 2014).The
meta-programmable tool allows the creation of Domain
Specific Modeling Language based modelers. It has a
centralized, git-like model storage which allows multiple
users to work on the same model simultaneously as well as
creating separate branches that can be merged later. It also
provides multiple extension points to allow fine-tuning of
the user experience. The developer can define the visual
appearance of different model elements or completely re-
place the entire model visualization. They can also imple-
ment their own model interpretation - like code generators
or model verifiers - with the help of JavaScript based plug-
ins.

3 Metamodeling
The WebGME framework provides a metamodeling
paradigm resembling that of UML (Unified Modeling
Language) (Lattmann et al., 2016). In contrast to tradi-
tional metamodeling frameworks, WebGME blurs the bor-
der between the metamodel and DSML models. Both are
governed by the same datamodel that defines two strong
relationships, inheritance and containment. These are sin-
gle rooted trees over the same set of nodes with the inher-
itance root FCO (First Class Object) and the containment

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154220

220

root ROOT. The containment ROOT is not part of the in-
heritance tree nor the metamodel. The FCO is the pro-
totypical base of all other nodes and defines the "name"
attribute. Through prototypal inheritance, visualized as a
red edge with a hollow arrow head in Figure 1, all nodes
inherit the definition of the "name" attribute. Containment
definitions are visualized as black edges with a filled dia-
mond head. In Figure 1 the FCO is the base of PortBase,
however a ComponentBase can contain a PortBase. All
concepts in the metamodeling paradigm, except for inher-
itance, are definitions and should be view as can haves.

Pointer defintions in WebGME metamodeling environ-
ment are visualized as blue edges with an open arrow head
as seen in Figure 2. Connections in WebGME are con-
structed using a pair of pointers, specifically src (source)
and dst (destination). Nodes with these two pointer def-
initions are inferred to be connections and typically are
visualized as edges when rendered in a DSML editor. The
last metamodel concept used in this paper is the Abstract
property. Nodes with this property cannot be instanti-
ated in the model hierarchy. Even though a Model in
Figure 1 can contain ComponentBase, the Component-
Base itself cannot be instantiated; however, the Model-
ica.Mechanics.Translational.Components.Mass from Fig-
ure 3 can be instantiated. For a full overview of the
metamodeling concepts of WebGME refer to (Meijer and
Mavridou, 2018) or (Maróti et al., 2014).

3.1 The Modelica Domain

Figure 1. The base concepts for the Modelica Domain in We-
bGME

Modelica is at its core a declarative equation-based lan-
guage extended with a rich type system, object-oriented
features, functions, graphical annotations etc. (Fritzson,
2014). In close relation with the language is its standard

library, the MSL (Modelica Standard Library). MSL is
maintained by The Modelica Association and currently of-
fers over 1300 components, many of which are ready-to-
use, parameterized building blocks for modeling of com-
plete dynamic systems. The target of the DSML and
modeling environment presented in this paper is to offer
a graphical editor building such systems. The approach
taken here is to extract the interfaces and parameters from
the MSL components and store this information as proto-
types in WebGME. Before constructing any of these pro-
totypes or meta-nodes, a metamodel with the base con-
cepts was created. In Figure 1 the central concept is the
Model, which can contain ComponentBases and Connec-
tionBases. In the finished editor the Model will act as the
"drawing canvas" where dynamic systems of MSL compo-
nents will be composed. ModelicaURI is an important at-
tribute defined at the ComponentBase. In the derived MSL
components in WebGME the ModelicaURI gets populated
with the unique path to the associated MSL component.

Figure 2. Metamodel for the Modelica connectors

On the left-hand-side of Figure 3 a sample of MSL
components in WebGME are presented from the meta-
view. To avoid name collisions, the ModelicaURI is also
used as the name attribute of the meta-nodes. On the right-
hand-side of Figure 3 the same components are displayed
from the containment view. In contrast to the meta-view,
this view shows what actual characteristics these proto-
types do have, rather than what they can have. Those
familiar with MSL probably recognize the flange con-
nectors appearing as semicircles along the borders of the
boxes. These connectors are not technically part of the
metamodel. When prototypes are instantiated by the user
on the canvas (mid section in Figure 5) the instances in-
herit all properties of their prototype. This not only in-
cludes the default values of the attributes, but also the

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154220 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

221

meta-definitions and the contained children nodes.
The MSL components are imported using a script that

extracts the connectors and parameters from the Model-
ica code using the OpenModelica parser. WebGME nodes
are created from the extracted data and organized in Do-
main-folders. The base metamodel contains predefined
Ports and Connections that map to connectors of MSL
for the purpose of capturing compatibility between differ-
ent Modelica connectors. In Figure 2 a sample of these
are presented. In the case of acausal connections, where
direction does not matter, the source and destination are
interchangeable. For directed value flows however, the
connections are forced to be made from output to input.
Constraints like these are captured by the WebGME API
during modeling and although not necessary for a Model-
ica domain - a single port and connection concept would
suffice - it allows for a more guided user-experience.

Up to this point the portion of the metamodel needed for
governing the composition of systems of Modelica com-
ponents from the Modelica Standard Library has been ex-
plained. The WebGME-DSS framework supports gener-
ation and simulation of Modelica code, see section 4.3,
and in order to provide a closer link between models and
simulation results the concept of SimulationResult is intro-
duced, see Figure 1. Instances of these are created when-
ever a Model is invoked to be simulated. As the simula-
tion progresses the different attributes are populated with
the inputs and outputs to and from the Modelica com-
piler and runtime environment. In order to not overflow
the models with large amount of data the asset attribute
of WebGME is utilized. The asset attribute only stores a
lightweight SHA-256 hash in the model acting as a key to
the underlying artifact (typically stored at the file-system
of the server). To maintain a mapping between the results
and models, the SimulationResult node is populated with
a copy of the Modelica model enabling the user-interface
to map the plotted variables back to the graphical model.

4 The User Interface
In the current section we will introduce the WebGME Dy-
namic Systems Studio, that has the goal of introducing
Modelica on a beginner level by allowing visual compo-
sition of dynamic systems composed of components from
the Modelica Standard Library.

4.1 Project Organization
The landing page - shown on Figure 4 - has two main
functionalities. The user can create a new project either
by selecting a specific domain from MSL as the basis of
the project or by choosing the Hybrid Domain that allows
selection of multiple libraries. These selections are not fi-
nal, and only instructs the system to seed the project with
the necessary information and can be changed any time
during model editing.

The page also lists all the projects that the user has ac-
cess to. The items not only show the name of the project,
but highlight the applied libraries, giving extra informa-

Figure 3. MSL models from the meta- and containment-
perspective.

Figure 4. The landing page listing the user’s current projects.

tion to the user. To modify access rights of projects, create
organizations, view information about other users on the
same deployment, etc. a link to the default WebGME pro-
file page is available in the top-wright corner.

4.2 Modeling
The main page of the tool is the editor itself (Figure 5 and
6). It has two views - selectable on the bottom center of
the page - the Modeling where the user can compose and
initiate simulations of the system, and the Results where
the progress of simulations and finally the time traces of
the simulated variables can be plotted. The toolbar at the
top provides zooming function to help in the navigation
on larger, more complex systems. It also have a saving
button to allow creating notes for the current version of
the model.

The left sidebar hosts a part-browser where the ele-
ments of the used libraries are listed. These elements can
be instantiated and put into the system by a simple drag
and drop onto the main canvas. In addition to the avail-
able components, the sidebar also implements several but-
tons for important features. The first in the list is a check
function, that verifies if a syntactically correct Modelica

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154220

222

Figure 5. From left to right; the part-browser, canvas and at-
tribute/parameter editor.

code can be generated from the model. If something is
wrong - like two elements have the same name - the re-
sult dialog list the error providing a link, that will select
the faulty node. The second button initiates a simulation.
First, the user provides some basic parameters regarding
the simulation, then, depending on how the server is con-
figured, the collection of the generated necessary artifacts
are either downloaded or the simulation gets started on the
server. The third button brings up a multi-selection list of
the available libraries. The final button shows the history
dialog. The default view of the dialog lists the versions
that were marked by the user - with the help of the save
button - plus the current state of the project. As the We-
bGME creates micro-commits and stores even the small-
est change, the user can switch to a detailed view, where
all the created commits are visible. For every entry of the
list, the user can reset the work to that given state or the
difference between that and the current version can be vi-
sualized.

Figure 6. The port compatibility defined in the metamodel re-
flected in the modeling view.

With components on the main canvas, the user can edit
the parameters by double-clicking on it or selecting and
clicking the edit button. Hovering over the interfaces of
the nodes, the user can initiate the creation of a connec-
tion. In connect mode, a dashed line from the source in-
terface to the mouse pointer notifies the user about the
ongoing task. Whenever the user reaches a valid target
port-node, those interfaces will be highlighted guiding the
user. If clicked on a correct endpoint, the connection is
made while leaving the main canvas or clicking anywhere
else cancels the operation. Each element visualizes its pa-

rameters according to its specification to give the user the
most information upfront.

4.3 Simulation and Results

Figure 7. The plotted variables are highlighted in the originating
model.

The result view of the tool provides the same areas, but
with modified functionalities. The side-bar contains the
list of the simulations. The items are highlighted accord-
ing their state - whether they are running or completed.
Once the simulation is finished, the structured list of vari-
ables becomes available, and by selecting the interesting
ones, the user will initiate a plot visualization. The plot
is visualized in the top half of the main canvas, while the
bottom half shows the model. The model version shown is
a copy of the one at the time of the start of the simulation
- and this view is read-only - and the portions that own the
plotted variables are highlighted with matching colors to
inform the user about the content of the chart. To allow
the user to analyze the result in depth, the chart can be de-
tached from the screen - with the button at the top right
corner - which changes the upper portion of the main can-
vas allowing the creation of multiple charts and individual
control of their content. Once the user is done with the
detached graphs they can be closed with a single button
click. If the server run into issues during execution or the
simulation is not ready, the top half of the main canvas will
show the console output of the execution of the simulation
engine.

5 System Architecture
There are a number of interacting components of the sys-
tem that provides the user the WebGME-DSS interface de-
scribed in the previous section. In the center of the system
lies the WebGME server. Multiple instances can serve
a single deployment which allows greater capacities in
terms of connected users and a way of horizontal scaling.
To enable multiple servers to work together, a Redis mem-
ory database needs to be added to the system. Through a
publish/subscribe service, the Redis (Redis) provides fast
and efficient communication between servers that allow
notification to users who might be working on the same
project but connected to different servers. Also an HTTPS
reverse proxy - like Ngnix (NGINX) - becomes necessary

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154220 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

223

(Replicas)

MongoDB
WebGME

Server

Docker Containers

Modelica Compiler
& Runtime

WebGME
Model API

HTTPS
Reverse Proxy

WebGME
Server(s)

Redis

https://webgme-dss.isis.vanderbilt.edu

Figure 8. Overview of the different applications and services
making up the framework.

to route the requests based on their session id, enabling
users to communicate with a single server. This proxy
also enhances the security of communication so its use
should be considered in a single server configuration as
well. MongoDB (MongoDB) is responsible for storing
all project related data and multiple instances - so called
shards - can be leveraged for bigger scalability. The fi-
nal actors of the system are the Modelica simulators. The
server connects to them and runs the simulation, gather the
results. They are usually packaged in a Docker (Docker)
container for easy deployment and minimal configuration.
when it comes to vertical scaling, these components can
live in a single computer or spread throughout multiple
ones.

6 OMWebBook
There is currently a strong trend in integrating documents
and computation. This is most visible in web technol-
ogy where computational facilities are increasingly being
embedded within web pages. However, facilities for user
programming and mathematical modeling are still largely
absent in web pages. Mathematica (Wolfram, 2003) pio-
neered the idea and implementation of active interactive
electronic notebooks. The Mathematica notebook facil-
ity is an interactive WYSIWYG (What-You-See-Is-What-
You-Get) realization of Literate Programming, a form of
programming where programs are integrated with docu-
mentation in the same document. However, the origi-
nal implementation of Literate Programming was a non-

interactive system integrated with the document process-
ing system LaTex.

Figure 9. OMWebBook with editable models, simulations, and
plots.

Traditional documents, e.g. books and reports, essen-
tially always have a hierarchical structure. They are di-
vided into sections, subsections, paragraphs, etc. Both
the document itself and its sections usually have headings
as labels for easier navigation. This kind of structure is
also reflected in electronic notebooks. Every notebook
corresponds to one document and contains a tree struc-
ture of cells. A cell can have different kinds of contents,
and can even contain other cells. The notebook hierar-
chy of cells thus reflects the hierarchy of sections and
subsections in a traditional document. The OMNotebook
notebook facility in OpenModelica supports several kinds
of contents, for example cells with executable Modelica
model classes, commands, documentation, pictures, and
2D graphs. However, OMNotebook is an off-line tool, part
of the OpenModelica tool suite, that has to be installed be-
fore use.

Therefore, we have developed OMWebBook (Fritz-
son, 2017), (Figure 9) which is an on-line interac-
tive web-based electronic book (http://omwebbook.
openmodelica.org/). This is similar to OMNote-
book, but textual model editing and simulation is per-

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154220

224

Figure 10. The VanDerPol sub-document showing a cell with a
Modelica model, simulation commands, and plot results.

formed in a web-browser. Simulation is performed by a
dedicated simulation server. Thus, the user need not in-
stall OpenModelica on a computer in order to edit models
and run simulations. Editing and simulation can even be
done from smartphones or tablets. Figure 9 shows part
of the OMWebBook introductory Modelica teaching ma-
terial called DrModelica (Lengquist-Sandelin et al.), start-
ing with the simplest possible HelloWorld model that the
student can edit, simulate and plot in the web browser.

Figure 10 shows the model, documentation, simulation
and plotting of the VanderPol model.

However, so far OMWebBook has had one big draw-
back - it has lacked support for web-based graphic edit-
ing of Modelica models. This can be seen in the chapter
about simplified modeling of electric and hybrid vehicles,
starting with the simple electric vehicle graphical model
depicted in Figure 11.

Figure 11. Connection diagram of a first, very simple, electric
vehicle model.

The reader was previously instructed to download and
install OpenModelica in order to edit and simulate this
graphic model. However, this is no longer necessary
with the combination of the WebGME web-based graphic

model editor and the OMWebBook text editing and sim-
ulation capabilities. Now, also graphical models can be
embedded in an on-line electronic book and edited and
simulated on the web.

7 Future Work
This proof of concept implementation proved to be an ef-
ficient integration platform that can bring Modelica closer
to end-users and allow them to focus solely on the system
they try to describe. By integrating analysis tools we plan
to provide a broader spectrum of functions to the users.
Also, by better integrating the OMWebBook code-editor
into the WebGME-DSS the user will be able to describe
more detailed behavior for the components of their sys-
tems. The code editing also supports syntax highlighting
as well as checks for compilation errors. Future work will
address the enlargement of available components. This
can be done in multiple ways. More MSL elements will
be curated into the system and a library importer will al-
low developers to include their custom Modelica libraries.
Finally, a special visualization will provide a platform for
the user to create new components by using inheritance
and a visual description language.

References
Docker. Docker - Build, Ship, and Run Any App, Anywhere.
https://www.docker.com/. Cited 2018 May 11.

Peter Fritzson. Principles of Object Oriented Modeling and Sim-
ulation with Modelica 3.3: A Cyber-Physical Approach. Wi-
ley IEEE Press, 2014. ISBN 9781-118-859124.

Peter Fritzson. Introduction to Modelica with Examples in
Modeling, Technology, and Applications using OMWebBook
http://omwebbook.openmodelica.org/. Techni-
cal report, Linköping University, PELAB - Programming En-
vironment Laboratory, 2017.

Peter Fritzson and Vadim Engelson. Modelica — a unified
object-oriented language for system modeling and simula-
tion. In Eric Jul, editor, ECOOP’98 — Object-Oriented Pro-
gramming, pages 67–90, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg. ISBN 978-3-540-69064-1.

Zsolt Lattmann, Tamás Kecskés, Patrik Meijer, Gábor Karsai,
Péter Völgyesi, and Ákos Lédeczi. Abstractions for modeling
complex systems. In International Symposium on Leverag-
ing Applications of Formal Methods, pages 68–79. Springer,
2016.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritz-
son, and Peter Bunus. Drmodelica - a web-based teaching
environment for modelica.

Miklós Maróti, Tamás Kecskés, Róbert Kereskényi, Brian Broll,
Péter Völgyesi, László Jurácz, Tihamer Levendovszky, and
Ákos Lédeczi. Next generation (meta) modeling: Web-and
cloud-based collaborative tool infrastructure. MPM@ MoD-
ELS, 1237:41–60, 2014.

Patrik Meijer and Anastasia Mavridou. How to build a design
studio with webgme. 05/09/2018 2018. ISSN ISIS-18-101.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154220 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

225

MongoDB. MongoDB: MongoDB for GIANT Ideas. https:
//www.mongodb.com/. Cited 2018 May 11.

NGINX. NGINX: High Performance Load Balancer, Web
Server, Reverse Proxy. https://www.nginx.com/.
Cited 2018 May 11.

Redis. Redis. https://redis.io/. Cited 2018 May 11.

Stephen Wolfram. The Mathematica Book. 5th Ed. Wolfram
Media Inc, 2003. ISBN 1579550223.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154220

226

A Modelica Library for Thin-Layer Drying of Agricultural
Products

Augusto Souza1 Brian Steward1 Carl Bern1

1Agricultural and Biosystems Engineering, Iowa State University, USA,
{acsouza,bsteward,cjbern}@iastate.edu

Abstract
Grain drying is highly influenced by environmental and
technical factors. Thus, it is essential to track the psy-
chrometric properties of the drying air, besides other grain
characteristics, for successful control of this operation.
Mathematical modeling of a drying process can be com-
plicated and non-trivial when considering all the involved
factors. Based on theoretical differential equations, this
study calculates different aspects of grains during their
drying process. Modelica and Dymola were used to model
blocks of thin-layers of corn, barley, and soybean. The
modeled blocks could be used to reproduce a simulation
of a grain drying process and keep track of the products
moisture content and temperature, besides other psychro-
metric properties of the air. The developed model has the
potential to be used to either to compare to a real grain
drying process or as a teaching instrument for grain han-
dling.
Keywords: agriculture, grain drying, Modelica, corn, soy-
bean, barley

1 Introduction
Moisture content (MC) is an important factor when man-
aging stored grains in agriculture. The amount of water
in a agricultural product can determine its value, over-
all quality, and commercialization. Excess moisture can
result in spoilage and insect proliferation. Under im-
proper conditions, stored grain can be a vector of harmful
fungi that produce carcinogenic aflatoxins (Christensen
and Kaufmann, 1965; Lacey, 1989). Meanwhile, over-
dried grains result in reduced mass when sold and in
wasted drying energy.

Grain drying is a commonly used process to remove
water from grains. For commercialization purposes, the
USDA assigns grades for grains depending on the qual-
ity of the product (USDA, 2013). The amount of dam-
age caused by heat is one of the factors that determine the
final grade. Additionally, careless grain drying can de-
crease grain‘s’ overall quality. Indeed, Wall et al. (1975)
showed that corn can lose protein content during drying
for temperatures equal or higher than 160 0C. Thus, a neg-
ligent control of the drying process can lead to a decrease
in grain quality and, consequently, commercial value.

Grain drying is profoundly influenced by different en-

vironmental and technical factors. For instance, the psy-
chrometric condition of the heated air will determine the
course of the drying process. Thus, it is essential to mon-
itor these thermodynamic and physical properties for suc-
cessful control of the operation. Additionally, the dehy-
dration of biological material is, likewise, influenced by
its chemical composition, actual moisture content, initial
conditions, and other aspects. Depending on the type of
dryer, the moisture content of the product will be time
and space dependent. Thus, it is challenging to pre-
dict the exact MC value within this non-linear process
(Brooker et al., 1992). Mathematical modeling of a dry-
ing process can be non-trivial when considering all the
factors involved. Modelica has the advantage of organiz-
ing digitally-described components in libraries that can be
exported to distinct models and used in different applica-
tions. For instance, an encapsulation of grain properties
into objects could be used to simulate different drying sit-
uations without the necessity of coding and programming.

An early report documented the design of an analog
computer for deep-bed drying grain simulation (Baugh-
man et al., 1971). The authors developed equations to
calculate moisture content as a function of time and loca-
tion for dry shelled corn. With this work, an analog com-
puter was able to accurately estimate MC for the grain.
There are more recent examples of modeling and simu-
lating grain drying using different tools and techniques.
Khatchatourian et al. (2013) developed software to solve
a mathematical model of a cross flow dryer for soybeans.
The model was validated using a test stand developed by
the authors. The developed model showed a good fit with
the validation model, including the energy saved using the
cross flowing drying method. However, it would be in-
teresting to see more flexibility in the types of grain used
and their drying characteristics. More advanced methods
have been used to study the drying process. Azmir et al.
(2018) used a combination of computational fluid dynam-
ics (CFD) and discrete element method (DEM) techniques
to model and simulate grain drying in a fluidised bed for
corn, where the simulation data were consistent with the
experimental data. Additionally, Jia et al. (2002) devel-
oped computer simulation software to calculate drying for
a single grain kernel. According to the study, investigating
a single kernel in a bulk of grains can indicate the overall
quality of the mass. The authors studied the effects of sev-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154227 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

227

eral variables in different grains using MATLAB 6.0 ®.
Although a graphical user interface (GUI) was developed
to facilitate use, this software requires a paid license prior
to use. It would be difficult to have access to such a tool
even for those that can afford it. Modelica has the advan-
tage of being used with open-source software, and with a
relative ease of use. Even though it has been used to model
different biological or thermal processes (Jain et al., 2017;
Aurousseau et al., 2015), few examples exist of its use for
agricultural purposes.

Modelica can be used in simulation platforms to design
models of dynamic systems. Simulation is used to analyze
models and compare the results with what is expected in
a real-life situation. Dymola is one platform where Mod-
elica is used to simulate physical models through its li-
braries. Dymola has the flexibility to change how a system
could work by modifying parameters inside each compo-
nent, how they are connected, and other different condi-
tions.

The objective of this work was to develop a grain dry-
ing process model for barley, corn, and soybean by taking
into consideration the most relevant aspects that influence
the process. Even though soybean is an oilseed, during the
course of this paper it is referred as a grain. The Modelica
language was used with the Dymola (Version 2017, Das-
sault Systèmes) environment to create models and pack-
ages related to this content. Simulation results were com-
pared to experimental data and the error between these two
were calculated. The models could be an agricultural tool
for grain monitoring, as well as implemented for didactic
reasons for students learning about the drying process.

2 Methods and System Modeling
2.1 Theoretical Modeling of a Thin Layer

Drying
For modeling purposes, grain drying is a thermodynamic
process of simultaneous heat and moisture transfer. Dur-
ing this process, air temperature changes as it crosses the
layer of grains, as can be observed from Figure 1. Latent
heat in the air is transferred to the grain, and at the same
time, free water is removed from inside the grains. For this
model, the air would flow from the bottom and up through
all the grain layers until the exiting at the top.

The humidity ratio is defined as the mass of water va-
por per unit mass of dry air. This psychrometric air prop-
erty is dependent on air temperature and relative humidity.
Therefore, during drying, the air moving across the grain
layer will remove the moisture, increase the humidity ra-
tio, and, consequently, decrease the capacity of the air to
remove water from the grain in the next layer.

The equilibrium moisture content (Me) of the grain is
also dependent on the psychrometric properties of the air.
Me is achieved when the grain internal vapor pressure is
equal to the vapor pressure of the environment (Brooker
et al., 1992). That is, if the vapor pressure of the envi-
ronment is less than the vapor pressure inside the prod-

Figure 1. Schematic of the elemental stationary thin layer
(thickness = dx) connected with other layers

uct, the material will lose (desorb) moisture. When the
air is heated, this vapor pressure decreases; however, as
the air removes the moisture from the grain, the pressure
increases and therefore reduces the drying ratio of the op-
eration.

Differential equations, based on laws of heat and
mass transfer, and psychrometric equations, were used
according to different sources (Brooker et al., 1992; Pabis
et al., 1989). Assumptions are made for a thin layer
modeling:

1. The volume shrinkage of the kernels was negligible
for the calculations.

2. The temperature gradients for an individual layer
were constant.

3. The model did not take into consideration the con-
duction between kernels.

4. The dryer walls were considered adiabatic and with
negligible heat capacity.

5. Empirical and theoretical equations were used for pa-
rameter calculation. All these equations were consid-
ered accurate.

Four major dynamic variables were calculated in this
model as functions of time:

• M - Moisture content of the grain (decimal, dry ba-
sis)

• Tp - temperature of the grain (oC)

• W - humidity ratio (kg of water vapor per unit kg of
dry air)

• Ta - temperature of the air (oC)

Equations 1 from 4 were used to analyze the grain dry-
ing behavior during time of a thin layer.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154227

228

dM
dt

=−k× (M−Me)

(1)
dTa

dt
=− h′a

Gaca +GacvW
× (Ta −Tp)

(2)

dTp

dt
=

h′a× (Ta −Tp)+ [h f g + cv(Ta −Tp)]×
(
Ga

dW
dx

)
ρpcp +ρpcwM

(3)
dW
dx

=−
ρp

Ga
× dM

dt
(4)

Where,
k - drying constant (h−1)
Me - equilibrium moisture content (decimals, wet basis
w.b.)
h’ - convective heat transfer coefficient (J.m−2 ◦C−1h−1)
a - particle surface area per unit bed volume (m2.m−3)
Ga - air flow rate (kg.h−1m−2)
ca - specific heat of dry air (J.kg−1 ◦C−1)
cv - specific heat of water vapor (J.kg−1 ◦C−1)
cp - specific heat of dry grain kernels (J.kg−1 ◦C−1)
h f g - heat of evaporation (J.kg−1)
dx - layer thickness (m)
ρp - density of the material (kg.m−3)

These equations are highly dependent on temperature
and moisture differences. The rate at which moisture
changes in the mass of grain will depend on its equilib-
rium moisture content (Me), which, as the name suggests,
will be a point where the grain will be neither losing or ab-
sorbing water. This equilibrium is reached depending on
the air temperature, relative humidity, and other air tem-
peratures, which are also variables during this dynamic
process. Thus, this set of equations physically influence
and are dependent of each other.

For this case, the layer of grain was considered thin,
in such a way that, the gradient of a variable in a single
layer is linear. In other words, the solution of a variable
derivative related to the thickness (for example, dW/dx)
would simply be the difference of this variable value in the
beginning and at the end of the layer divided by the thick-
ness of the same (∆W/dx). With these four essential equa-
tions and psychrometric functions, a drying model was de-
signed using the Modelica software.

Moisture Ratio (MR) is calculated using equation 5 and
can be interpreted as the portion of water that can still
be removed from the grain, using the equilibrium mois-
ture content as a reference. That way, the MR of different
grains can be compared independent of the initial moisture
content.

MR =
M−Me

M0 −Me
(5)

The model used to calculate the equilibrium moisture
content (Me in dry basis or d.b.) was the modified Hender-
son equation solved for Me (Brooker et al., 1992);

1− Pv

Pvs
= e−KMe (Ta+CMe)(100×Me)

NMe (6)

Where,
Pv - vapor pressure of water (Pa)
Pvs - saturated vapor pressure of water (Pa)
KMe ,CMe ,NMe - constants associated with equation 6, as
presented in Table 1

Table 1. Constants associated to the Equilibrium Moisture
Content Equation

Constant Barley Corn Soybean

KMe 2.29x10−5 8.65x10−5 30.53x10−5

NMe 2.0123 1.8634 1.2164

CMe 195.267 49.810 134.136

To model the drying process, thermal and physical
properties for each grain had to be calculated and this,
also, had an influence in the procedure. These proper-
ties were equivalent particle radius, specific heat of the
product, latent heat of vaporization, grain density, and the
product drying constant. Each of these variables had as-
sociated constants that were used in empirical models to
be calculated. It is beyond of the scope of this paper
to list the value of all of them, but they were retrieved
from different sources for all the studied grains (Bortolaia
et al., 2010; Brooker et al., 1992; Bruce, 1985; Otten and
Samaan, 1980).

2.2 Modelica Models
The models were developed using the Modelica language.
Two main packages were created, Dryer and Grain. The
Dryer library contained all the models and classes related
to the dryer while the Grain library had the objects mod-
eled associated to the grains and their features.

For the Dryer library, an AirCon connector was cre-
ated to pass the values for air temperature (Ta), pressure
of water vapor (pw), air humidity ratio (W), and air veloc-
ity (Va), as noted in the code:

connector AirCon
import SI = Modelica.SIunits;
SI.Temperature Ta(displayUnit="Kelvin") "

Air temperature (K)";
pw "partial pressure of water vapor in

air";

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154227 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

229

SI.MassFraction W(min=0) "air humidity
ratio";

SI.Velocity Va(start=10, displayUnit="10"
) "Air velocity";

end AirCon;

These are features that were used in all the models that
required air properties. Also, this connector was used to
calculate the psychrometric properties of the air at any
point in the drying process. For the Grain library, this
same unidirectional-flow AirCon was used for the grains’
layers object-model.

Inside the Dryer package was located the Dryer_Input
and AirExit models, besides the AirCon connector.
Dryer_Input was used to describe the initial conditions
of the dryer. It was possible to input the initial air tem-
perature (oC), the drying temperature (oC), initial relative
humidity (%), dryer diameter (meters), and air velocity
(m/sec).

For each grain, a Layer model was designed inside the
Grain Package, which contained the variables and con-
stants associated with the grain. Each Layer had two Air-
Con connectors for the air input and output. The connec-
tor at the exit of the layer could be linked to the next layer.
Thus, the air that leaves the first layer would be used to dry
the second one. The initial thickness (m) and MC (deci-
mal, w.b.) of the grain layer could be logged in this model.

A dryer operation simulation contained a stack of thin-
layers, modeled in Dymola, attached to the air input, as
observed in Figure 2. The layers were connected in such
manner that the air used in the first layer would exit and
enter the second layer with different psychrometric prop-
erties; thus, having the properties after the air removes
moisture from the initial layer. At the end, the final psy-
chrometric properties were calculated in the developed
Output class. This class represents the exit of the dryer
and it could be used to observe the psychrometric proper-
ties of the exiting air.

The time unit used for the simulation was seconds, even
though the results are reported in hours. This distinction
is important to emphasize because the simulation steps are
based on this unit and conversions should be made conve-
nient for the involved variables. The International System

of Units (SI) was used for all other units using the Model-
ica Standard Library.

Different scenarios were simulated to test the model.
Three thin layers of the studied grains were dried under the
same conditions and duration. The initial moisture content
was 35% (w.b.) and the layer was 0.25 meters thick. The
grain temperature was originally at 25 ◦C, and the drying
air temperature was 70 ◦C for this simulation. The relative
humidity of the air, before entering the Dryer, was set as
50%. The drying duration was two hours and the simula-
tion used the Dassl algorithm (tolerance = 0.0001) to find
the solution for this model. Additionally, fifty thin layers,
with a thickness of 0.25 meters each, were stacked, rep-
resenting the drying of a deep bed column of 12.5 meters
of grain. The simulation had a duration of 10 hours. The
outside air was set to a temperature of 30 ◦C and relative
humidity of 50%. Also, the effect of three different tem-
peratures were investigated for thin layers of corn. Three
layers of corn, with an initial product temperature of 15
◦C, were modeled at three different temperatures (25, 50,
and 90 ◦C) during a drying period of 3 hours.

To validate this model, the simulation results were com-
pared to different experimental values using similar char-
acteristics of the designed model results (Table 2). For
instance, all the works consulted used thin layers of grains
in static beds at different temperatures (Markowski et al.,
2010; Li and Morey, 1984; Freire et al., 2005).

3 Modeling Outcome and Simulation
Results

The two main components modeled were the grain layers
models and the air input ("Grain"Layer and Dryer_Input).
Some of the parameters for both components would take
default values if not specified by the user. For the
Dryer_Input component, the inputs needed were Out-
side Air Temperature (T0), desirable Drying Temperature
(Ta), Relative Humidity (RH), Bin Diameter (D), and
Air Flow Velocity (Va). All these were parameters of
the Dryer_Input component. The CornLayer component
needed three inputs: Thickness of the grain layer (dx), Ini-
tial MC (M0), and Initial Temperature of the Product (Tp).

Table 2. Experimental data collected for comparison

Parameters Barley (Markowski
et al., 2010)

Corn (Li and Morey,
1984)

Soybean (Freire et al.,
2005)

Initial Moisture Content (%, w.b.) 17.5 26 Results in Moisture Ratio

Layer Thickness (mm) 333.0 ± 5.0 5.91 27.0

Air velocity (m/s) 30.1 ± 0.1 0.3 1.75

Initial Air Temperature (◦C) 33, 41, 48, and 56 ± 2 27, 49, 71, 93, and 116 31.5, 45, and 58.5

Initial Product Temperature (◦C) Around 10 Room temperature Close to air temperature

Drying duration (hours) 3 10 6.666

Initial RH (%) ±35 - -

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154227

230

The first two were parameters of the model, while the last
one was considered as a variable since it changes with time
as it exchanges heat with the air.

3.1 Thin-layer models

The drying of thin layers was simulated for each grain
studied in parallel (Figure 3(a)). Although Figure 3 shows
the source of hot air from the same dryer, there was no
separation in the flow of air in the simulation; they all had
the same input air properties from the Dryer_Input block.

The change in the Moisture Ratio (MR) was observed
for the three grains (Figure 3(b)). At the end of the sim-
ulation, the final MR value for corn was 0.319, 0.300 for
soybean, and 0.074 for barley, thus, the latter had a faster
drying rate compared to corn and soybean at 70 ◦C. This
difference is expected since the grains have different prop-
erties based on their chemical compositions and physical
characteristics that influence the exchange of water with
the air. However, for this example, two hours was not
enough to completely dry the grains or reach a steady state
on the MR.

Figure 2. Example of stacked thin corn layers blocks attached
to the Dryer_Input and Air_Exit blocks

3.2 Deep bed simulation for corn

The MR was similar at the beginning of the drying; how-
ever, the difference between the layers increased as the
drying continued,as observed in Figure 4. At the end of the
simulation, the difference between the moisture content of
the grains in the first and last layers was of 2 percentage
points. This demonstrates that, when the air crossed the
last layer, it was already carrying moisture from the other
layers, which decreased the capacity of the air to remove
water from the grains at the end of the dryer. Compar-
ing the the humidity ratio (HR) during the time for these
two layers, reiterates how the air was filled with moisture
and had its drying capacity reduced at the end of the grain
column (Figure 5). While air travels through the column
of grain, it absorbs water vapor from the grains and in-
creases its HR. As expected, the humidity ratio was higher
at the beginning of the drying simulation and decreased
over time since the grain had less water to be absorbed.
The changes for HR over time for the first layer are less
perceptible compared to the last one, indicating that the
humidity ratio exiting the last layer is clearly higher than
the first layer‘s HR.

An AirSensor component was connected after the last
layer of the deep-bed simulation to measure the psychro-
metric properties of the air. Figure 6 shows three air prop-
erties at the exit of the dryer: saturated (pws) and par-
tial (pw) pressure of water vapor, and Relative Humidity
(RH). It can be observed that the pws was nearly constant
(4.23 kPa) during the simulation, which means the air was
fully saturated with water vapor at the exit of the last layer
for the entire drying time. Meanwhile, the pw had an in-
crease before descending until the end where it reached a
final value of around 1.90 kPa. That is, the water vapor
molecules were exerting less pressure in moist air. This
can be associated with the removal of moisture from the
grains with time and less free water for the dry air to ab-
sorb. RH is the ratio of water vapor in the air and the
pressure when it is saturated, i.e., it can be expressed in
terms of pw/pws. Similarly to the pw trend, the RH had
a sudden raise before decreasing, as observed in Figure 6.
The final value for RH was 0.449, corresponding to the
ratio pw/pws at the end of the simulation.

3.3 Temperature Comparison

The air temperature has a significant role during the drying
process of biological materials. It will affect the rate of the
process and the equilibrium moisture content of the prod-
uct, as observed from Equations 1 to 4, and 6. The sim-
ulation results for MC are illustrated in Figure 7. As ex-
pected, the higher the air temperature, the faster the grain
dried. The layer of corn reached MC of less than 5% in
three hours, under air temperature of 90 ◦C. Meanwhile,
the layer with the same characteristics, but with the air
temperature at 25 ◦C, achieved a final MC value around
15%. Even though the models results were consistent with
what was predicted, the simulation results needs to be val-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154227 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

231

(a) (b)

Figure 3. Thin layers connected to the dryer (a) and Simulation results (b) for Barley, Soybean, and corn

Figure 4. Moisture Ratio over time for the first and last layer of
a deep bed simulation

idated with experimental results to verify the precision of
the Modelica library.

There is an extensive discussion about the use of high
temperatures for faster drying over the risk of losing grain
quality due to heat damage or loss of dry mass. This could
be used as a comparative tool to real situations to make
the best decisions about the amount of time for the grain
to dry.

4 Model Validation
The simulated results were compared to experimental
data from different sources for each of the grains studied
(Markowski et al., 2010; Li and Morey, 1984; Freire et al.,
2005). The products features and the characteristics of the
drying process are shown in Table 2. The reason why these
studies were chosen was because they had similar charac-
teristics to the designed Modelica library, such as a broad
temperature range, thin-layer of grains, and complete de-

Figure 5. Humidity Ratio (m/m) at the exit of the first and last
layer over time for the a deep bed simulation

Figure 6. Saturated and partial Water Vapor pressure (left axis),
and Relative Humidity (right axis) of the air at the dryer exit

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154227

232

Figure 7. Moisture content for thin corn layers at different
drying temperatures

scription of the utilized drying process.
The Modelica results compared to the experimental

data from different studies can be seen in Figure 8. The
experimental data are similar to the simulated results. In
general, they followed the same drying trend, but they did
not have the exact final value. While the results for barley
and soybean are in Moisture Ratio (Figure 8 (a) and (c)),
the results for corn were reported in terms of the prod-
uct Moisture Content (Figure 8(b)). To avoid misleading
and erroneous interpretation, the simulation results were
reported using the variable as the extracted experimental
data.

There are some differences that can be attributed to
variations in grain composition, drying management, and
final moisture determination. For example, different va-
rieties of the same grain have distinct shapes that influ-
ence the drying rate. Similarly, the drying geometry and
method vary and may affect the final moisture content.
Additionally, error accumulates during time of both data;
thus, the final MR or MC value is impacted by the error of
the entire process. Table 3 shows the mean squared error
(MSE), the average relative error (RE), and the relative er-
ror for the final moisture content or moisture ratio of the
drying between the experimental and simulated data. It
can be observed from this table that the lowest relative er-
ror for corn, barley, and soybean were respectively at 48,
27, and 31.5 ◦C. Nearly the same is applied to the final
RE, the exception is corn at 93 ◦C. For the MSE, the min-

imum values were at 48, 93, and 58.5 ◦C for barley, corn,
and soybean, respectively. Between all grains, barley had
the lowest values; thus, the Modelica model could esti-
mate moisture better for this grain. The final RE is biased
since the error is accumulated from the beginning of the
simulation. In general, this value was higher than the av-
erage RE (9 out of 12 cases), which showed how the error
was carried along during the simulation.

It is difficult to validate the model with so many vari-
ables to control. These differences could reflect in the dif-
ference between experimental and simulated data. Addi-
tionally, there are parameters that depend on grain chem-
ical composition that can change depending on the vari-
ety of the product. For example, some corn kernels with
less protein and more starch content could have differ-
ent drying curves. Also, more experimental data could
be obtained to recalibrate some empirical parameters for
the grains used. Also, experimental data could optimize
the model to achieve better results from the simulations.
However, every new grain variety, with different composi-
tion and geometry, could lead to distinct sets of constants
to be used in mathematical modeling of a drying process.

5 Conclusion and Future Work
Several Modelica components were modeled to simulate
the grain drying process. Barley, corn, and soybean were
studied to be used on this model, where the simulation re-
sults were compared to experimental data from different
sources. There were some differences between these two
types of data that can be attributed to differences in grain
composition, controlling the drying environment, and er-
rors associated with using some outdated empirical pa-
rameters. Even though Dymola was used for modeling
and simulation, the library can be used with other open-
source environments for Modelica. Overall, this Modelica
library could be an educational accessory to learners inter-
ested in this topic.

This library can be further expanded to simulate more
grains and other agricultural products. Likewise, for this
study, only a fixed-bed dryer was simulated; thus, a vari-
ety of dryers could be added to this set of components to
broad its use. Some additional capabilities could be added
such as variable weather circumstances and mold control-
ling through grain and air conditions. The Modelica ca-
pabilities to be applied to agriculture are abundant, and it
has great potential to be further explored.

Table 3. Mean squared error and average relative difference between experimental and simulation data for the three grains

Barley Corn Soybean

Temperature (◦C) 33 41 48 56 27 49 71 93 116 31.5 45 58.5

MSE (dec.2 or %2) 0.0026 0.0033 5.21e-4 0.0020 1.09 4.40 1.37 0.186 0.982 0.0050 0.0037 0.0027

Average R.E. (%) 8.57 12.1 5.91 15.6 5.86 22.7 21.1 7.03 17.9 9.38 17.6 21.3

Final R.E. (%) 12.4 24.9 8.53 24.2 8.32 54.5 56.8 0.33 8.21 6.15 37.5 48.2

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154227 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

233

Figure 8. Results comparison between experimental and simulation data for Barley (a), Corn (b), and Soybean (c)

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154227

234

References
Antoine Aurousseau, Valery Vuillerme, and Jean-Jacques

Bezian. Modeling of Linear Concentrating Solar Power
using Direct Steam Generation with Parabolic-Trough.
pages 595–603, 9 2015. doi:10.3384/ecp15118595. URL
http://www.ep.liu.se/ecp/article.asp?
issue=118%26article=64.

Jannatul Azmir, Qinfu Hou, and Aibing Yu. Discrete par-
ticle simulation of food grain drying in a fluidised bed.
Powder Technology, 323:238–249, 2018. ISSN 1873328X.
doi:10.1016/j.powtec.2017.10.019. URL https://doi.
org/10.1016/j.powtec.2017.10.019.

G. R. Baughman, M. Y. Hamdy, and H. J. Barre. Analog
Computer Simulation of Deep-Bed Drying of Grain.
Transactions of the ASAE, 14(6):1058–1060, 1971.
ISSN 2151-0059. doi:10.13031/2013.38452. URL
http://elibrary.asabe.org/abstract.asp?
?JID=3&AID=38452&CID=t1971&v=14&i=6&T=1.

Luis A. Bortolaia, Oleg Khatchatourian, and Horacio A. Vielmo.
Analysis of soybean drying dynamics in thin layer. 13th
Brazilian Congress of Thermal Sciences and Engineering De-
cember 05-10, 2010, Uberlandia, MG, Brazil, 2010.

Donald B. Brooker, Fred W. Bakker-Arkema, and Carl W. Hall.
Drying and storage of grains and oilseeds. Van Nostrand
Reinhold, 1992. ISBN 9780442205157. URL http://
www.springer.com/us/book/9780442205157.

D.M. Bruce. Exposed-layer barley drying: Three models
fitted to new data up to 150◦C. Journal of Agricultural
Engineering Research, 32(4):337–348, 12 1985. ISSN
0021-8634. doi:10.1016/0021-8634(85)90098-8. URL
https://www.sciencedirect.com/science/
article/pii/0021863485900988.

Clyde M. Christensen and H. H. Kaufmann. Dete-
rioration of Stored Grains by Fungi. Annual Re-
view of Phytopathology, 3(1):69–84, 9 1965. ISSN
0066-4286. doi:10.1146/annurev.py.03.090165.000441.
URL http://www.annualreviews.org/doi/10.
1146/annurev.py.03.090165.000441.

Fabio B. Freire, Marcos A.S. Barrozo, Dermeval J.M. Sartori,
and Jose T. Freire. Study of the drying kinetics in thin layer:
Fixed and moving bed. Drying Technology, 23(7):1451–
1464, 2005. ISSN 07373937. doi:10.1081/DRT-200063508.

Rahul Jain, Kannan M. Moudgalya, Peter Fritzson, and Adrian
Pop. Development of a Thermodynamic Engine in Open-
Modelica. pages 89–99, 7 2017. doi:10.3384/ecp1713289.
URL http://www.ep.liu.se/ecp/article.
asp?issue=132%26article=009.

C.-C. Jia, W. Yang, T. J. Siebenmorgen, and A. G. Cnossen.
Development of Computer Simulation Software for Single
Grain Kernel Drying, Tempering, and Stress Analy-
sis. Transactions of the ASAE, 45(5):1485–1492, 2002.
ISSN 2151-0059. doi:10.13031/2013.11039. URL
http://elibrary.asabe.org/abstract.asp?
?JID=3&AID=11039&CID=t2002&v=45&i=5&T=1.

O. A. Khatchatourian, H. A. Vielmo, and L. A. Bortolaia.
Modelling and simulation of cross flow grain dryers. Biosys-
tems Engineering, 116(4):335–345, 2013. ISSN 15375110.
doi:10.1016/j.biosystemseng.2013.09.001. URL http:
//dx.doi.org/10.1016/j.biosystemseng.
2013.09.001.

J. Lacey. Pre- and post-harvest ecology of fungi causing
spoilage of foods and other stored products. Journal
of Applied Bacteriology, 67:11s–25s, 12 1989. ISSN
00218847. doi:10.1111/j.1365-2672.1989.tb03766.x.
URL http://doi.wiley.com/10.1111/j.
1365-2672.1989.tb03766.x.

Huizhen Li and R Vance Morey. Thin-layer drying of yellow
dent corn. Transactions of the ASABE, 27(2):581–585,
1984. ISSN 00012351. doi:10.13031/2013.32832. URL
http://elibrary.asabe.org/abstract.asp?
aid=32832&t=3.

Marek Markowski, Ireneusz Białobrzewski, and Agnieszka
Modrzewska. Kinetics of spouted-bed drying of bar-
ley: Diffusivities for sphere and ellipsoid. Journal of
Food Engineering, 96(3):380–387, 2 2010. ISSN 0260-
8774. doi:10.1016/J.JFOODENG.2009.08.011. URL
https://www.sciencedirect.com/science/
article/pii/S0260877409004099?via%3Dihub.

Lamber Otten and George Samaan. Determination of the Spe-
cific Heat of Agricultural Materials: Part II. Experimental
Results. Canadian Agricultural Engineering, 22(1):25–27,
1980.

S. Pabis, D. S. Jayas, and S. Cenkowski. Grain Drying: Theory
and Practice. John Wiley and Sons Ltd, New York, United
States, 1989. ISBN 0471573876.

USDA. Grain Inspection Handbook - Book II. Washington, DC,
2013. URL https://www.gipsa.usda.gov/fgis/
handbook/BK2/BookII4-11-2017.pdf.

J.S. Wall, C. James, and G.L. Donaldson. Corn proteins: chemi-
cal and physical changes during drying of grain. Cereal chem-
istry, v. 52(no. 6):779–790, 1975.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154227 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

235

Modelica library for the systems engineering of railway brakes

Marc Ehret

Institute of System Dynamics and Control, German Aerospace Center, Germany, marc.ehret@dlr.de

Abstract
This work outlines the role of system simulation for the
development process of railway brakes. The principles of
systems engineering motivate the use of computer based
simulation in order to enhance the understanding of sys-
tems and to verify the behavior of systems in early de-
sign phases. For this reason, the Modelica library "Vir-
tual Train Brakes" is presented which enables engineers to
generate simulation models of railway brakes and to per-
form system simulations during different phases of the de-
velopment process. By modeling and simulating the brake
systems of a passenger and a freight train, the capability of
the library is demonstrated and further investigations are
motivated.
Keywords: Railway Brakes, Systems Engineering, Multi-
Level Models, Variant Models, Generic Models

1 Introduction
Railway brakes are complex technical systems that fulfill
high requirements concerning safety, availability and reli-
ability. These systems are constructed to be deployed in
a difficult operational environment, characterized by large
temperature ranges and heavy dynamic loads during long
utilization times. Furthermore, a huge amount of kinetic
energy needs to be converted during a single brake appli-
cation which requires that brake discs are able to absorb
up to 30 MJ of energy (Breuer, 2006). Beside severe op-
erational conditions, the diversity of railway vehicles and
brake types demands to design individual adapted brake
systems which leads to a high variety and individuality
of the developed systems. This individuality and the cor-
responding variety of brake systems is in contrast to the
comparatively low number of items that is usually deliv-
ered (Anton, 2010). In order to reduce technical as well as
economical risks the application of systems engineering is
indispensable for of the development process of railway
brakes.

Systems engineering is an approach that enforces sys-
tem architects to deduce physical solutions by identifying
stakeholders, specifying their requirements and map them
by system functions. Thereby, an interdisciplinary and
holistic view of the desired system is generated, which is
deepened throughout the design process. By this means,
mistakes are identified and eliminated in early design
phases before costly changes during the implementation
are necessary. Due to the increasing complexity and func-
tionality of technical systems arising from the increasing

content of electronic and software components, systems
engineering has become a wide spread and important pro-
cedure in product development (INCOSE, 2015).

In the context of systems engineering, computer based
system simulation is a powerful tool since it supports de-
signers to understand the behavior of systems in design
stages where an experimental analysis is not feasible. Fur-
thermore, it allows engineers to check their own thinking,
to analyze alternatives and capabilities of the system and
to communicate their concept to others (INCOSE, 2015)
(Mittal et al., 2017). Modelica is a well suitable modeling
language to generate models of multi-physical technical
systems, such as railway brake systems and to study their
physical behavior.

The goal of this work is to develop the concept of a
Modelica library which provides an environment for the
application of system simulation throughout the entire de-
velopment process of railway brakes. As shown in Fig-
ure 2, the main tasks of the library are:

• support dimensioning

• analyze and optimize system behavior

• support integration

• support system test and commissioning

Initially, this work introduces railway brake systems
and the role of systems engineering in the scope of their
design. Subsequently, use cases of system simulation dur-
ing the development process are discussed which are the
basis for the structure and implementation of the library
with Modelica in Dymola. Varying requirements concern-
ing the accuracy and the computational effort of the mod-
els are considered and the generic composition and di-
verse configuration variants of railway brake systems are
respected. After the presentation of the library it is applied
to model and simulate the brake systems of a passenger
and a freight train. The development of the library is an
ongoing work. This paper is primarily meant to motivate
its usage and to present the modeling concept. An outlook
is given which states the current limits of the library and
motivates further investigations.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154236

236

2 Systems engineering of railway
brakes

2.1 Introduction to railway brakes
The main functions of railway brake systems are (i) the
conversion of kinetic energy in order to reduce the veloc-
ity of the train, (ii) to counteract the downhill-slope force
in order to keep the velocity of the train and (iii) to prevent
a stationary train of moving due to gradients or other ex-
ternal forces, for instance caused by wind (Knorr-Bremse,
2003).

The basic safety requirements demand that all types of
railway vehicles have an automatic, continuous and inex-
haustible brake system. This means that the brake sys-
tems of all cars of a railway vehicle are controlled by a
through signal line (continuity) and that in case of an error
in this signal line caused by leakage or cutoff, each of the
cars of the vehicle stops automatically. Inexhaustibility
requires that the performance of the brake system is still
available, although there have been repeated brake appli-
cations before (DIN EN 14198, 2005) (DIN EN 15734-1,
2013). The brake distance in case of emergency brak-
ing is the major performance requirement brake systems
have to meet. The maximum brake distances of loco-
motives and passenger trains required by (Commission
Regulation (EU) No 1302/2014, 2014) is shown in Ta-
ble 1 relating to different velocities. Additionally, the
mean value of the corresponding deceleration is given as-
suming a constant deceleration. This value does not in-
clude the delay and response time of the brakes as well as
the velocity-dependent adhesion between wheel and rail
limiting the maximum feasible deceleration described in
chapter 4.2.4.5.2 and 4.2.4.6.1 in (Commission Regulation
(EU) No 1302/2014, 2014).

Table 1. Brake distance requirements for emergency braking
of locomotives and passenger trains relating to different ini-
tial velocities according to (Commission Regulation (EU) No
1302/2014, 2014)

Initial

velocity
[

km
h

] Required
brake distance [m]

Mean
deceleration

[m
s2

]

350 5360 0.88
300 3650 0.95
250 2430 0.99
200 1500 1.03

In order to fulfill these requirements and functions rail-
way vehicles are equipped with different types of brake
systems, shown in Figure 1, depending on the type of ve-
hicle (passenger cars, freight cars, locomotives) and its op-
erating modes (service brake, emergency brake, parking
brake, holding brake).

Due to its high level of safety all railway vehicles are
at least equipped with frictional brake systems, such as

Figure 1. Classification of railway brakes according to (Knorr-
Bremse, 2003)

tread and disc brakes, which are mostly activated by com-
pressed air except for trams which use hydraulic media
due to the limited available space in these vehicles. Ad-
ditional brake systems, e.g., electro-dynamic brakes in
electrically driven vehicles and hydro-dynamic brakes in
diesel-hydraulic vehicles, are applied to serve as service
brakes and to support the frictional brakes in order to min-
imize wear and thus extend the technical lifetime of brake
systems. Non-adhesion dependent systems, for instance
track-brakes, are not limited by the maximum transferable
force between rail and wheel. They are deployed to min-
imize the braking distance in case of an emergency. The
faultless cooperation and redundancy of the diverse sub-
systems is an important aspect for the safe, secure and re-
liable operation of trains.

2.2 Systems engineering
Depending on the type of system there are different
process models which determine the design procedure
of systems. Haberfellner and Daenzer differentiate be-
tween plan-driven methods, such as the "V-Model" or the
"Waterfall-Model" and agile methods, such as "Scrum"
or the "Spiral-Model" (Haberfellner and Daenzer, 2002).
The latter methods are commonly used for software engi-
neering in which flexible and less sequential frameworks
are preferred due to the dynamic and changing environ-
ment throughout the development process. In contrast,
plan-driven methods are characterized by fixed steps and
defined sequences during the development process. This
is essential for the design of large multi-physical systems
which are subject to high requirements regarding safety
and reliability, such as railway brake systems.

The most common plan driven method is the "V-
Model", as shown in Figure 2. The basic idea is to fol-
low a structured top-down development process. At first
the stakeholders are identified, who are the source of the
system requirements from which in turn the system spec-
ifications are deduced (Haberfellner and Daenzer, 2002)
(INCOSE, 2015). During the top-down development pro-
cess the specifications of the system are disassembled into

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154236 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

237

Figure 2. "V-Model" as development process of railway brake systems with use cases for system simulation

sub-specifications of subsystems until the smallest entity
is reached. In each stage the physical architecture, system
elements and interfaces are derived from the specifications
using context and functional analysis. During the bottom-
up implementation and integration phase the elements and
subsystems are built and verified, if they fulfill the defined
specifications. Finally, this leads to the integration, verifi-
cation and validation of the entire system in its operational
environment.

The development of railway brakes is a typical case
of application engineering, since brake systems consist
of standard components provided by an existent product
asset, such as brake cylinders, typical valves and pre-
assembled subsystems like integrated modules for brake
control (André et al., 2017). Application engineering is
a particular type of systems engineering in which the ele-
mentary components and subsystems are predefined parts
of a component portfolio. Many technical systems are de-
signed by reusing predefined and for the system character-
istic components which are selected, configured and inter-
connected.

2.3 Simulation of railway brakes
To analyze the time dependent behavior of railway brakes
physical models can be applied, which are represented
by mathematical equations deduced from natural laws.
The object-oriented and component-based modeling ap-
proach of Modelica is well suited to develop these physi-
cal models and is therefore used in this work. The goal of
the Modelica library "Virtual Train Brakes" is to provide
physical models for system simulation throughout the en-
tire systems engineering process of railway brakes shown
in Figure 2.

As stated in (Anton, 2010), the ambivalence of cost
for design and quality of the designed system in scope
of the tender process of railway brakes strongly motivates
the use of system simulation. During the tender process
system engineers design the rough architecture of brake
systems. In this phase the type of applied brake systems

as well as the number of brakes and their dimensions are
defined depending on the specification of the customer.
Modeling and simulating the designed architectures al-
lows to gather useful information regarding the system
behavior, such as the effects of refill and release times or
failure modes on the braking distance. Furthermore, the
sensitivity and impact of varying system parameters, e.g.,
the size of reservoirs and diameters of pipes, can be ana-
lyzed. Thus, system simulations help to avoid oversizing
of systems and to submit competitive offers during the ten-
der process.

As mentioned in 2.1 railway vehicles are usually
equipped with several types of brake systems. To achieve
the desired deceleration while minimizing wear a com-
plex brake management is necessary. The so called blend-
ing defines the contribution of the different brake systems
relating to the current operating mode. System simula-
tion facilitates the analysis and review of the individually
designed blending concepts long before commissioning.
Furthermore, it allows designers to apply numerical opti-
mization in order to find the ideal blending concepts.

Another application of system models is to simulate the
physical environment of components or subsystems. This
enables system designers to study and review the behav-
ior of components or subsystems in the context of their
environment. During the development of electronic de-
vices, such as control units, a model representing the ba-
sic control algorithm ("Model in the Loop": MiL), the im-
plemented software ("Software in the Loop": SiL) and fi-
nally the hardware of the unit ("Hardware in the Loop":
HiL) are designed and verified by integrating them into a
simulated physical environment as described in (Tischer
and Widmann, 2012). Depending on the integrated object
different requirements concerning the computation rate,
model interfaces and the accuracy of the simulation need
to be considered. The application of HiL-testing for the
development of railway brake systems is demonstrated in
(Pugi et al., 2006), (Kang et al., 2009) and (Lee and Kang,
2015).

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154236

238

Finally, virtual testing with validated system models al-
lows system engineers to reduce the efforts of experimen-
tal testing which is directly linked to time and costs for im-
plementation, integration and commissioning. The main
intention of virtual testing is not to replace experimental
tests, but to narrow the quantity of tests which are nec-
essary to adjust the detailed setting of components, e.g.,
valves and nozzles, in order to harmonize and verify the
entire system behavior.

To provide physical models throughout the entire de-
velopment process a model library is required which bases
on the component and system portfolio of railway brakes.
Furthermore, the presented scenarios for system simula-
tion demand models which are customizable with respect
to the level of detail, accuracy and computational effort
depending on the scope of simulation.

3 Modelica library "Virtual Train
Brakes"

The Modelica library "Virtual Train Brakes" is an ap-
proach to realize the desired simulation environment. Ini-
tially, the structure and modeling concepts are introduced
followed by the implementation in Modelica.

3.1 Library structure and modeling concepts
The structure of the library is pictured in Figure 3. The
foundation is the component library which contains multi-
physical models of typical technical components analog
to the product asset of railway brakes, for instance dis-
tributors valves, pressure transformers or brake cylinders.
These technical components consist of core elements from
different physical domains, such as nozzles and volumes
in case of pneumatic components. In this work core ele-
ments from the Modelica Standard Library and from the
Pneumatics Library developed by Modelon, described in
(Modelon AB, 2010) and (Beater, 2007), are applied. To
fulfill the requirements of adaptable accuracy and com-
putation rate the models of the technical components are
implemented as multi-level models. This means that dif-
ferent levels of detail of a component are depicted by se-
lectable level-models which share the same physical inter-
faces but differ in their modeling content.

The technical components provide the elements for the
system library. This library contains generic models of
systems and subsystems of railway brakes what eases the
generation of large models. The pre-assembled system
models result from the definition and separation of brake
systems into subsystems, including boundaries and inter-
faces analog to the top-down development process of the
"V-Model". In case of the system "train", which is ex-
emplarily subdivided in Figure 4, the system model in the
highest layer (Layer 1) consists of the subsystems "car".
This contains the subsystems "brake panel", "bogie pneu-
matic" and "bogie mechanic" which in turn include inter-
connected technical components, e.g., distributor valves
and the pressure transformers. In this generic concept

Figure 3. Structure of the library "Virtual Train Brakes"

components can be part of any subsystem in any layer.

Figure 4. Exemplary scheme of the generic system "train"

Railway brake systems are individually designed de-
pending on the varying specifications and on the vehi-
cle they are integrated into. This leads to a broad diver-
sity of designed systems and it is unfeasible to provide
generic models for all them. Nevertheless, particular sub-
systems are combined to modular platforms for specific
product families of which certain variants exist (André
et al., 2017). By identifying and modeling these stan-
dard variants it is possible to ease the model generation
for a large amount of railway brake systems. For this rea-
son, the generic models of the system library are imple-
mented as multi-variant models differing in their configu-
ration but sharing the same physical interfaces, as exem-
plarily shown in Figure 5 for the subsystem "brake panel".
The restriction of having the same interfaces is indispens-
able. Otherwise the integration of a configurable subsys-
tem into a higher layer could fail due to violation of the
interconnections between a configured subsystem and the
elements in its environment. Furthermore, the complexity
of the generic models is limited and an extensive configu-

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154236 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

239

ration management is avoided.

Figure 5. Exemplary scheme of variant modeling in a generic
system structure

3.2 Implementation of the library in Modelica
According to the presented structure the Modelica library
is subdivided into a component library and a systems li-
brary in which the models are stored. In the following, the
implementation of component models and system models
is described.

3.2.1 Modeling multi-level components
The implementation of a technical component is described
by using the example of the component "Brake Cylin-
der". The corresponding component package contains
a so-called container model in which two instances of
the models "BrakeCylinderLevel_1" and "BrakeCylinder-
Level_2" exist in parallel, as shown in Figure 6 and sug-
gested by (Kuhn et al., 2008). They represent two different
modeling approaches which basically differ in their level
of detail. Both level-models are connected to the ports of
the container model where they are implemented by us-
ing conditional statements. This means that the models
are not considered when translating the container model,
if the corresponding conditional statement is false. The
activation of the desired model is controlled by an Integer
parameter called "Level" which activates "brakeCylinder-
Level_1" in case of a value equal to 1 and "brakeCylinder-
Level_2" for a value equal to 2. Thus, the selection of the
desired model is controlled by a single parameter and does
not have to be carried out manually as it would be done in
case of replaceable models (Kuhn et al., 2008).

Figure 6. Container model of the component "Brake Cylinder"
with two conditionally implemented level models

The container model includes an instance of the record
"ParameterBrakeCylinder". This record contains the pa-
rameter "Level" and instances of individual records of

the level-models "ParameterBrakeCylinder_Level_1" and
"ParameterBrakeCylinder Level 2" leading to a clear sep-
aration of the model-dependent parameter sets.

To ensure that the container model and the level-models
are compatible with each other they are inherent classes
of the class "BrakeCylinderTemplate". This model de-
fines the interfaces and the icon of the component model.
Thereby, the component models represent the same ports,
regardless of the selected level-model. This is important
for a clean integration of component models into system
models.

Additionally, the component package provides a simu-
lation environment "SimulateBrakeCylinder" which inte-
grates the model into a testing environment. This is help-
ful for testing newly developed models and serves as sim-
ulation example when applying the component, respec-
tively. Furthermore, it is possible to compare simulation
results with experimentally measured data for the verifi-
cation of the behavior of the model, as shown in 4.1.5. In
this case it is important to ensure that the simulation en-
vironment represents the initial and boundary conditions
which existed during the corresponding experiment.

Figure 7 and 8 show the content of the two level-models
of a brake cylinder which convert pneumatic pressure into
a clamping force. In model "brakeCylinderLevel_1" the
pneumatic input port on the left hand side is connected to
a constant pneumatic volume. The pressure in this volume
is used to calculate the resulting clamping force depending
on parameters, e.g., piston diameters and efficiency by us-
ing a simple formula. In contrast, "brakeCylinderLevel_2"
uses mechanical and pneumatic components, such as a
pneumatic cylinder, a counteracting spring, the brake rig-
ging and a gap element to model the contact between disc
and brake pad. This represents a more detailed model
of the component taking further physical effects into ac-
count, for instance friction, contact effects and pressure
dependent volumes.

Figure 7. Model content of "BrakeCylinderLevel 1" with vol-
ume model from the Modelon Pneumatic Library

Figure 9 shows the impact of the two different modeling
approaches on simulation results by comparing the calcu-
lated clamping force in case of a pressure gain in the cylin-
der. The simulation results of the model "brakeCylinder-
Level_2" contain transient effects at the beginning. They
are caused by friction in the pneumatic cylinder of and
the contact of pad and disc. These effects might be of in-
terest in case of a detailed investigation, for example the

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154236

240

Figure 8. Model content of "BrakeCylinderLevel 2" with cylin-
der model of the Modelon Pneumatic Library

behavioral analysis of the brake cylinder during the appli-
cation of the wheel slide protection. Model "BrakeCylin-
derLevel_1" neglects these effects, but provides the same
stationary clamping force. This is sufficient for the anal-
ysis of the entire brake system, for instance in case of the
estimation of the brake distance.

A comparison of the computation time in Figure 10
shows that the simulation of model "BrakeCylinder-
Level_1" (2 states, 0.03 seconds) is 5 times faster than the
simulation of model "BrakeCylinderLevel_2" (9 states,
0.16 seconds). Especially the computation of the transient
oscillations after 0.2 demands a large computational ef-
fort. The bigger the system of interest, the stronger the
entire computation rate is influenced by the computational
effort for single components. This example emphasizes
the need for different model approaches due to the vary-
ing scope of simulations described Figure 2.

Figure 9. Comparison of simulation results of the level-models
"brakeCylinder_ Level_1" and "brakeCylinder_Level_2" with
zoomed transient effects

3.2.2 Modeling multi-variant and generic systems

To model multi-variant system models, container models
are applied analog to the modeling approach of multi-level
components described in 3.2.1. The use of container mod-

Figure 10. Comparison of computation time of the models
"brakeCylinder_Level_1" and "brakeCylinder_Level_2"

els in place of replaceable models enables the user to con-
figure system models by supplying parameters instead of
choosing the desired variant manually. The essential dif-
ference between the models of systems and components is
that the container model a system includes variant-models.
They represent different configurations of a system instead
of different modeling approaches concerning the level of
detail. Thus, the structure of a system package is analog
to the component package. Since the parameter sets of
different system configurations are mostly the same, there
are no individual records for each of the variant-models in
contrast to the level-models of components.

To cover further configuration types of a system, inte-
grated components and subsystems are implemented by
using conditional statements. These submodels can be de-
activated, if they do not appear in a particular system con-
figuration. In this case it is important to ensure that singu-
larities due to missing states are avoided.

By offering variant-models and the possibility to add
or remove particular submodels in these variant-models
a broad diversity of system configurations can be repre-
sented by using a single container model.

Figure 11 shows the GUI of the record "Parameter-
BrakePanel" of the system "Brake Panel". To select the
desired system variant the integer variable "Variant" is
added. Furthermore, boolean parameters can be found,
such as "DV_existent" or "EPC_existent" which activate
or deactivate integrated submodels (DV: Distributor Valve,
EPC: Electro pneumatic Control).

Beside configuration parameters this record contains
records of the integrated sub-models, as shown in Fig-
ure 11. The parameter "Level_Submodel" serves as de-
fault value for the parameter "Level" in the records of the
underlying components. Thus, their level of detail may
be controlled globally by a single value. If a sub-model
is a generic system itself, the selection of the correspond-
ing table is leading to a record with the same structure.
Thereby, the parameters of a generic system are hierar-
chically ordered analog to the generic system structure.
Finally, this approach leads to a single record that con-
tains all parameters of all integrated components and sub-
systems to parameterize and configure the entire generic
system model.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154236 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

241

Figure 11. GUI of the record "ParameterBrakePanel"

4 Application scenarios
In the following the library "Virtual Train Brakes" is used
to model the railway brake systems of a passenger and a
freight train. By performing system simulations according
to use cases depicted in Figure 2 exemplary data is gener-
ated which serves as basis for the behavioral analysis of
the brake systems.

4.1 Modeling and simulating a passenger train
4.1.1 Model generation

Figure 12 presents a generic model of the frictional pneu-
matic and electro-pneumatic brake system of a passen-
ger train with three railcars. The train is assembled of
the submodels "railcar" and "train control" which are pre-
assembeled generic models of the system library. The cars
are connected with pneumatic lines supplying energy and
pressure signals to activate the friction brakes and an ad-
ditional bus line containing electronic brakes signal. To
determine the brake distance and velocity of the train, po-
sition and speed sensors are connected with mechanical
flanges of the railcars.

Figure 12. Model of a passenger train with three railcars

Figure 13 depicts the selected variant-model of the first
railcar. It contains the subsystems "brake panel", "bo-
gie pneumatic" and "bogie mechanic" as well as compo-
nents, such as pipes, reservoirs and the pneumatic sus-
pension. The subsystem "bogie mechanic" includes mod-
els which calculate the resulting brake forces that decel-
erate the mass of the train. In these models the friction
forces between disc and brake pad are calculated using
the clamping forces of the brake cylinders and the cor-
responding frictional coefficient. These friction forces in
turn yield the braking torque acting on the axle depending
on the friction radius. The translational braking force is
calculated by considering the slip in the contact of wheel
and rail resulting from the difference of the rotational ve-

locity of the braked axle and the velocity of the train.

Figure 13. Variant-model of railcar 1

4.1.2 Requirements Analysis

In the train model all bogie masses are connected by
flanges leading to a single mass model. This is suffi-
cient to estimate the brake distance for different operat-
ing conditions and modes. This kind of analysis is an
important step during the dimensioning of the brake sys-
tem, since the brake distance is the major requirement
to be met. The library "Virtual Train Brakes" includes
the function "EvaluateBrakingDistanceMatrix" which ex-
ecutes automated system simulations with varying initial
values, e.g., the velocity of the train, and parameters, for
example the radius of wheels or the axle load.

The function is used to simulate an emergency brake
application of the passenger train for several cases differ-
ing in the initial velocity and the radius of the wheel. The
simulation results of the brake distance over time are de-
picted in Figure 14. Additionally, the function generates
a text document containing the values of the calculated
brake distance. This overview enhances the verification
of requirements based on the simulation results, as shown
in Figure 15. It is shown that the effective wheel radius,
which might change over the life time of a train due to
wear, has a significant influence on the brake distance.
This influence becomes more severe with increasing ini-
tial velocity.

4.1.3 Analysis of Refill Time

Beside estimating the brake distance the presented simu-
lations allow to analyze the states and the related behavior
of the system. Figure 16 shows the first 3 seconds of the
precontrol pressure and the resulting cylinder pressure (C-
pressure) for the run v0=44.4 m/s and R=0.385 m. The
refill time of the C-pressure is directly correlated to the
resulting brake distance, since it determines the moment
when the braking torque is fully available. It is mainly
influenced by the volumes and pneumatic resistances of
valves and pipes that provide the brake cylinders with air.
In this case the refill time takes about 1.25 seconds, as
shown in Figure 16.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154236

242

Figure 14. Results of simulations of the generic passenger train
model with initial velocity v0 and radius R of the wheel

Figure 15. Final brake distances estimated by simulations

4.1.4 Worst-case analysis

The use of numerical optimization enables to perform a
worst-case analysis. This type of analysis allows to eval-
uate the limiting parameters of the brake system, which is
very useful during the phases of dimensioning and opti-
mization. An exemplary application is the analysis of the
friction coefficient in the contact between disc and brake
pad. This parameter strongly influences the brake distance
and is dependent on the conditions in the contact and the
rotational speed of the disc (Knorr-Bremse, 2003).

By applying the optimization library presented in
(Pfeiffer, 2012) in conjunction with the system model of
the brake a numerical optimization is performed. The goal
is to identify the minimum mean value of the friction coef-
ficient that does not violate the brake distance requirement
of 950 meters for an initial velocity of 160 km/h. The start
value of the friction coefficient is 0.365 and the maximum
range is [0.1,0.5], respectively. The corresponding flow
chart is depicted in Figure 17. By automatically tuning
the value of the friction coefficient within the defined in-
terval and performing simulations of the adapted model
the optimization seeks for the limiting value which leads
to a violation of the required brake distance. Figure 17
shows the table of the log-file containing the final results
of the optimization. The optimization detects a minimum
mean value for the friction coefficient of 0.335. This value
causes a brake distance of 950 meters with a deviation of
0.559 meters which is the value of the minimized criteria
|s− sR| within the interval defined by ε . The design of the
brake pad and the disc needs to ensure that the components
are able to fulfill the detected limit.

Figure 16. Results of precontrol pressure and resulting cylinder
pressure of run v0=44.4 m/s and R=0.385 m

Figure 17. Flow chart of worst-case analysis and final result

4.1.5 Model Identification

Another application of numerical optimization in terms of
system simulation is the identification of sensitive model
parameters for the validation of models by measurements.
The validation of component models is important to gen-
erate reliable simulation results of an assembled system.

The component "pressure transformer" influences the
fill- and release times of the brake cylinders and thus the
brake distance of the train. This relay valve provides
the brake cylinders with compressed air from a reservoir
and deaerates the cylinders in order to release the brakes
(Knorr-Bremse, 2003). The sensitive parameters of the
corresponding component model are identified by apply-
ing a numerical optimization with data from an experi-
mental component test. The corresponding level-model_1
basically contains two nozzles which determine the dy-
namic behavior of the component in case of venting and
deaerating. The sonic conductance is the sensitive param-
eter of a pneumatic resistance influencing the mass flow
at a particular pressure ratio (Beater, 2007). By varying
the sonic conductance of these nozzles in scope of a nu-
merical optimization, the model is tuned to minimize the
integrated squared deviation of measurement and simula-
tion results. The default value of the sonic conductance
of the nozzles is 10−7

[
m3/sPa

]
and the boundaries for

the optimization are set to 10−6 and 10−8. The optimiza-
tion yields a value of 5.7 ·10−7 for the sonic conductance
of the venting nozzle and 1.9 · 10−7 for the nozzle con-
trolling the deaeration. The results of measurement and
simulation in case of a pressure gain caused by opening
the venting nozzle are depicted in 18. In this figure the

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154236 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

243

model with default values for the sonic conductance and
the optimized model are compared with the measurement.
It shows that the time dependent behavior is well repro-
duced by the optimized model except for transient effects
in the beginning of the measurement. To represent these
effects a more detailed model is necessary.

Figure 18. Comparison of measured and simulated C-pressure
of distributor valve

4.2 Modeling and simulating a freight train
In another example the brake system of a freight train is
modeled and simulated. Freight trains consist of a large
number of identical cars connected by coupling elements
and a long pneumatic line. Pneumatic effects due to the
large volume and the length of the line strongly influence
the performance of the system. Their investigation re-
quires large experimental effort which is reduced by using
system simulation.

In order to ease the model generation of these trains the
library offers a model called "generic train". This model
contains a front car connected to a vector of generic car
models "railcar i[]". The corresponding connections are
implemented by using a for-loop in the equation section
and yield a model with a selectable number of car in series.

Figure 19 shows simulation results of the deaeration of
the continuous brake pipe (BP) in case of a brake appli-
cation in a freight train with 50 cars. The brake pipe is
the through pneumatic signal line of freight trains which
causes the aeration of the brake cylinders with compressed
air from a reservoir, if the pressure in the line drops be-
low a particular value1. Comparing the pressure of the
brake pipe in the first car (BP_1) with the last car (BP_50)
one can easily observe that the pressure drop in cars in
the front is significantly faster than those in the rear part
of the train. This dynamic behavior is caused by the lim-
ited propagation velocity of the pressure drop as well as
the large volume of the long pneumatic line and leads to
a strong delay of the pressurization of the brake cylinders
at the end of the train. This is shown in Figure 19 by the
comparison of the cylinder pressure in first car (C_1) and
in the last car (C_50). Due to the delay high longitudi-
nal forces might occur which in turn lead to undesirable

1This is the principle of a indirect pneumatic brake system as de-
scribed in (Breuer, 2006) and (Knorr-Bremse, 2003)

oscillations of the train set.

Figure 19. Simulation results of pressure in brake pipes (BP_i)
and brake cylinders (C_i) of car i=1, 10, 20, 30, 40 and 50 in
freight train

5 Conclusion and Outlook
By the application of the library "Virtual Train Brakes"
for the analysis of the brake systems of a passenger train
and a freight train the potential of system simulation dur-
ing the design and verification of railway brakes is pre-
sented. The possibility to select models of typical tech-
nical components and to use generic models for varying
system configurations drastically ease the generation of
models of railway brakes. Simulations of brake applica-
tion scenarios generate useful knowledge of the system
behavior. This can be used to verify a system against its
requirements and to analyze the states of the system yield-
ing the resulting behavior. Furthermore, the application
of numerical optimization allows to study the system be-
havior with respect to sensitive parameters and to identify
parameters for the validation of models.

Nevertheless, the development of the library is an on-
going process and the presented results motivate further
investigations. The implemented models of the library yet
focus on simulations of the pneumatic actuation of fric-
tional brakes. The next step is to add further brake types
as listed in Figure 1. This means to develop and integrate
models of dynamic brakes and non-adhesion dependent
brakes in order to simulate and analyze further brake ap-
plication modes and blending scenarios. Another expan-
sion of the library is the consideration of vehicle dynamics
during brake applications. In the current version of the li-
brary the railway vehicle is modeled as a rigid mass on
a straight track. This is sufficient to estimate the brake
distance. However, to analyze the longitudinal dynamic
behavior of the vehicle caused by brake applications more
detailed models are necessary. These models might in-
clude curved tracks, inclination and downhill slope forces
as described in (Spiryagin et al., 2014). Beside the devel-
opment and integration of more detailed dynamic mod-

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154236

244

els it is also possible to combine brake system models
of the presented library with railway vehicle models of
other libraries, such as models presented in (Heckmann
and Grether, 2017).

Concerning frictional brakes the thermal behavior of
brake discs needs to be taken into account during system
simulations. The goal is to estimate the temperature of
the brake disc during brake applications which influences
wear and the friction between disc and pad as described
in (Ostermeyer, 2001). This demands to estimate the en-
ergy absorbed by the discs and to consider the heat trans-
fer due to conduction, radiation and convection. Addi-
tionally, more attention needs to be payed to the modeling
of the instantaneous friction coefficient between disc and
pad which is influenced by the contacting materials, their
temperature, relative speed and normal forces in the con-
tact area. Parameters of models describing these correla-
tions can be estimated from dynamometer measurements
as shown in (Lee and Kang, 2015).

Finally, the use of system simulation during the devel-
opment process demands the validation of entire system
models. Therefore, it is necessary to obtain data from train
tests, such as integration tests during static and dynamic
commissioning, and to perform analog system simulations
to verify the system models and ensure that the simulation
results are reliable.

Acknowledgments
The presented results arise from an ongoing scientific co-
operation of the Institute of System Dynamics and Con-
trol of the "German Aerospace Center" and the "Knorr-
Bremse Systeme für Schienenfahrzeuge GmbH". The re-
sulting Modelica library is a prototype for an in-house tool
and is not supposed to be publicly available. I would like
to thank all colleagues from Knorr-Bremse for the strong
support during the common project.

References
Jean-Marc André, Hartmut Mann, and Jörg-Johannes Wach.

Integrierte Bremssteuerungsmodule zur schnellen Umset-
zung sehr unterschiedlicher und komplexer Anforderungen.
ZEVrail, 141(10):397–401, October 2017.

Thomas H.F. Anton. Entwicklungs- und Einführungsmethodik
für das Projektierungswerkzeug Pneumatiksimulation. PhD
thesis, Technische Universität München, 2010.

Peter Beater. Pneumatic Drives. Springer-Verlag Berlin-
Heidelberg, 2007. ISBN 10 3-540-69470-6.

Bert Breuer. Bremsenhandbuch. ATZ / MTZ-Fachbuch.
Vieweg+Teubner Verlag, Wiesbaden, 2006. ISBN
9783663094418.

Commission Regulation (EU) No 1302/2014. Concerning a
technical specification for interoperability relating to the
’rolling stock - locomotives and passenger rolling stock’ sub-
system of the rail system in the European union, November
2014.

Reinhard Haberfellner and Walter F. Daenzer, editors. Systems
Engineering. Verl. Industrielle Organisation, Zürich, 11th
edition, 2002. ISBN 385743998X.

Andreas Heckmann and Gustav Grether. The DLR Railway-
Dynamics Library: the Crosswind Stability Problem. In
Proceedings of the 12th International Modelica Conference,
number 132, pages 623–631, 2017.

INCOSE. Systems Engineering Handbook. Wiley, 4th edition,
2015.

Chul-Goo Kang, Ho-Yeon Kim, Min-Soo Kim, and Byeong-
Choon Goo. Real-time simulations of a railroad brake system
using a dspace board. In 2009 ICCAS-SICE, pages 4073–
4078, Aug 2009.

Knorr-Bremse. Grundlagen der Bremstechnik. Knorr-Bremse
Systeme für Schienenfahrzeuge GmbH, 2003.

Martin Kuhn, Martin Otter, and Loic Raulin. A multi level
approach for aircraft electrical systems design. In Proceed-
ings of the 6th International Modelica Conference, Germany,
Bielefeld, March 3-4, 2008, March 2008.

Nam-Jin Lee and Chul-Goo Kang. The effect of a variable disc
pad friction coefficient for the mechanical brake system of
a railway vehicle. PLoS ONE, 10(8):e0135459, July 2015.
ISSN 1932-6203.

DIN EN 14198. Railway applications - Braking - Requirements
for the brake system of trains hauled by locomotives, March
2005.

DIN EN 15734-1. Railway applications - Braking systems of
high speed trains - Part 1: Requirements and definitions,
September 2013.

Modelon AB. Modeling of Pneumatic Systems - Tutorial for the
Pneumatics Library V 1.3/1.5.2, 2010.

Saurabh Mittal, Umut Durak, and Tuncer Ören. Guide to
Simlation-Based Disciplines: Advancing our Computational
Future. Simulation Foundations, Methods and Applications.
Springer, 2017.

G. P. Ostermeyer. Friction and wear of brake systems. Forschung
im Ingenieurwesen, 66(6):267–272, Oct 2001.

Andreas Pfeiffer. Optimization library for interactive multi-
criteria optimization tasks. In Proceedings of the 9th Inter-
national Modelica Conference, Munich, Germany, September
03-05, 2012, pages 669–679, 2012.

L. Pugi, M. Malvezzi, A. Tarasconi, A. Palazzolo, G. Cocci, and
M. Violani. HIL simulation of WSP systems on MI-6 test rig.
Vehicle System Dynamics, 44(sup1):843–852, 2006.

Maksym Spiryagin, Colin Cole, Y Sun, Mitchell Mcclanachan,
Valentyn Spiryagin, and Tim McSweeney. Design and Simu-
lation of Rail Vehicles. 05 2014. ISBN 9781466575660.

Mirko Tischer and Dietmar Widmann. Model based testing and
hardware-in-the-loop simulation of embedded canopen con-
trol devices. pages 06/19–06/28. iCC, CAN in Automation,
2012.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154236 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

245

Drilling Library: A Modelica library for the simulation of well
construction

Reza Dadfar1 Stéphane Velut1 Per-Ola Larsson1

Mathias Strandberg1 Håkan Runvik1 Johan Wíndahl1
Pål Kittilsen2 John-Morten Godhavn2 Åsmund Hjulstad2

1Modelon, Sweden, {reza.dadfar, stephane.velut, per-ola.larsson,
 mathias.strandberg,hakan.runvik, johan.windahl}@modelon.com

2Equinor, Norway, {pkit, jmgo, ahju}@equinor.com

Abstract
A Modelica library for the simulation of well
construction (drilling) is presented in this paper. The
library contains most of the components of a drilling
system. The simulation model is capable to capture the
main dynamics of the well, including the hydraulics, the
mud transport, the mechanics of the drill string as well
as the drill bit interaction with the bore hole. The library
is well suited to simulate the well operation and to
support the development of new technologies. The
modelling assumptions of the library’s components are
first reviewed. Subsequently, an experiment is
performed to test the rotational and translational
frictions.
Keywords: Drilling library, fluid-structure interaction,
well construction, borehole, surge and swab, mud,
Modelica.

1 Introduction
The cost of oil and gas production includes exploration,
well and facility construction, operation and cessation.
Among all, well construction makes up a considerable
part of the cost.
A variety of parties contribute to the well construction,
i.e. the oil company, the owner of the drilling rig, the
rig-building yard, manufacturers of drilling equipment,
and companies that provide equipment and services
during the drilling operation. Their relative roles have
been refined over years and is not easily changeable.
The opportunities from new technologies may require
small modifications in the contribution of several parties
and is difficult to achieve considering commercially and
timewise detachment players. The larger changes that
major players can realize may require significant
changes to roles and responsibilities (de Wardt, 2014).
However, once benefit is shown, changes are more
achievable. In this regard, modeling and simulation can
be used as a shared language which may facilitate the
cooperation between the actors.

The multitude of simulation tools in the well
construction is specialized for developing and validating
well designs, and not for developing new technologies.
The relevant questions are more of the type: “Is this steel
pipe good enough?” as opposed to “what behavior will
this system exhibit?”. The tools are often discipline
specific, vendor proprietary and with few or no
extension interfaces for combining results. In addition,
there is still a clear disconnection between the
simulation tools for downhole processes and topside
automation.
Larger changes in the construction methods have the
subsequent structural changes in simulation tools. This
may be difficult to achieve in the mature commercial
tools.

Well construction is typically divided into two phases:
drilling and completion. The well is drilled in sections.
First a wide hole (13”-30”) is drilled a few hundred
meters down. The borehole wall is secured by running
casing, an open-ended steel cylinder, the same length as
the drilled hole. The bottom end, both the annular space
outside the casing and inside the casing, is filled with
cement. A smaller hole is then drilled through the
cement and continuing further towards the target. The
steps are repeated until a 3”-9” hole is drilled in the
target reservoir, preferably along several hundred
meters of hydrocarbon-filled rock, some thousand
meters away from the start.
Drilling fluids are pumped through the drill pipe and up
to the annulus to transport drilled cuttings out of the
hole, to cool down the equipment and to stop formation
fluids from uncontrolled flow into the well.
During the completion phase, various equipment is
installed to make the well ready for production. The type
of completion equipment varies significantly, from a
very simple open hole to wells equipped with sensors,
pumps, flow control devices, chemical injection lines,
gas lift, etc.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154246

246

The modeling of the well construction involves a lot of
challenges. The modelling domains (flow circulation,
rotation and translation of drill pipe) are physically
coupled both along the drill-string and near the bit. The
thermal energy domain contains convection-driven flow
(along the flow path), radial diffusion (between drill
string and surrounding rock), and variable fluid
composition. The fluid is non-Newtonian and the
rheological properties depends on time and temperature.
We should not try to always deal with all these effects
simultaneously. For many problems, it is more
appropriate to select relevant physical phenomena and
system components. This is where Modelica may prove
useful (Fritzson, 2014).
In the following, some industrial applications are listed
as examples of new technologies or components where
understanding of the dynamics of physical processes is
important for both overall system and control system
design. The development includes significant modelling
and simulation work. In some cases, it may have been
necessary to develop simulation models from scratch. A
language like Modelica and a shared base of libraries
may reduce the simulation costs, decrease the threshold
to use dynamic simulation (i.e. in research, concept
development, engineering and testing), and may make it
easier to include custom components in simulated
demonstration, operations preparations or training.
The following examples are not indication of Modelica
use (known to the authors), but rather recent technology
developments of a kind that would benefit from a
general and flexible drilling library.

1. Maintaining downhole pressure within desired limits
during drilling operations is a well-studied problem.
Industrial solutions exist and is referred to as Managed
Pressure Drilling (Chin, 2012). The following are some
examples:

a) On Norwegian continental shelf, the first offshore
applications are described in (Bjørkevoll et. al., 2008),
(Eck-Olsen et. al., 2005), where rich models are used as
input to automatic choke control. Kaasa et.al, (Kaasa et.
al., 2012) argue for using a simplified process model in
design of estimation and control algorithms and for
reducing the complexity and footprint of the control
system software. Both approaches still use a top-side
choke for pressure control, and neither solve issues that
arise when drilling from floating installations; heave-
induced downhole pressure oscillations.

b) Another approach is to use a downhole valve to
reduce the pressure oscillations (Kvernland, 2018).

c) For deep water, a reduced liquid level in the drilling
riser (as opposed to increased backpressure topside) is
used to control downhole pressure. Various alternatives

exist (Godhavn, 2014) with subsea pumps, in
combination with sealing devices and valves.

d) Conventionally, the fluid flows downwards inside the
drill pipe, returning to the annular outside space. An idea
is to use a drill pipe with two concentric channels, with
return flow inside the pipe, (Aleksandersen et. al.,
2015).

2. A similar application is automatic well control
solutions, where the task is to first detect a kick/influx,
then stop the influx and finally handle the influx by
circulating it out using well control equipment. The flow
in the annulus is multiphase and contains drilling fluid,
rock particles and possibly gas from formation influx.

3. An additional application example that would benefit
from a flexible drilling library are drill-string vibration
(detection and handling).

4. Automatic mud mixing is another example. Drilling
mud is designed with several properties, where density
and viscosity are the most important properties.
Maintaining and controlling these properties are very
important. Simulating the mud properties through the
topside process as well as the drill pipe and the annulus
may be a challenge as the properties are changing with
time, pressure and temperature.

These are examples of new types of equipment and
changes in model structure that are not easily
implementable in typical simulation software when
conceiving the idea. The drilling library presented in the
current paper is the first version of that versatile tool that
aims at supporting the development of new technologies
for drilling processes. Simulation models could
ultimately be used as knowledge carriers between the
parties involved in the well construction or as digital
twin to monitor the well operation.

2 Drilling Library
The simulation of the drilling operation using a flexible
tool makes it possible to obtain a realistic behavior of
the operation, graphical representation of the results,
sensitivity analyses and control design. In the modern,
high pressure and high temperature, HPHT, wells, it is
crucial to have a profound understanding of the dynamic
behavior of the well for accurate well planning, training
and operational assistance. In this regard, Modelica is a
well-known tool providing a flexible platform to
simulate multi domain physics including the thermo-
flow and mechanical dynamics. Hence it is well suited
for the simulation of the drilling operation and control.

The aim is to build a library to simulate:

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154246 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

247

1. Well hydraulics: From the main pump at the
surface to the topside interface.

2. Drill string mechanics:
• Detailed mechanics of the string (torsion

and elongation)
• Rotational friction between string and

surrounding fluids
• Interaction of the drill bit with the

surroundings to describe the bore hole
growth

3. Mud transport: The transported fluid that is
normally a mixture of oil, water and granular
particles.

Figure 1. Modelica model of a drilling system

Figure 2. Overview of the Modelica drilling library

The current library illustrated in Figure 1 and in
Figure 2 is organized in packages;

1. Media package: for the state equations and transport

properties that defines the physical properties of the
drilling fluid i.e. mud.

2. Thermal package for the thermofluid components
used in the hydraulic and thermal modeling of the
drilling operation.

3. Mechanics package for the mechanical parts of the
system including the drill string and the mechanical
friction correlations.

4. Control package: contains all the control blocks
required to operate the entire drilling operations.

5. Experiments package: contains the system models,
where different scenarios using mechanical and
thermo-fluid components can be built based on a
template.

2.1 Media package
In this package the medium properties of the drilling
fluid are implemented. The medium properties depend
on temperature T, pressure p and mass fraction X;

𝜌𝜌 = 𝜌𝜌(𝑝𝑝, 𝑇𝑇, 𝑋𝑋) (1)
ℎ = ℎ(𝑝𝑝, 𝑇𝑇, 𝑋𝑋) (2)
𝜇𝜇 = 𝜇𝜇(𝑝𝑝, 𝑇𝑇, 𝑋𝑋) (3)

where 𝜌𝜌, ℎ, 𝜇𝜇 are density, specific enthalpy and dynamic
viscosity, respectively.
The drilling fluid is made of five components, namely
• Two solid constituents: low and high gravity

granular particles
• Two liquid constituents: base oil and brine
• One gas.
The gas is treated as an ideal gas; the properties of the
solid particles are constant; and the liquids are governed
by a bilinear equation of state:

𝑑𝑑𝜌𝜌𝑘𝑘 = (𝜕𝜕𝜌𝜌𝑘𝑘
𝜕𝜕𝑝𝑝)

𝑇𝑇
𝑑𝑑𝑝𝑝 + (𝜕𝜕𝜌𝜌𝑘𝑘

𝜕𝜕𝑇𝑇)
𝑝𝑝

𝑑𝑑𝑇𝑇

+ (𝜕𝜕2𝜌𝜌𝑘𝑘
𝜕𝜕𝑝𝑝𝜕𝜕𝑇𝑇)

𝑝𝑝𝑇𝑇
𝑑𝑑𝑇𝑇𝑑𝑑𝑝𝑝

(4)

(𝜕𝜕𝜌𝜌𝑘𝑘
𝜕𝜕𝑇𝑇)

𝑝𝑝
= −𝜌𝜌0,𝑘𝑘𝛼𝛼𝑘𝑘 (5)

(𝜕𝜕𝜌𝜌𝑘𝑘
𝜕𝜕𝑝𝑝)

𝑇𝑇
= 𝜌𝜌0,𝑘𝑘

𝛽𝛽𝑘𝑘
 (6)

where 𝑘𝑘=base oil and brine, respectively.

The specific enthalpy of the liquids was assumed to
depend only on temperature and composition, i.e. ℎ =
ℎ(𝑇𝑇, 𝑋𝑋). The implementation can be easily extended to
include pressure dependency ℎ = ℎ(𝑝𝑝, 𝑇𝑇, 𝑋𝑋). The mud
mixture properties are finally obtained as

1/𝜌𝜌 = ∑ 𝑋𝑋𝑖𝑖/𝜌𝜌𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (7)

ℎ = ℎ𝑟𝑟𝑟𝑟𝑟𝑟 + ∑ 𝑐𝑐𝑝𝑝,𝑖𝑖 𝑋𝑋𝑖𝑖 (𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟)
𝑛𝑛

𝑖𝑖=1

(8)

𝜇𝜇 = 𝜇𝜇010
𝜇𝜇1

𝑇𝑇−𝑇𝑇0 (9)

where 𝑐𝑐𝑝𝑝,𝑖𝑖, 𝜇𝜇0, 𝜇𝜇1, 𝑇𝑇0, ℎ𝑟𝑟𝑟𝑟𝑟𝑟, 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 are constants, and 𝑖𝑖 =
1, . . . 𝑛𝑛; where n is the number of components.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154246

248

2.2 Thermal Package
This package contains a hierarchical component
structure used in the thermo-fluid subsystems. This
domain communicates with the mechanical domain
through appropriate interface (see 2.3).

2.2.1 Flow channels
The flow channel describes the flow through the drill
string and the annulus (Figure 3 and Figure 4). The
component model is implemented by combining two
approaches:

The first approach is a finite volume discretization on
a staggered grid where the mass and energy balance are
implemented in a dynamic volume and the momentum
equation is modeled in a flow resistance/static head
component. This component is keeping track in a
dynamic fashion of the pressure, the enthalpy and the
composition in the bore hole.

Figure 3. Modelica model of a pipe segment, implemented
as the serial connection of a control volume, a friction loss
model and a static head computation

Figure 4. Drill pipe component implemented as a series
of pipe segments
The balance equations read:

𝜕𝜕ℎ
𝑑𝑑𝑑𝑑 + (𝑚𝑚

𝜌𝜌𝜌𝜌)
̇ 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕 − 1
𝜌𝜌

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝑃𝑃

𝜌𝜌𝜌𝜌 𝑞𝑞′′ = 0 (10)

𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = 0 (11)

𝜌𝜌 𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑 + 𝜕𝜕 �̇�𝑚

𝜕𝜕𝜕𝜕 = 0 (12)

𝜌𝜌 𝜕𝜕𝜌𝜌𝑋𝑋𝑖𝑖
𝜕𝜕𝑑𝑑 + 𝜕𝜕 �̇�𝑚𝑋𝑋𝑖𝑖

𝜕𝜕𝜕𝜕 = 0 (13)

where 𝑋𝑋𝑖𝑖 is the mass fraction for each component, 𝑖𝑖 =
1, … , 𝑛𝑛, and �̇�𝑚, 𝜕𝜕𝑤𝑤, 𝜌𝜌, 𝑃𝑃, 𝑞𝑞′′ are mass flow rate, wall
shear stress, pipe cross section area, pipe wetted
perimeter and heat flux, respectively. In the momentum
equations, the unsteady and convection terms, and in the
energy equation, the conduction and the viscous
dissipation terms are not considered.

The Modelica built-in operator “spatial distribution”
is used in parallel with the finite volume channel to
model the transport of the solid particles without any
numerical diffusion and to increase the robustness and
the speed of the simulation. This operator approximates
the solution of the plug-flow partial differential equation
in a robust way. The operator supports reverse flow and
keeps track of the spatial distribution of the quantity,
when the flow varies via sampling, interpolation and
shifting of the previous distribution (Fritzson, 2014).
The species balance can then be re-written in a form that
is suitable for the spatial distribution operator:

𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑 + 𝑢𝑢 𝑑𝑑𝑋𝑋𝑖𝑖

𝑑𝑑𝜕𝜕 = 0 (14)

𝑋𝑋𝑖𝑖 (0, 𝑑𝑑) = 𝑋𝑋𝑖𝑖,𝐴𝐴 (15)
𝑋𝑋𝑖𝑖 (𝐿𝐿, 𝑑𝑑) = 𝑋𝑋𝑖𝑖,𝐵𝐵 (16)

The species’ mass fraction returned by the spatial
distribution operator is passed to the control volume to
be used in the species balances therein. The velocity
that is sent to the spatial distribution operator is
computed as follows;

𝑢𝑢(𝑑𝑑) = �̇�𝑚𝐴𝐴 + �̇�𝑚𝐵𝐵
2𝜌𝜌 , (17)

where A and B are the boundaries of the control volume.

2.2.2 Flow resistances
The pressure loss has to be estimated for each
component in the mud circulation system. To obtain the
pressure loss in the drill pipe and annulus, wall friction
is estimated as

𝜕𝜕𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕 = 2𝑓𝑓

𝜌𝜌𝐷𝐷ℎ𝜌𝜌2 �̇�𝑚| �̇�𝑚|, (18)

where f is the fanning friction factor and 𝐷𝐷ℎ is the
hydraulic diameter of the pipe. The friction factor f is
determined, depending on the selected friction
correlation. For this library two correlations are
provided, i.e. Herschel-Bulkley and Power-Law
(Zamora et. al. , 2002) and (Zamora et. al. 2005).

In the drill bit and bottom hole assembly, the pressure
loss is determined as

𝛥𝛥𝑑𝑑𝑏𝑏𝑖𝑖𝑏𝑏 = 1
2𝜌𝜌(𝑐𝑐𝑣𝑣𝜌𝜌)2 �̇�𝑚| �̇�𝑚| (19)

 𝛥𝛥𝑑𝑑𝑏𝑏ℎ𝑎𝑎 = 𝑐𝑐𝑑𝑑𝑏𝑏
𝜌𝜌𝑑𝑑𝑏𝑏

𝜌𝜌0.86�̇�𝑚|�̇�𝑚|0.86 (20)

where 𝑐𝑐𝑣𝑣, 𝑐𝑐𝑑𝑑𝑏𝑏, 𝜌𝜌𝑑𝑑𝑏𝑏 are the discharge coefficient, pressure
coefficient for down-hole tool and reference fluid
density, respectively.

2.2.3 Bottom hole assembly
The length of the wellbore increases during drilling.
This effect is modelled in the fluid system by a variable
volume component located between the drill bit and

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154246 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

249

bottom hole assembly. The volume is estimated based
on the drilling string displacement. The interaction is
modeled by two flange ports as shown in Figure 5. As a
part of fluid-mechanic interaction, the fluid system
introduces an equivalent force on the drill string;

𝐹𝐹 = 𝑝𝑝𝑏𝑏ℎ𝑎𝑎 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏 (21)
The fluid system provides also the information of
densities in the drill string and annulus and hand it over
to mechanics to determine the buoyancy force.

Figure 5. Modelica model of the bottom hole assembly and
drill bit.

2.2.4 Vessels
Two open tanks are considered in this system. Each tank
contains different mud compositions. Hence the density
of the circulating mud can be controlled by using mud
from each or the combination of two tanks.

In the mud circulating system, the top of annulus opens
to the atmosphere. To model this, “open pipe” is added
to the top of the annulus. This model is connected to the
return line through a third fluid port. The free surface
level is estimated, and the result is visualized
graphically.

2.3 Mechanics Package
The Mechanics package includes models covering the
drill string and its mechanical interaction with the well
bottom and the annulus. The drill string also interfaces
to the fluid. The string is assumed rotating only around
its own axis and does not include eccentricity. It’s also
assumed hanging free in completely vertical parts of the
well and resting on the bottom of the well in parts with
inclination.

2.3.1 Drill-string
The drill string was implemented using a lumped mass
approach, where each segment of the string has 2
degrees of freedom, one translational and one rotational,
defined along the well trajectory. The drill string is
assembled by a number of these elements and their
interactions.

2.3.2 Elements
Each element consists of two masses connected with one
spring damper element. The masses are calculated from
geometric input, the inner radius (𝑟𝑟𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), the outer

radius (𝑟𝑟𝑜𝑜𝑜𝑜𝑏𝑏𝑖𝑖𝑖𝑖), Length, 𝜌𝜌, Young's modulus (𝐸𝐸), shear
modulus (𝐺𝐺). The spring stiffness is calculated so that
with a given force or torque, the static deformation of
the element is correct. The elements also contain a
damping factor, that is currently overestimated, which
leads to more damping of rotational and translational
oscillations. More work is needed to estimate effects and
improve the damping effects in the system.

2.3.3 Buoyancy and gravity
Each element has access to its current position along the
well trajectory and can acquire information about the
local fluid densities inside the string and annulus, and
the well inclination. With this information the correct
buoyancy effect can be calculated. The buoyance has an
effect on the normal force between the string and
annulus. This will also calculate the gravitational effect
along the string.

2.3.4 Friction
The friction applied in the contact is a 2d model defining
a force ellipse for break- away friction. This enables the
study of the connected effects of rotational and
translational friction. Typical example is when the string
is twisted but at rest in the well, and the string is pulled
out, the friction is saturated by the translational motion
and at one point the rotational friction cannot hold the
twisted string and unwinds.
The friction model is parameterized using a table
providing Coulomb and viscous friction coefficients as
function of temperature.

2.3.5 Bottom removal
The bottom removal model is designed to remove mass
and increase well depth of the system. It consists of a
contact model, initialized at the defined start depth of
the well, and a removal model. The removal model
defines a relationship between bit rotational speed,
contact force and gives the penetration speed. This
speed is then applied to the bottom contact and moves it
further down along the predefined well trajectory data.

2.3.6 Experiments
Several Modelica experiments have been implemented
using reconfigurable system templates provided in the
library. The aim was to assess the behavior of the
drilling system and of the library components under
various conditions with respect to both the mechanical
and the fluid domains. Experiments in the fluid domain
included switching on and off the mud pump and
tracking the pressure and flow along the string and
through the bit; adding solid particles and tracking the
front propagation; surge and swab scenarios. As far as
the mechanical sub-system is concerned, both rotational
and translational friction tests were conducted. The
latter is explained in more details in this section.
During drilling long wells, especially with near-
horizonal trajectories, it is important to monitor

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154246

250

translational and rotational friction between drillstring
and borehole. Deviation from expected behavior causes
difficulties under development (Johancsik et. al., 1984).
It can lead to poor hole-cleaning performance (drilled
rock is not being transported out) and well path
tortuosity (Skillingstad et. al., 2000). Automatic
execution of friction tests has recently been applied to
offshore operations. Standardization of the test
procedure and using software to compensate for
variations in test execution are important for accurate
results (Cayeux et. al., 2017).

Figure 6. Three-dimensional well trajectory

The trajectory of the well is shown in Figure 6. The
geometrical data of the well are propagated to both the
thermo-fluid and mechanics sub systems.

The test is performed by controlling the movement of
the top block (see Figure 7). The drilling operation is
performed up to t=80 s. Then, the block stops its vertical
descent and let the drill-bit to drill off the bottom.

Figure 7. Block position

Figure 8. pump volumetric flow

At t=100 s, the string is pulled up 3m for 20s, where the
top block stops the rotation of the drill string. Then, the
string is pulled up and pushed down for 5m to measure
the hook force and to estimate the friction along the
well. The friction estimation was not actually performed
in this example.

Figure 9. Hook rotational speed

Then, the string is pulled up and pushed down for 5m
to measure the hook force and to estimate the friction
along the well. The friction estimation was not actually
performed in this example. Block position, pump
volumetric flow and the hook rotational speed are
shown in Figure 7, Figure 8 and Figure 9.
Initial transients in the bit rotational speed is shown in
Figure 10. The transient is because the string starts with
zero twist, and the initial rotations starts to twist the
string, successively overcoming the friction force and
then the bit starts to rotate.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵

𝐵𝐵
𝑃𝑃𝐵𝐵

𝑠𝑠𝑇𝑇𝑃𝑃
𝑇𝑇𝐵𝐵

𝑃𝑃ሾ
𝑇𝑇

ሿ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝑃𝑃𝑃𝑃
𝑇𝑇

𝑃𝑃
𝑣𝑣𝐵𝐵

𝐵𝐵𝑃𝑃
𝑇𝑇

𝑇𝑇𝑃𝑃
𝑣𝑣𝑇𝑇

𝐵𝐵 𝑓𝑓
𝐵𝐵𝐵𝐵

𝑓𝑓ሾ
𝑇𝑇

3 /𝑠𝑠
ሿ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝐻𝐻𝐵𝐵
𝐵𝐵𝐵𝐵

 𝑣𝑣𝐵𝐵
𝑃𝑃𝑟𝑟

𝑃𝑃𝑇𝑇𝐵𝐵
𝑃𝑃𝑟𝑟

𝐵𝐵 𝑠𝑠
𝑃𝑃𝑇𝑇

𝑇𝑇𝑠𝑠
ሾ 𝑣𝑣

𝑃𝑃𝑇𝑇
ሿ

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154246 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

251

Figure 10. Bit rotational speed

Contact force in the bottom is shown in Figure 11. The
force decays at t=80s then the bit drills off the bottom.

Figure 11. Rock bottom force
The difference in bit and hook torque are shown in
Figure 12. When the bit is off the bottom, the reaction
torques decreases, and the bit torque is reduced to zero.
The drill string is still twisted and stuck because of the
friction. This reaction torque can be seen in the hook
torque.

Figure 12. Bit and Hook torque; the solid line represent the
hook torque while the dotted line shows the bit torque

When the string is pulled up at t=180s, the friction is
saturated because of the axial translational movement
and it can no longer resist the twist and unwinds.

3 Conclusions and outlook

The drilling library presented in the current paper is a
first step towards a versatile tool for new technology
development for well construction. It shows the
potential of the Modelica technology in a simple but
quite complete drilling system with fluid-mechanical
interactions. The chosen implementation strategies
show computation times that are suitable for interactive
work. In Equinor, Modelica is used for control studies
and design within oil and gas production and processing,
and also as a tool to produce FMUs for integration in
process simulators. The modularity and extensibility of
Modelica is expected to lower the threshold for using
dynamic simulation in prototyping systems and control
functions for well construction. The proposed library is
currently planned to be used by Equinor within research
work and in cooperation with academia. The authors
welcome also industrial partners to participate in the
further development of the library.

4 References
Aleksandersen, J., & Vestavik, O. M. (2015). Dual-Drillpipe

Method Shows Success in PMCD Wells With Cuttings
Return. Journal of Petroleum Technology, 67, 32-35.
doi:10.2118/0415-0032-JPT

Bjørkevoll, K. S., Molde, D. O., Rommetveit, R., & Syltoy, S.
(2008). MPD operation solved drilling challenges in a
severely depleted HP/HT reservoir. IADC/SPE Drilling
Conference. doi:10.2118/112739-MS

Cayeux, E., Skadsem, H. J., Daireaux, B., & Holand, R.
(2017). Challenges and solutions to the correct
interpretation of drilling friction tests. SPE/IADC Drilling
Conference and Exhibition. doi:10.2118/184657-MS

Chin, W. C. (2012). Managed pressure drilling: modeling,
strategy and planning. Gulf Professional Publishing.

de Wardt, J. (2014). The drilling business model: driver or
inhibitor of performance and innovation. IADC/SPE
Drilling Conference and Exhibition.
doi:https://doi.org/10.2118/167933-MS

Eck-Olsen, J., Pettersen, P.-J., Ronneberg, A., Bjørkevoll, K.
S., & Rommetveit, R. (2005). Managing pressures during
underbalanced cementing by chok ing the return flow;
innovative design and operational modeling as well as
operational lessons. SPE/IADC Drilling Conference.
doi:10.2118/92568-MS

Fritzson, P. (2014). Principles of object-oriented modeling
and simulation with Modelica 3.3: a cyber-physical
approach. John Wiley & Sons.

Gerogiorgis, D. I. (2006). Dynamic oil and gas production
optimization via explicit reservoir simulation. Computer

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝐵𝐵𝑇𝑇
𝐵𝐵 𝑟𝑟

𝑟𝑟𝐵𝐵
𝑟𝑟𝐵𝐵

𝑇𝑇𝑟𝑟
𝑟𝑟𝑟𝑟

𝑟𝑟 𝑠𝑠
𝑠𝑠𝑇𝑇

𝑇𝑇𝑠𝑠
ሾ 𝑟𝑟

𝑠𝑠𝑇𝑇
ሿ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝑅𝑅𝑟𝑟
𝑅𝑅𝑅𝑅

 𝑏𝑏𝑟𝑟
𝐵𝐵𝐵𝐵

𝑟𝑟𝑇𝑇
 𝑓𝑓𝑟𝑟

𝑟𝑟𝑅𝑅
𝑇𝑇ሾ

𝑁𝑁ሿ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ሾ𝑠𝑠ሿ

𝐵𝐵𝑇𝑇
𝐵𝐵,𝐻𝐻

𝑟𝑟𝑟𝑟
𝑅𝑅

𝐵𝐵𝑟𝑟
𝑟𝑟𝑡𝑡

𝑡𝑡𝑇𝑇
ሾ 𝑅𝑅

𝑁𝑁.
𝑇𝑇

ሿ

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154246

252

Aided Chemical Engineering, 21, 179-184.
doi:10.1016/S1570-7946(06)80043-X

Godhavn, J.-M., Hauge, E., Molde, D. O., Kjøsnes, I.,
Gaassand, S., Fossli, S. B., & Stave, R. (2014). ECD
Management Toolbox for Floating Drilling Units. Offshore
Technology Conference. doi:10.4043/25292-MS

Johancsik, C. A., Friesen, D. B., & Dawson, R. (1984). Torque
and drag in directional wells-prediction and measurement.
Journal of Petroleum Technology, 36, 987-992.
doi:10.2118/11380-PA

Kaasa, G.-O., Stamnes, Ø. N., Aamo, O. M., & Imsland, L. S.
(2012). Simplified hydraulics model used for intelligent
estimation of downhole pressure for a managed-pressure-
drilling control system. SPE Drilling & Completion, 27,
127-138. doi:10.2118/143097-PA

Kvernland, M., Christensen, M. Ø., Borgen, H., Godhavn, J.-
M., Aamo, O. M., & Sangesland, S. (2018). Attenuating
Heave-Induced Pressure Oscillations using Automated
Down-hole Choking. IADC/SPE Drilling Conference and
Exhibition. doi:10.2118/189657-MS

Skillingstad, T. (2000). At-bit inclination measurements
improves directional drilling efficiency and control.
IADC/SPE Drilling Conference. doi:10.2118/59194-MS

Zamora, M., & Power, D. (2002). Making a case for AADE
hydraulics and the unified rheological model. AADE 2002
Technology Conference Drilling & Completion Fluids and
Waste Management, Houston, USA.

Zamora, M., Roy, S., & Slater, K. (2005). Comparing a basic
set of drilling fluid pressure-loss relationships to flow-loop
and field data. AADE 2005 National Technical Conference
and Exhibition, (ss. 5-7).

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154246 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

253

