
DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 1

THE AMERICAN
MODELICA 2022
CONFERENCE

DALLAS
OCTOBER 26-28

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022
Dallas, Texas, USA, October 26-28, 2022

EDITORS
Michael Tiller, Hubertus Tummescheit, Luigi Vanfretti, Christopher Laughman, and Michael Wetter

PUBLISHED BY
Modelica Association and Linköping University Electronic Press

Series info: Linköping Electronic Conference Proceedings 186
ISBN: 978-91-7929-218-8
ISSN: 1650-3686
eISSN: 1650-3740
DOI: 10.3384/ecp21186

ORGANIZED BY
North America Modelica Users’ Group
na.modelica-users.org

in co-operation with:
Modelica Association
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping
Sweden

CONFERENCE LOCATION
Davidson-Gundy Alumni Center
University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080
USA

Copyright © Modelica Association, 2022

3

KEYNOTE SPEAKER

SCOTT A. BORTOFF
Chief Scientist,
Mitsubishi Electric Research Laboratories (MERL)

ABSTRACT
Sustainable HVAC: Research
Opportunities for Modelicans
What are the modeling and control research challenges that,
if addressed, will drive meaningful innovation in sustainable
building HVAC systems in the next 20 years? In particular, what
innovations might help to address the considerable problems
with the earth’s climate that are caused by human activity,
especially greenhouse gas production? Buildings, as end users of
various forms of energy (mainly electricity, natural gas and oil),
account for approximately one third of greenhouse gas emissions
worldwide, and their HVAC systems are major energy consumers.

In this talk, I will present several ideas and opportunities in
the HVAC area that might help to address this sustainability
problem. First, at the equipment level, energy-efficient and low-
GWP HVAC products can be engineered, but present challenges
especially related to control. Building envelopes can be
designed to produce lower heating and cooling loads, and also
to provide integrated power production sufficient to meet HVAC
demand, but issues related to storage and intermittent supply
remain. HVAC operations can be monitored using ``digital
twins’’ that make visible what is otherwise invisible, helping
to maintain efficient operation. Yet these technologies are
immature and fragile, and challenges remain in designing and
maintaining robust operation. Modelica, as a tool for modeling,
simulation and analysis of multiphysical, heterogeneous systems,
can and will continue to play a major role in developing and
maturing new building HVAC technologies for both products
and services. The Modelica community has made significant
contributions to this area, such as through the development of
open-source libraries, and should continue to view these urgent
problems as opportunities.

BIO
Scott A. Bortoff is Chief Scientist at Mitsubishi Electric Research
Laboratories (MERL), Cambridge, MA, USA. His research interests
include mathematical modeling and control of thermofluid
systems and mechatronic systems. Prior to joining MERL in
2009, Scott was group leader of Control Technology at United
Technologies Research Center (now Raytheon Technology
Research Center), in East Hartford, CT, USA. During his 9.75 year
tenure, he led several projects that used Modelica for system-level
dynamic modeling and control design of fuel cell power plants,
airborne power generation and distribution systems, and HVAC
systems. He held positions of Assistant and Associate Professor
of Electrical and Computer Engineering at the University of
Toronto from 1992-2000, where he conducted research and
taught courses in control. He received the B.S. and M.S. degrees
from Syracuse University in 1985 and 1986, respectively, and the
Ph.D. degree from the University of Illinois at Urbana-Champaign
in 1992, all in Electrical Engineering. He is currently Associate
Editor of the IEEE Control System Magazine and serves the
Modelica community in various capacities.

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 20224

KEYNOTE SPEAKER

DIRK ZIMMER
Head of Team for Aircraft Energy Systems at
German Aerospace Center (DLR)

ABSTRACT
Mathematical Modeling in Modelica:
The Art of Compressing Reality
When we enjoy the freedom of mathematical expression in
Modelica, we build on the legacy of many great scientist who
condensed the laws of nature into elegant equations. This
makes differential-algebraic equations an extremely powerful
modeling tool to compress the real system down to an
intelligible, computable and hopefully controllable form.

But all too often, this compression is flawed and as simulation
engineers we run into errors. For large modeling efforts, the
freedom of expression needs to be rigorously constrained by a
clear methodology. All experienced modelers know that the dull
application of text-book equations will not bode well in a large,
challenging simulation project. But how to do better? How to
ensure that you reach a computational feasible form that is still
effective? How to ensure that what works on component level will
work on system level?

In this keynote, I revisit the principles of idealization that
modelers often apply without being aware of them. I
demonstrate how quickly idealization can lure you into problems
rather than solving them. But better understanding the process of
idealization also offers an approach leading to a robustly solvable
form, even for large complex systems. The immediate practical
value is demonstrated by the simulation of complex thermal
architectures and the real-time simulation of stiff mechanical
contact problems.

BIO
Dr. Dirk Zimmer is head of a research team for the modeling and
simulation aircraft energy systems at the German Aerospace
Center (DLR). He received his PhD degree at the Department of
Computer Science of the Swiss Federal Institute of Technology
(ETH). Also, he is lecturer at the Institute of Computer Science
at the Technical University of Munich (TUM) and member
of the Modelica Association. Recently he developed a new
computational scheme for complex thermal architectures and
the corresponding library was awarded with the Modelica Library
Award in 2021.

5

CONFERENCE CO-CHAIRS
Dr. Michael Tiller, Ricardo

Dr. Hubertus Tummescheit, Modelon

PROGRAM CO-CHAIRS
Prof. Luigi Vanfretti, RPI

Dr. Michael Wetter,
Lawrence Berkeley National Laboratory

CONFERENCE EXECUTIVE COORDINATOR
Dr. Christopher Laughman,
Mitsubishi Electric Research Laboratories

LOCAL CHAIR
Prof. Yaoyu Li, University of Texas at Dallas

Behnam Afsharpoya,
Dassault Systèmes

PROGRAM COMMITTEE
Miguel Aguilera, ICE

Bernhard Bachmann, Fachhochschule Bielefeld

Christian Bertsch, Robert Bosch GmbH

Volker Beuter, VI-grade GmbH

David Blum, Lawrence Berkeley National
Laboratory

Scott Bortoff,
Mitsubishi Electric Research Laboratories

Timothy Bourke, INRIA

Daniel Bouskela, EDF

Robert Braun, Linköping University

Felix Bünning, Empa/ETH Zürich

Yan Chen, Pacific Northwest National Lab

Clément Coïc, Modelon Deutschland GmbH

Sergio A. Dorado-Rojas,
Rensselaer Polytechnic Institute

Atiyah Elsheikh, Mathemodica.com

Olaf Enge-Rosenblatt, Fraunhofer

Gianni Ferretti, Politecnico di Milano

Virginie Galtier, CentraleSupélec

Valentin Gavan, ENGIE Lab

Anton Haumer, OTH Regensburg

Dan Henriksson, Dassault Systemes

Yutaka Hirano, Woven Planet Holdings, Inc.

Jianjun Hu,
Lawrence Berkeley National Laboratory

Christian Kral,
Electric Machines, Drives and Systems

Alessandro Maccarini, Aalborg University

Alexandra Mehlhase, TU Berlin

Thierry S Nouidui,
The United African University of Tanzania

Hans Olsson, Dassault Systèmes

Martin Otter,
DLR, Institute of System Dynamics and Control

Kaustubh Phalak, Ingersoll Rand

Meaghan Podlaski, Rensslaer Polytechnic Institute

Adrian Pop, Linköping University

Johan Rhodin, ModSimTech, LLC

Lisa Rivalin, Facebook

Clemens Schlegel, Schlegel Simulation GmbH

Michael Sielemann, Modelon Deutschland GmbH

Giorgio Simonini, EDF

Martin Sjölund, Linköping University

Wilhelm Tegethoff, TLK-Thermo GmbH

Matthis Thorade, Modelon

Jakub Tobolar, DLR - German Aerospace Center

Alfonso Urquia,
Universidad Nacional de Educación a Distancia
(UNED)

Volker Waurich, TU Dresden

Dietmar Winkler,
University of South-Eastern Norway

Stefan Wischhusen, XRG Simulation GmbH

Dirk Zimmer, DLR

Marcelo de Castro Fernandes,
Federal University of Juiz de Fora

PROGRAM COMMITTEE

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 20226

Paper Session 1/Room 1 Building Energy I

BESMOD – A Modelica Library for Providing Building Energy System Modules 9
Wüllhorst, F., Maier, L., Jansen, D., Kühn, L., Hering, D., and Müller, D.

Fan and Pump Efficiency in Modelica based on the Euler Number .19
Fu, H., Blum, D. and Wetter, M.

Transient Simulation of an Air-Source
Heat Pump under Cycling of Frosting and Reverse-Cycle Defrosting . 26
Ma, J., Kim, D., and Braun, J.E.

Paper Session 1/Room 2 Aerospace

Simulation of the On-Orbit Construction of Structural Variable Modular Spacecraft by Robots 38
Reiner, M.

Extending a Multicopter Analysis Tool using Modelica
and FMI for Integrated eVTOL Aerodynamic and Electrical Drivetrain Design 47
Podlaski, M., Vanfretti, L., Niemiec, R., and Gandhi, F.

Multirotor Drone Sizing and Trajectory Optimization within Modelon Impact 56
Coïc, C., Budinger, M., and Delbecq, S.

Paper Session 2/Room 1 Power Generation

Applying Design of Experiments Method for the Verification of a Hydropower System 64
Pham, L.N.H., and Winkler, D.

Using Multi-Physics Simulation to Estimate Energy
Flexibility for Local Demand Response Strategies in a Microgrid . 75
del Barrio, I.L., Cestero, J., Quartulli, M., Olaizola, I.G., Aginako, N., and Ugartemendia, J.J.

Power System Real-Time Simulation using Modelica and the FMI . 85
del Castro Fernandes, M., et al,

Paper Session 2/Room 2 Language/Tools

A Playground for the Modelica Language . 93
Tiller, M.

Towards an Open Platform for Democratized
Model-Based Design and Engineering of Cyber-Physical Systems . 102
Nachawati, M.O., Bullegas, G., Gregory, J., Vasilyev, A., Pop, A., Elaasar, M., and Asghar, A.

Enhancing SSP Creation using sspgen . 115
Hatledal, L.I., and Fagerhaug, E.

CONTENTS

7

Paper Session 3/Room 1 Building Energy 2

Development and Validation of a Modelica Model
for the Texas A&M Smart and Connected Homes Testbed . 120
Firsich, T., Yang, Z., and O’Neill, Z.

Performance Enhancements for Zero-Flow Simulation of Vapor Compression Cycles .128
Qiao, H., and Laughman, C.

Tradeoffs Between Indoor Air Quality
and Sustainability for Indoor Virus Mitigation Strategies in Office Buildings . 136
Faulkner, C.A., Castellini Jr., J.E., Lou, Y., Zuo, W., Lorenzetti, D.M., and Sohn, M.D.

Paper Session 3/Room 2 Model-Based Design

Guidelines and Use Cases for Power Systems
Dynamic Modeling and Model Verification using Modelica and OpenIPSL 146
Laera, G., et al,

Material Production Process Modeling
with Automated Modelica Models from IBM Rational Rhapsody . 158
Batteh, J., Gohl, J., Ferri, J., Le, Q., Glandorf, B., Sherman, B., and Opmanis, R.

CONTENTS

PAPERS

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9

BESMod - A Modelica Library providing
Building Energy System Modules

Fabian Wüllhorst1 Laura Maier1 David Jansen1 Larissa Kühn1 Dominik Hering1 Dirk
Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, fabian.wuellhorst@eonerc.rwth-aachen.de

Abstract
Towards the analysis and optimization of a coupled build-
ing energy sector, various component model libraries for
hydraulic, ventilation, electrical, control, and building do-
mains exist. However, no uniform open-source frame-
work to couple these domains in a holistic building en-
ergy system simulation exists. Thus, we present BESMod,
an open-source Modelica library, providing a modular ap-
proach towards domain-coupled building energy system
simulations. BESMod relies on existing component spe-
cialized model libraries for the underlying physics. For the
analysis of complex system simulations, user-friendly pa-
rameterization, consistent model interfaces, precalculated
KPIs and debugging options are applied. The library is
available at www.github.com/RWTH-EBC/BESMod.
This paper motivates the library, lays out the interaction
with existing model libraries and the general modular ap-
proach. An exemplary use case demonstrates the applica-
bility of BESMod. Concluding, we motivate future devel-
opment options.
Keywords: Coupled simulations, HVAC, Building, Modu-
lar

1 Introduction
Towards the integration of renewable energy into a
domain-coupled building sector, coupled simulation based
analysis of the hydraulic, ventilation, electric, control, and
building domain can aid the development of innovative de-
sign and control methods (Ramsebner et al. 2021). To
this extent, various Modelica libraries exist with the fo-
cus on modeling specific components from the domains
hydraulic, ventilation, electric, and building (Modelica
Association 2022). All existing libraries deliver relevant
component1 models. Besides providing simple system ex-
amples (cf. section 2), none of the mentioned open-source
libraries aim for the aggregation of different components
into compound energy systems.

One possible reason is the heterogeneity and complex-
ity of energy systems. Especially for buildings, energy
systems tend to be unique and, hence, not easily trans-

1In the context of this paper, a component refers to a single device in
an energy system, such as a mover, a pipe or a storage.

ferable. However, re-occurring subsystems2 exist (EN
15316-1 2017). Researchers and practitioners often com-
bine the same components to different hydraulic, venti-
lation, and electrical subsystems. For instance, the com-
bination of a heat pump and a heating rod (hydraulic), a
ventilator and a heat recovery (ventilation), or a photo-
voltaic power plant (PV) and a battery energy storage sys-
tem (electrical) are typical subsystems. To enable the ag-
gregation of components into subsystems and subsystems
into a unique building energy system (BES), a high level
of modularity of each subsystem is required (Baldwin and
Clark 2000).

As no such library exists, researchers need to aggre-
gate existing component models into a BES each time they
want to model interactions between hydraulic, ventilation,
electric, control and the building envelope. However, to-
wards the integration of renewable energy and the cou-
pling of sectors, analysis of these interactions are more
important than ever (Ramsebner et al. 2021). Following
this need, we highlight and close two research gaps:

• Gap 1: Modelica enables the modeling and coupling
of different domains. While models for different do-
mains exist, no uniform approach for coupling rele-
vant domains within one BES exists.

• Gap 2: Coupled system models encompass
large equation systems and countless parameters.
Thus, the analysis is time-consuming and error-
prone (Remmen et al. 2018). While existing libraries
are user-friendly on component level, no clear ap-
proach exists for system analysis (cf. section 2).

To close these gaps, we develop the open-source li-
brary BESMod, a Modelica library for Building Energy
System Modules. Regarding Gap 1, we realize a modular
subsystem structure and a straightforward aggregation of
subsystems into a unique BES. Further, we supply user-
friendly and consistent approaches for parameterization,
system analysis, and debugging to address Gap 2.

The remainder of this publication is structured as fol-
lows: Section 2 discusses and compares existing Modelica
libraries for BES simulations in detail. Based on deducted

2In this paper, we refer to subsystems as modules.

9

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA10

gaps, BESMod is presented in section 3. Section 4 de-
scribes an exemplary use case for the annual simulation
of two building models. Finally, section 5 concludes with
further development options and furture use cases.

2 Existing Libraries
In recent years, a variety of open-source libraries for the
modeling language Modelica have been developed. Fol-
lowing the idea of BESMod library, we focus our state
of the art on open-source Modelica libraries that are rel-
evant for BES modeling and simulations. As a basis for
our literature review, we take the Modelica Association’s
library list (Modelica Association 2022). Table 1 qualita-
tively categorizes libraries which are considered relevant
for further evaluation and comparison with BESMod re-
garding the following criteria: On the component level,
we distinguish between the existence, level of detail, and
comprehensiveness of hydraulic (H), ventilation (V), elec-
trical (E), control (C), and building (B) envelope mod-
els. Following Gap 1, we introduce the existence of sys-
tem (Sys) configurations as an additional category. For
instance, system packages include a connected overall
BES or aggregate subsystems in a similar form. Further-
more, the libraries are evaluated regarding their modular-
ity (Mod), i.e., the interconnectability of the subsystems.
Following Gap 2, the aggregation of subsystems to a fully
connected BES results in a tremendous increase in com-
plexity. Therefore, simple and consistent parameteriza-
tion (Par) is a key feature that modeling libraries should
offer. For this category, the focus lies on consistency and
simplicity of parameterization. For example, we evaluate
if parameters are organized (e.g. in records), if param-
eter naming is consistent, whether the parameters were
propagated and if measures to aggregate or simplify sys-
tem parameters are offered. Finally, open-source devel-
opment suffers from poor maintenance (Main) in many
cases. Maintenance increases both model and library qual-
ity and is thus defined as the last category.

Twelve libraries are classified as relevant for BESMod.
The first five libraries, namely IBPSA (Wetter, Blum, et
al. 2019), AixLib (Müller et al. n.d.), Buildings (Wetter,
Zuo, et al. 2014), BuildingSystems (Nytsch-Geusen et al.
2013), and IDEAS (Jorissen et al. 2018) are part of the co-
operation within IBPSA Project 1 and are the follow-up
projects of the former IEA EBC Annex 60 (Wetter and
Treeck 2017; Wetter 2022). The aim of Annex 60 and
Project 1 is to develop a new generation of open-source
Modelica-based computational tools for building and dis-
trict energy systems. One of the project’s outcomes is the
joint modeling library Modelica IBPSA as well as the four
additional separate modeling libraries which all incorpo-
rate the IBPSA models but supplement them with further
modeling efforts. In Table 1, we evaluate the libraries as
they are, neglecting the fact that AixLib, Buildings, Build-
ingSystems, and IDEAS partially consist of IBPSA models
and vice versa. For example, AixLib’s high representation

of hydraulic models is partially due to a solid represen-
tation in the core library IBPSA. For instance, the Build-
ingSystems and IDEAS introduce e.g. battery and photo-
voltaic models or the Buildings adds detailed Building and
EnergyPlus coupled building models.

For building envelope, the IBPSA offers the basis
to model simplified building envelope models based on
reduced-order approaches. These models are enhanced
by the Buildings library which offers an extensive inter-
face for EnergyPlus models and by the AixLib, introduc-
ing high-order modeling approaches (Xanthopoulou et al.
2021). System aggregation possibilities and modularity
are similar among the regarded IBPSA-based libraries. All
of them introduce examples to increase comprehensive-
ness or even integrate tutorials on how to build your own
BES model, e.g. IDEAS and Buildings. Yet, system ag-
gregation is not based on replaceable subsystems with uni-
form interfaces, leaving room for improvement. In addi-
tion, the coupling between electrical and thermal models
is impeded by inconsistency, i.e. different electrical ports,
or non-existent interfaces, i.e. electrical power as compo-
nent output.

In addition to IBPSA-related libraries, few Modelica-
based libraries focusing on holistic building performance
simulation have successfully been introduced over the past
years. Among them, the BuildingSysPro (Plessis, Kaem-
merlen, and Lindsay 2014) is the only library outside the
Project 1 cooperation (Wetter 2022) that also includes the
IBPSA, but does not use it within the models. Like the
IBPSA-based libraries, the BuildingSysPro includes mod-
els of all relevant subsystems, too. However, system ag-
gregation is not included and the examples which refer
to system simulation tend to focus on specific compo-
nents. In addition, parameterization lacks the organization
in records and detailed documentation, resulting in less
manageable parameter structures. Furthermore, modular-
ity is impeded due to the omission of consistent interfaces
(e.g. busses) and subsystems, respectively.

Another library providing models for building perfor-
mance simulations is the FastBuildings (Coninck et al.
2014). It is developed for low-order and grey-box mod-
eling of buildings and simplified heating, ventilation, and
air conditioning (HVAC) components for model predictive
control applications. These individual subsystems can be
integrated in other frameworks. However, the modeling
and parameterization effort is rather high. Further, the last
changes have been committed 7 years ago, thus the library
appears to be inactive.

The ThermofluidStream modeling library enables de-
tailed simulations of complex thermofluid systems and re-
frigerants (Zimmer 2020). Again, the individual subsys-
tems are suitable to be incorporated in external BES sim-
ulation frameworks, but the library itself does not aim at
providing them. The usage of different ports further in-
hibits an integration of IBPSA-based models.

The remaining open-source modeling libraries focus on
selected domains rather than providing holistic coupled

9

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 11

Table 1. Comparison of open-source Modelica libraries offering models relevant to BES. The following abbreviations are used:
H:=hydraulic, V:=ventilation, E:=electrical, C:=control, B:=building, Sys:=system, Mod:=modularity, Par:=parameterization,
Main:=maintenance. The evaluation metrics are qualitative measures ranging from - - (poor representation/not existent), 0 (in-
termediate representation) to ++ (very good representation).

BES subsystems
Name H V E C B Sys Mod Par Main URL
IBPSA 0 0 - - - 0 0 + 0 ++ https://github.com/ibpsa/

modelica-ibpsa

AixLib ++ + 0 + + + + + + https://github.com/RWTH-EBC/AixLib

Buildings ++ + + + ++ + + + ++ https://github.com/lbl-srg/
modelica-buildings

Building
Systems

+ 0 ++ - + + + 0 0 https://github.com/UdK-VPT/
BuildingSystems

IDEAS + 0 ++ + + + + 0 + https://github.com/open-ideas/IDEAS

Building
SysPro

0 0 + + + - - - - 0 https://github.com/EDF-Lab/
BuildSysPro

FastBuildings - - - - - - - 0 - - - - - - https://github.com/open-ideas/
FastBuildings

Thermofluid-
Stream

+ + - - + - - - - 0 + + https://github.com/DLR-SR/
ThermofluidStream

dhcSim 0 - - - - - - - 0 - - - https://github.com/mabachmann/dhcSim

DisHeatLib - - - - - + - - + 0 0 0 https://github.com/AIT-IES/
DisHeatLib

TransiEnt - - - + 0 - - + + - + https://github.com/
TransiEnt-official/transient-2.0.1

Building-
ControlLib

- - - - - - + - - - - - - - - - https://github.com/
TechnicalBuildingSystems/
BuildingControlLib

building performance simulation. Nonetheless, they are
potentially suitable to be integrated into the respective
subsystem packages. For example, the dhcSim (Bach-
mann et al. 2021) and DisHeatLib (Leitner et al. 2019)
both specialize on district heating and cooling simulations.
Since they primarily aim is to enable large district simula-
tions, the subsystems are simplified for low computational
effort. DisHeatLib provides well documented and exten-
sive system examples and basic control blocks for district
use cases. However, the modularity is limited. dhcSim
provides less extensive system examples and components.
Another library that falls into the category of domain-
specific libraries is the TransiEnt library (Andresen et al.
2015). Here, the focus lies on coupled energy systems on
grid level. Consequently, the lower level BES is not part
of the library. In addition, the library’s documentation is
limited and the parameterization effort is rather high. This
impedes an integration into other frameworks. Neverthe-
less, the library provides extensive system examples. A
satisfactory level of modularity is provided.

Finally, the BuildingControlLib is another domain-
specific Modelica library (Schneider, Pessler, and Steiger
2017). The library aims at providing state-of-the-art con-
trol modules which occur in BES. Unfortunately, the li-
brary is not maintained anymore.

The comparison and categorization of different open-

source Modelica libraries enabling building performance
simulations reveals that the scientific community currently
lacks a library that fulfills all of the following criteria:

• Selection of models for all relevant building subsys-
tems, namely hydraulic, ventilation, electrical, con-
trol, and building envelope.

• Straightforward option to aggregate subsystems to
coupled BES.

• Uniform interfaces and model structures among all
subsystems to increase modularity and facilitate sys-
tem aggregation.

• Consistent parameterization within and between the
subsystems to reduce parameterization effort.

To bridge these gaps, we developed the modeling li-
brary BESMod which is presented in the following chap-
ters. BESMod joins the rich pool of existing component
models, providing models for full, domain-overarching
BES simulations. Consequently, rather than being an al-
ternative to the libraries discussed above, we enhance the
current library portfolio and build upon the existing li-
braries by integrating them as dependencies.

9

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA12

3 Library Design
Based on the gaps identified in Section 1 and 2, we
present the library design of BESMod. First, the integra-
tion of the existing component library pool is discussed
(subsection 3.1). The realization of modularity is pre-
sented in subsection 3.2. The following subsections dis-
cuss the implementation of the subsystems hydraulic, ven-
tilation, electrical, control, building, DHW and user pro-
files (subsections 3.3-3.9). After the description of the
system aggregation in subsection 3.10, subsection 3.11
presents a keystone for high quality maintenance of BE-
SMod, namely Continuous Integration.

Figure 1 illustrates BESMod’s library structure. Besides
the common User’s Guide, the Systems package is
the heart of BESMod. The Utilities package provides
interfaces, icons and other. The Examples package con-
tains the use case presented in section 4 as well as addi-
tional examples demonstrating the flexibility of
BESMod. Last, the Tutorial package is an addition
to the User’s Guide to document how inheritance and
replaceability of modules work.

Figure 1. Package order of BESMod.

3.1 Dependencies
BESMod focuses on system models, not component mod-
els. As existing libraries already contain numerous com-
ponent models of high quality, we build BESMod upon
these libraries. Figure 2 depicts this setup. We distinguish
between required and optional libraries.

The Modelica Standard Library (MSL) and the IBPSA
library are required libraries. While the former is an obvi-
ous requirement, the choice of the IBPSA library is based
on our state of the art. Out of all libraries listed in Table 1,
the libraries derived from the IBPSA have the highest po-
tential on component level for BES. Further, maintenance
is applied, and the developer community is active. Thus,
we choose the IBPSA library as the most suitable required
library to integrate fluid models, media models, and other,
which are compatible to the majority of component model
libraries.

All other libraries are optional. At the current state

of development, existing subsystems use the AixLib, the
Buildings, and the BuildingSystems library.

The Python script install_dependencies.py
installs all optional and required dependencies. For fur-
ther information, the repositorie’s README.md provides
detailed documentation.
Regarding software dependency, BESMod is only tested
using Dymola. As soon as the component libraries simu-
late in OpenModelica, BESMod will be tested for Open-
Modelica as well to enable the simulation of the open-
source library in open-source software.

Figure 2. BESMod is built upon required and optional library
dependencies.

3.2 Modular Subsystem Design
Baldwin and Clark (2000) define modules as “units in a
larger system that are structurally independent of one an-
other, but work together“ (Baldwin and Clark 2000, p.
63). To achieve modularity, a framework needs to al-
low “for both independence of structure and integration
of function“ (Baldwin and Clark 2000, p. 63). Transfering
these design rules to Modelica, we build each module with
the same concept using expandable bus connectors, vector
sized ports, and a uniform parameterization approach.

Expandable bus connectors: Each module is struc-
turally independent. To exchange information with other
modules, we implement expandable bus connectors (type
Real, Integer, and Boolean). Five types of bus con-
nectors arise. We distinguish between this variety of bus
connectors by using color coding.

First, each module with HVAC components contains a
bus to interact with the control module (white). As a nam-
ing convention, we apply the idea of the AixLib. For in-
stance, a radiator transfer system receives the thermostatic
valves set point yValSet as an input and sends the cur-
rent valve position yValMea as an output. Using Set
and Mea as indicators, users can always distinguish be-
tween control’s and system’s in- and outputs.

9

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 13

Second, each module contains a bus to pass on rele-
vant key performance indicators (KPI) of the module to
the system (gray). This facilitates a fast analysis of com-
plex BES. For instance, a generation subsystem using a
heat pump may always output the consumed electrical en-
ergy, the supplied heat, and the number of starts. As we
define these KPIs on a module level and propagate them
using expandable bus connectors, the user can directly ac-
cess the most important simulated states by analyzing the
outputs bus.

The existing weather bus of the IBPSA library is used
to distribute the boundary conditions to all subsystems
(yellow). For user set points, all control models have ac-
cess to the UseProBus, which includes for instance user
presence and temperature set points (green). Last, the
BuiMeaBus distributes current building measurements
to the control subsystems (red).

Vector sized ports: Besides the exchange of control sig-
nals and system inputs, a module may exchange heat,
mass, and electricity with other modules. While the us-
age of bus connectors for that purpose is generally possi-
ble, existing libraries commonly use the FluidPort for
mass, the HeatPort for heat, and the Pin for electricity
from the MSL. Thus, we consider the usage of expandable
busses in this context as non-intuitive. Furthermore, a bus
also only serves for information exchange in reality.

The individual use of ports depends on the type of sub-
system and is elaborated in the accompanying subsections.
Besides DHW supply, we apply vector sized ports. Thus,
any number of parallel thermal zones, hydraulic circuits,
or air ducts may be simulated. Again, this guarantees
modularity.

Parameterization: Beutlich and Winkler (2021) moti-
vate the decoupling of the “behavioral implementation
from its actual design parameters“ to facilitate a robust pa-
rameterization of simulation models. Applying this gen-
eral method to BESMod, four model parameter types re-
sult.

1. Top-Down: All parameters given by the parent sys-
tem. For instance, the heat demand of the building is
a top-down parameter.

2. Bottom-Up: All parameters used by the parent sys-
tem, but are inherently defined by the components in
the subsystem. For instance, the system’s pressure
drop is given by the component models.

3. Component choices: All replaceable component
models or packages. For instance, the hydraulic con-
trol system contains a replaceable thermostatic valve
control. Thus, users may switch between P- and PI-
controlled valves directly.

4. Component records: Each component in the sys-
tem is equipped with a replaceable parameter record.
This decouples the physical parameters from the

modeling as motivated in (Beutlich and Winkler
2021). Ideally, such records would already exist in
the component library. As most libraries do not sup-
port this approach, we add records for several com-
ponents, for instance for the IBPSA mover models.

To enable a simple parameterization, composing the
component records as a function of top-down parameters
is convenient. Currently, the hydraulic subsystems follow
the approach presented in previous work (Wüllhorst et al.
2022). In future versions, the electrical and ventilation
subsystems may apply similar approaches.

While all subsystems follow this modular layout, dif-
ferences occur depending on the subsystem’s type.

3.3 Hydraulic Subsystem
In the following subsections, we highlight the choices for
the system layout, the connector choice, the parameter-
ization approach, and present already available subsys-
tems.

System layout: The layout of the hydraulic subsystem
follows (EN 15316-1 2017), which separates the system
in generation, distribution, and transfer subsystems. To
decouple the physical components from the control, we
separate the control subsystem. The resulting subsystem
layout is depicted in Figure 3 on the lower left.

Connectors: Water-based heating systems have two
tasks. Firstly, they supply heat to possibly multiple ther-
mal zones. Secondly, they provide DHW. Thus, the hy-
draulic subsystem contains heat and fluid ports from the
MSL.

Parameterization: Wüllhorst et al. (2022) present a
uniform method towards minimal parameterization effort
in BES simulations. Inhere, each subsystem contains the
exact same parameters to be quantified. The method fol-
lows the analogy of thermal and electrical systems and
uses nominal heat and temperature demands to calculate
remaining parameters. For instance, the mass flow rate is
given by the nominal heat flow rate divided by the nom-
inal temperature difference and the specific heat capacity
of the fluid. As the demands are given by the building and
DHW models, these are top-down parameters. Using cor-
relations between top-down parameters and the selected
component records, all remaining parameters are quanti-
fied. Fine-tuning is always possible, as we use the final
modifier for top-down parameters only.

Available Subsystems: BESMod was originally devel-
oped for hydraulic-based BES simulations. Thus, a rich
pool of subsystems already exist. Direct electric heating,
bivalent heat pumps, gas boilers, solar thermal systems,
different storage options, and radiator as well as under-
floor heating subsystems may be combined. As control
system, several approaches based on Vering et al. (2021)
and the corresponding state of the art for the control of
bivalent heat pump systems are implemented, too.

9

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA14

Figure 3. The aggregation of subsystems into the building energy system

3.4 Ventilation Subsystem
The ventilation system is used for heating, cooling, and air
supply to control temperature, moisture and CO2 concen-
trations. Especially towards the analysis and optimization
of new buildings, simulation of ventilation coupled to hy-
draulics and electrics is vital.

System layout: As the hydraulic subsystem, the layout
of the ventilation is based on the core idea of (EN 15316-1
2017). However, as the supply air directly flows into the
thermal zones, no transfer system is required. The result-
ing subsystem layout is depicted in Figure 3 on the upper
right.

Connectors: The ventilation system exchanges air with
multiple thermal zones. Thus, fluid ports are used in addi-
tion to the usual bus connectors.

Parameterization: Similar to the hydraulic system, the
parent system propagates temperature and heat demands
top-down to each subsystem. Besides this propagation, no
simplifying parameterization principles are applied. The
supply flow rate has to be defined in each case. For future
versions, we plan an automatic parameterization based on
the net least area according to DIN 1946-6 (2019).

Available Subsystems: Currently, only a simple config-
uration exists in the open-source library. Inhere, a heat
recovery system is simulated and equally distributed to
all connected thermal zones. While only this example
is open-source, more complex systems have been inves-
tigated in internal projects. For future versions, usage of
air handling unit models, for instance, as presented in the
AixLib, could be integrated.

3.5 Electrical Subsystem
The electrical subsystem in the BESMod library is used
for the generation and distribution of electricity, as well as

electricity-based space heating.

System layout: Based on this usage, the system layout
is equal to the hydraulic system’s one. Even though the
decomposition into generation, distribution, and transfer
derives from hydraulic systems, it is equally suitable for
electrical systems.

Connectors: The existing IBPSA-related Modelica
modeling libraries for BES focus on thermal and hydraulic
subsystems and respective components. Even though the
concept of electrical pins exists, e.g., in the MSL or the
Buildings, they are not jointly used among the other li-
braries. In addition, most components which were espe-
cially modeled for thermal simulation assessments sim-
plify electrical relations and solely calculate the electrical
power output instead of detailed voltage or current rela-
tions. Hence, we introduce a simplified electrical con-
nector which incorporates the flow variable power, only.
Apart from that, the IBPSA weather bus and radiative and
convective heat ports to the thermal zones are included, as
well. The latter is an interface for electricity-based heat
transfer by, e.g., electrical floor heating systems.

Parameterization: In contrast to the modeling ap-
proach by Wüllhorst et al. (2022), we parameterize each
subsystem of the electrical system mostly independently.
Nonetheless, the electrical subsystem predominantly re-
lies on records and the definition of relations based on
design parameters. For example, we introduce a design
factor as a bottom-up parameter for system sizing relative
to the building envelope’s roof area, which is a top-down
parameter.

Available Subsystems: The electrical subsystem incor-
porates the most commonly used electrical components
in BES, namely a PV as generation subsystem and a bat-
tery energy storage subsystem to represent the distribution

9

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 15

side. The PV subsystem is based on the AixLib model.
Following the library’s aim of simple parameterization,
the PV model’s parameters are organized in records and
system specific information is propagated to the top level.
Again, to achieve a high degree of modularity, the system
is introduced as a vector, providing the possibility to con-
sider PV systems of different orientations, tilts, etc. Future
developments for the generation models will include wind
power plants.

As an exemplary model for the electrical distribution
models, a simplified battery energy system based on the
BuildingSystems library and a direct grid connection are
included (Nytsch-Geusen et al. 2013). Again, different
battery types can be selected based on a quick record
change.

3.6 Building Envelope
The heart of any BES simulation is the model for the
building envelope. For this subsystem, BESMod enables
the connection to all three domains (hydraulic, ventila-
tion, and electric) using heat, fluid, and electrical ports.
The building subsystem outputs all relevant measurements
to the other control systems. Currently, only tempera-
ture control (TZoneMea) is enabled. Future versions may
add, e.g., moisture measurements and set-points.

For parameterization, no top-down parameters are rel-
evant, as the building itself defines the dimensions of the
HVAC components. Thus, various bottom-up parameters
are used to propagate the building geometry to the residual
subsystems. Currently, the building’s height, ground area,
roof area, and the area and height of each thermal zone
have to be specified by the subsystem.

The current version contains two building models. The
reduced order model used in TEASER (Remmen et al.
2018), as well as the detailed building envelope of the
Buildings Library. The example is using the BESTEST
validation model Case600FF.

3.7 DHW Subsystem
The DHW subsystem models the tapping of water from
the hydraulic system. Thus, if the hydraulic system is not
considered, DHW is disabled as well. For ports, fluid ports
are an obvious choice.
Currently, DHW tapping according to EN 16147 (2017)
and Jordan and Vajen (2005) is included.

3.8 User Profiles
Both building and DHW subsystems greatly depend on
the user profiles and vice versa. As no uniform approach
to model internal gains, DHW tapping, etc. exists, no uni-
form user profile system is given. Instead, a replaceable
model using the UseProBus enables a fully modular im-
plementation of any user profile approach.
For instance, the Case600FF building model assumes
area specific heat gains for internal gains. The TEASER
model calculates the internal gains with relative inputs be-
tween 0 and 1. Besides internal gains, different set-points

(constant, night setback, etc.) may be implemented.
While DHW tapping is a user action, we model the tap-

ping profiles in the DHW subsystem itself. This avoids
numerous user profile combinations, which would arise if
different DHW and building model approaches are com-
bined. Furthermore, disabling the DHW subsystem all to-
gether is straight forward if the profiles are in the DHW
subsystem.

3.9 Control Subsystem
Last, a supervisory control system enables the simulation
of an overarching home energy management system. Even
though the hydraulic, ventilation, and electric subsystem
all have a local control, no coordination of the coupled
domains is possible. We consequently introduce the pos-
sibility to include a supervisory control model on system
level.

The local control decides whether to enable supervi-
sory control or not. Extending the supervisory control im-
plemented by Blum et al. (2021), the user can select if
the control signal derives from (i) the local control model
only, (ii) a Modelica internal supervisory control model,
or (iii) an external supervisory control as in BOPTEST.
As we follow the BOPTEST concept for supervisory con-
trol, BESMod could be used as a BOPTEST test case in
future versions (Blum et al. 2021).

For example, surplus PV electricity can be used for load
to overcharge the thermal energy storage. While the ba-
sic control of the hydraulic system is modelled in the hy-
draulic subsystem’s local control package, storage temper-
ature set points are given by the supervisory control model
on aggregated system level. Thus, is enabled and the cou-
pling of domains is also realized from a control point of
view.

3.10 System Aggregation
Figure 3 depicts the resulting system aggregation. To
compose a custom BES, it is sufficient to extend the
PartialBuildingEnergySystem, replace all gray
subsystem models, and adjust the parameterization of
the subsystems. The subsystem parameterization encom-
passes component choices and records. Fine-tuning is
possible though adjustment of non-final bottom-up param-
eters.

Besides the replaceable subsystems, specification of
weather boundary conditions and system parameterization
is required.

For weather boundary conditions, we use the
ReaderTMY3, which is compatible with building
models based on the IBPSA. In the context of this
study, no use case for replaceable weather models arose.
However, future versions may include this, for instance, if
weather data is not convertable to the TMY3 format.

The replaceable record systemParameters aggre-
gates all top-down parameters, such as nominal outdoor
air temperature or nominal room set temperature. The re-
placeable record parameterStudy collects parameters

9

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA16

users may want to perturb in a simulation study.
If the resulting system aggregation raises errors, we

provide Booleans to disable the coupling of single sub-
systems. Besides debugging, these parameters may be
used to discard single domains in an analysis. The only
non-optional system is the building itself. Further, all sub-
system packages contain dedicated testing models. With
these tests, users can directly debug if an error is caused
by the aggregation or a subsystem.

3.11 Continuous Integration
BESMod uses Continuous Integration (CI) to ensure the
functionality and quality of the implemented models. The
library is primarily hosted on GitHub and mirrored in the
internal GitLab of RWTH Aachen University. Using the
GitLab CI, a pipeline is triggered for each commit to the
repository. The CI performs the following stages Check
and Simulate using a Dymola Docker container.

The Check stage uses the built-in Dymola function to
verify syntactic integrity and equal number of equations
and variables. The Simulate stage searches for models
in the library or the given Modelica package that ex-
tend Modelica.Icons.Example and simulates these
models. Both stages are executed separately for the re-
spective packages of the library. This procedure makes it
easier to identify faulty models.

In the future, it is planned to include regression tests
based on BuildingyPy3 for individual integration tests of
the overall systems.

4 Exemplary Use Case
As stated in section 1, user-friendly coupled BES simula-
tions with integration of hydraulic, ventilation and electri-
cal components are an open research gap. To illustrate the
usability of BESMod, we aggregate an all-electric energy
system for retrofit buildings.

4.1 System Layout
On the demand side, we demonstrate the flexibility and
library independence of BESMod by using two different
building model approaches. The first approach is the re-
duced order approach from the AixLib (Müller et al. n.d.).
Second, the Buildings library BESTEST validation model
Case600FF is used (Wetter, Zuo, et al. 2014). For DHW,
we consider the tapping profile M according to EN 16147
(2017). The applied weather conditions are taken from a
test reference year of Aachen.

In the hydraulic subsystem, a bivalent heat pump sys-
tem consisting of a pump, a heating rod, and a heat pump
provides heat. In the distribution system, DHW is prior-
itized over space heating. To account for DHW loading
phases, we consider a DHW and a space heating storage.
For space heating, radiators transfer the heat to the ther-
mal zones. Corresponding thermostats are controlled via
PI controllers.

3https://github.com/lbl-srg/BuildingsPy

In the ventilation system, a heat exchanger recovers
heat in the generation subsystem. This heat is distributed
equally to all thermal zones.

In the electrical system, a PV system generates elec-
tricity. The PV area is designed based on the south facing
roof area of the building and a design factor to specify the
portion of the roof area to use for PV. Further, a lithium-
ion battery based on manufacturer specifications maxi-
mizes self-consumption using the internal control logic
presented by Nytsch-Geusen et al. (2013).

In the supervisory control system, a heuristic to over-
heat the DHW storage each day at 12 am for one hour is
implemented. This control could increase the probability
of an efficient heat pump operation using PV and higher
ambient temperatures.

The resulting use case model is avail-
able in the librarie’s Examples package as
UseCaseModelicaConferencePaper. For
specified parameters, records and structural parameter
options, we refer to the source code. We highlight that
further examples for different use cases based on previous
work exist in the library as well (Vering et al. 2021;
Wüllhorst et al. 2022).

4.2 Simulation Results
Performing an annual simulation4 of the presented use
case, we analyze the results for the two building models.

The focus of the analysis is not on a quantitative com-
parison of the two simulation models. Instead, we want
to prove that models from different libraries can be cou-
pled with little modeling effort and that the results can be
analyzed quickly and easily on the basis of the integrated
KPIs. For this purpose, excerpts of the KPIs calculated by
BESMod for both building models (AixLib and Buildings)
are shown in Table 2.

Table 2. Relevant KPIs for both building models.

KPI Unit AixLib Buildings

Wel,HP kWh 8,969 2,221
Wel,HR kWh 36 440
Wel,PV kWh 8,836 3,931
Qth,Tra kWh 25,456 5,011
Qth,DHW kWh 2,209 2,222
Discomfort Kh 0.7 1.7
CPU time s 326 357

Further, Figure 4 illustrates trajectories for all domains
simulated in the use case. As the two buildings have a dif-
ferent geometry, inertia and insulation, the results differ
regarding absolute and relative values. For a detailed un-
derstanding of the results, we invite the reader to analyze
all KPIs, parameters and trajectories in the repository.

At this point, we want to emphasize that these results
are calculated without additional adjustments to the mod-

4600 s stepsize; Dassl Solver

9

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 17

0.0

2.5

5.0
P e

l
in

kW

0.0

2.5

5.0

40

60

T
in

°C

40

60

750 760
Time in h

15

20

25

T
in

°C

750 760
Time in h

15

20

25

PLoad PCharge TSto,Buf TSto,DHW TRoom TVen,Sup

Figure 4. Relevant trajectories for the 1st of Feburary for the cases AixLib (left) and Buildings (right).

els. Further, only 184 lines of model code are necessary to
build both examples using the newly presented BESMod
library.

5 Conclusion
Closing the gap for a Modelica library which couples
the domains hydraulic, ventilation, electrical, control, and
building envelope in a modular, user-friendly manner, BE-
SMod is presented. The use case demonstrates the ease
of application, despite the high complexity of the domain-
coupled building energy system simulation. Furthermore,
in the face of the system’s complexity, annual simulations
take less than six minutes.

For the future library development, we hope modeling
experts will contribute new modules and join the active
developer community. As the current parameterization
follows European guidelines, extensions towards inter-
national and American guidelines should be considered.
Further, model validation is required as a next step. In
here, Continuous Integration will integrate regression tests
to ensure valid models for future developments. A short-
coming regarding modeling accuracy and the representa-
tion of real-world applications is that the electrical con-
nectors are currently purely power-based. Future versions
should add extensions towards current, voltage, and grid
interactions. However, such development must be aligned
with the underlying component libraries.

Regarding future use cases, the modular library ap-
proach lifts synergies for design and control domains.

For control, BESMod enables an efficient and realis-
tic evaluation. Inhere, development of a test case for
BOPTEST should be considered (Blum et al. 2021). Addi-
tionally, the modular system structure enables the efficient
usage of ontologies such as Brick (Balaji et al. 2016). The
modularity coupled to ontologies could enable the plug-
and-play development of advanced control strategies.

For design, all domain-dependencies of renewable
building energy systems are regarded in BESMod. Thus,
simulation based design optimization methods as in (Ver-
ing et al. 2021) should be extended towards sustainable
design strategies for building energy systems.

Acknowledgements
We gratefully acknowledge the financial support by the
Federal Ministry for Economic Affairs and Climate Ac-
tion (BMWK), promotional reference 03ET1495A.

This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associa-
tion (IBPSA). Project 1 will develop and demonstrate a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation.

References
Andresen, Lisa et al. (2015). “Status of the TransiEnt Li-

brary: Transient Simulation of Coupled Energy Networks
with High Share of Renewable Energy”. In: Proceedings
of the 11th International Modelica Conference, Versailles,

9

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA18

France, September 21-23, 2015. Linköping Electronic Con-
ference Proceedings. Linköping University Electronic Press,
pp. 695–705. DOI: 10.3384/ecp15118695.

Bachmann, Max et al. (2021). “dhcSim — A Modelica library
for simple modeling of complex DHC systems”. In: Energy
Reports 7, pp. 294–303. ISSN: 23524847. DOI: 10 .1016 / j .
egyr.2021.08.143.

Balaji, Bharathan et al. (2016). “Brick: Towards a unified meta-
data schema for buildings”. In: Proceedings of the 3rd ACM
International Conference on Systems for Energy-Efficient
Built Environments, pp. 41–50.

Baldwin, Carliss Young and Kim B Clark (2000). Design
rules: The power of modularity. Vol. 1. MIT press. ISBN:
9780262267649.

Beutlich, Thomas and Dietmar Winkler (2021). “Efficient Pa-
rameterization of Modelica Models”. In: Modelica Confer-
ences, pp. 141–146. DOI: https : / / doi . org / 10 . 3384 /
ecp21181141.

Blum, David et al. (2021). “Building optimization testing frame-
work (BOPTEST) for simulation-based benchmarking of
control strategies in buildings”. In: Journal of Building Per-
formance Simulation 14.5, pp. 586–610.

Coninck, Roel de et al. (2014). “Grey-box Building Models
for Model Order Reduction and Control”. In: Proceedings
of the 10th International Modelica Conference, March 10-
12, 2014, Lund, Sweden. Linköping Electronic Conference
Proceedings. Linköping University Electronic Press, pp. 657–
666. DOI: 10.3384/ECP14096657.

DIN 1946-6 (2019-12-01). Ventilation and air conditioning -
Part 6: Ventilation for residential buildings - General require-
ments, requirements for design, construction, commissioning
and handover as well as maintenance. Tech. rep. Bruxelles,
Belgium: CEN/TC 113.

EN 15316-1 (2017-09-01). Energy performance of buildings -
Method for calculation of system energy requirements and
system efficiencies - Part 1: General and energy performance
expression, Module M3-1, M3-4, M3-9, M8-1, M8-4; Ger-
man version EN 15316-1:2017. Tech. rep. Bruxelles, Bel-
gium: CEN/TC 113.

EN 16147 (2017-01). EN 16147:2017, Heat pumps with electri-
cally driven compressors - Testing, performance rating and
requirements for marking of domestic hot water units. Beuth
Verlag GmbH.

Jordan, Ulrike and Klaus Vajen (2005). “DHWcalc: Program to
generate domestic hot water profiles with statistical means for
user defined conditions”. In: Proceedings of the ISES Solar
World Congress, Orlando, FL, USA, pp. 8–12.

Jorissen, Filip et al. (2018). “Implementation and Verification of
the IDEAS Building Energy Simulation Library”. In: Jour-
nal of Building Performance Simulation 11 (6), pp. 669–688.
DOI: 10.1080/19401493.2018.1428361.

Leitner, Benedikt et al. (2019). “A method for technical assess-
ment of power-to-heat use cases to couple local district heat-
ing and electrical distribution grids”. In: Energy 182, pp. 729–
738. ISSN: 0360-5442. DOI: 10.1016/j.energy.2019.06.016.

Modelica Association (2022). Modelica Libraries. Last ac-
cessed: 25.04.2022. URL: https://modelica.org/libraries.html.

Müller, Dirk et al. (n.d.). “AixLib - An Open-Source Modelica
Library within the IEA-EBC Annex 60 Framework”. In: Pro-
ceedings of the BauSIM 2016, pp. 3–9. URL: http://www.iea-
annex60.org/downloads/2016-bausim-aixlib.pdf.

Nytsch-Geusen, Christoph et al. (2013). “Modelica Build-
ingSystems − eine Modellbibliothek zur Simulation kom-

plexer energietechnischer Gebäudesysteme”. In: Bauphysik
35.1, pp. 21–29. ISSN: 01715445. DOI: 10 . 1002 / bapi .
201310045.

Plessis, Gilles, Aurelie Kaemmerlen, and Amy Lindsay (2014).
“BuildSysPro: a Modelica library for modelling buildings and
energy systems”. In: Proceedings of the 10th International
Modelica Conference, March 10-12, 2014, Lund, Sweden.
Linköping Electronic Conference Proceedings. Linköping
University Electronic Press, pp. 1161–1169. DOI: 10.3384/
ECP140961161.

Ramsebner, Jasmine et al. (2021). “The sector coupling concept:
A critical review”. In: Wiley Interdisciplinary Reviews: En-
ergy and Environment 10.4, e396.

Remmen, Peter et al. (2018). “TEASER: an open tool for urban
energy modelling of building stocks”. In: Journal of Build-
ing Performance Simulation 11.1, pp. 84–98. DOI: 10.1080/
19401493.2017.1283539.

Schneider, Georg Ferdinand, Georg Ambrosius Pessler, and Si-
mone Steiger (2017). “Modelling and Simulation of Stan-
dardised Control Functions from Building Automation”. In:
Proceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017. Linköping Elec-
tronic Conference Proceedings. Linköping University Elec-
tronic Press, pp. 209–218. DOI: 10.3384/ecp17132209.

Vering, Christian et al. (2021). “Towards an integrated design
of heat pump systems: Application of process intensification
using two-stage optimization”. In: Energy Conversion and
Management 250, p. 114888.

Wetter, Michael (2022). IBPSA Project 1: BIM/GIS and Mod-
elica Framework for building and community energy system
design and operation. Ed. by IBPSA. URL: https : / / ibpsa .
github.io/project1/ (visited on 2022-04-26).

Wetter, Michael, David Blum, et al. (2019-05). Modelica IBPSA
Library v1. DOI: 10 . 11578 / dc . 20190520 . 1. URL: https : / /
www.osti.gov/biblio/1529269.

Wetter, Michael and Christoph van Treeck (2017-09). IEA EBC
Annex 60: New Generation Computing Tools for Building and
Community Energy Systems. ISBN: 978-0-692-89748-5. URL:
https://www.iea-annex60.org/pubs.html.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica Build-
ings library”. In: Journal of Building Performance Simulation
7.4, pp. 253–270. ISSN: 1940-1493. DOI: 10.1080/19401493.
2013.765506.

Wüllhorst, Fabian et al. (2022). “BEStPar: Towards Minimal
Effort in Building Energy System Simulation Parameteriza-
tion”. In: 9th Conference of IBPSA Germany and Austria.

Xanthopoulou, Konstantina et al. (2021). “Validation of a build-
ing model as part of the AixLib Modelica library for dynamic
plant and building performance simulations”. In: Energy and
Buildings 250, p. 111248.

Zimmer, Dirk (2020). “Robust object-oriented formulation of di-
rected thermofluid stream networks”. In: Mathematical and
Computer Modelling of Dynamical Systems 26.3, pp. 204–
233. DOI: 10.1080/13873954.2020.1757726. eprint: https:
//doi.org/10.1080/13873954.2020.1757726.

9

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 19

Fan and Pump Efficiency in Modelica based on the Euler Number

Hongxiang Fu1 David Blum1 Michael Wetter1

1Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, USA,
{hcasperfu,dhblum,mwetter}@lbl.gov

Abstract
Simulation programs often assume constant hydraulic ef-
ficiency for fan or pump models when performance curves
are unavailable. This is inaccurate because the hydraulic
efficiency varies with the operation condition. It there-
fore consistently underestimates the power draw at off-
design conditions at which the hydraulic efficiency drops.
Use of a modified Euler number allows computing the hy-
draulic efficiency and shaft power with limited data. Oth-
ers showed the validity of the modified Euler number for
fan efficiency calculations. We show that it is also applica-
ble for pumps, and present its implementation in Modelica
for a fan or pump model. The only input required from the
user is one data point at which the hydraulic efficiency is at
its maximum. The reported method is applicable regard-
less of the type, size, or operational region of the fan or
pump. Across a sample of eighteen sets of pump data and
seven sets of fan data, the errors of the computed power
from interpolated data were within 15% for the range of
20% - 70% of maximum flow rate and 40% - 90% of max-
imum pressure rise, excluding outliers.
Keywords: fan efficiency, pump efficiency, component
model

1 Introduction
Movers (fans and pumps) are important components in
building energy systems and the accuracy of their com-
ponent models are pertinent to the accuracy of the energy
model as a whole. Often of particular interest is the calcu-
lation of power consumption, which in reality is a function
of mover fluid volume flow rate V̇ , pressure rise ∆p, hy-
draulic efficiency ηhyd , and motor efficiency ηmot , shown
by

P =
V̇ ∆p

ηhyd ηmot
. (1)

Note that the flow work is simply

Ẇf lo = V̇ ∆p (2)

and the hydraulic work, Ẇhyd , is the mechanical work
transmitted to the shaft of the mover to provide such flow
work with a hydraulic efficiency as

Ẇhyd =
Ẇf lo

ηhyd
. (3)

The hydraulic efficiency is itself a function of volume flow
rate and pressure rise. Calculating power accurately for a
broad range of operating conditions and system configura-
tions, therefore, requires both explicit calculation of vol-
ume flow rate and pressure rise as well as correct charac-
terisation of efficiency as their function.

Conventional building energy modeling programs do
not explicitly calculate both volume flow rate and pressure
rise. Therefore, they rely on similarity laws or polynomial
regressions that calculate power as a function of flow rate
only, implicitly making assumptions about system pres-
sure characteristics and mover efficiency. One particular
danger in this approach was pointed out by Englander and
Norford (1992a) in the case of static pressure-controlled
fans, a typical application for variable air volume (VAV)
supply fans common in U.S. commercial HVAC systems.
There, Englander and Norford (1992a) showed that, be-
cause a static pressure-controlled fan will maintain a pres-
sure rise even at very low flow, power consumption does
not trend to zero as the flow rate trends zero. The simi-
larity laws and flow rate regression polynomials with this
assumption therefore do not hold. Their data showed this
could lead to underestimation of fan power consumption
in cases without static pressure reset strategies. Consider
also that in a typical fan performance map, shown in Fig-
ure 1, the power consumption (indicated by BHP) is non-
zero at zero flow or non-zero pressure rise. Therefore,
these authors proposed a revised polynomial formulation
of power as a function of flow and static pressure set point
in a separate paper (Englander and Norford 1992b). Such
a correlation utilized an offset term determined by static
pressure set point for when flow approaches zero. Similar
correlations were suggested by Hydeman et al. (2003).

Such curves can be implemented by the user in sim-
ulation software such as EnergyPlus (U.S. DOE 2021),
Trace (The Trane Company 2019), and IDA-ICE (EQUA
Simulation AB 2013). However, because this still re-
quires the user to have some information on the mover
and the system, users often use the default curve provided
by the program. One commonly used default curve comes
from ASHRAE Standard 90.1 Table G3.1.3.15 (ASHRAE

19

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA20

Figure 1. An example of fan curves from the manufacturer. Greenheck Fan Corporation (2012), reproduced as is.

2020) which takes the form

P/Pd = 0.0013+0.1470PLR+0.9506PLR2

−0.0998PLR3, (4)

where Pd is the fan power at design condition and PLR is
the flow part load ratio

PLR = V̇/V̇d , (5)

where V̇d is the design flow rate. With this correlation, the
computed power still effectively trends to zero when the
flow rate goes to zero.

While the polynomial regressions represent improve-
ments over the basic similarity laws, they do not gener-
alize to any mover or system and control configuration
where more detailed performance and operating state may
be known through specific mover performance maps and
explicit simulation of the pressure-flow network and con-
trols. Modelica-based modeling has enabled such explicit
network and controls simulation. However, the ability
to represent the whole mover performance map fully and
conveniently is lacking. This includes accounting for the
complex variations in efficiency, especially with low flows
and significant pressure rise, as would be the operating re-
gion of movers operating to maintain a pressure set point

with little or no reset based on load. Here, low efficiency
likely accounts for significant non-zero power consump-
tion as V̇ reduces to zero in (1).

Therefore, in this paper, we report a Modelica imple-
mentation of a convenient method to represent mover per-
formance with such accuracy. It only requires the user
to provide one data point of η , V̇ , and ∆p where the ef-
ficiency is at its maximum. The method then uses a di-
mensionless modified Euler number and a correlation to
estimate the efficiency and power at any operation point.
This method is applicable regardless of the type, size, or
operational region (stall or non-stall) of the mover. This
method is valuable because it provides the analyst with
more accurate estimation of mover shaft power while re-
quiring only limited information. It thus is applicable at
early stages of design or post-retrofit assessment during
which detailed mover performance data are generally not
available.

2 Methodology
2.1 Efficiencies
Manufacturers often provide fan or pump performance
curves describing how its hydraulic power Ẇhyd (often de-
noted as "shaft power" or "brake horsepower") depends
on V̇ , ∆p, and mover speed N. Ẇhyd differs from Ẇf lo by

19

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 21

a factor of hydraulic efficiency as shown in (3) and from
the total electric power drawn by the mover P by motor
efficiency

ηmot = Ẇhyd/P. (6)

The total efficiency η can then be expressed as the product
of the two

η = ηhyd ηmot . (7)

The implemented method is based on Ẇhyd and ηhyd .
However, in this paper, we also applied this method for P
and η as this was the type of pump data available to us.
For simplicity, the remainder of this work will use η∗ to
denote either η or ηhyd and P∗ to denote either P or Ẇhyd .
Through Figure 2 we will show that this assumption has
worked well with our data. We note that U.S. DOE (2014)
shows that ηmot is mostly constant for motors larger than
about 3.5kW (around 5 HP) except when the motor part
load drops below around 40%. To accommodate appli-
cations with small motors or large operating regions, our
implementation of the model allows the user to specify a
separate function for the motor efficiency.

2.2 Modified Euler Number
The Euler number is defined for any medium as

Eu =
pressure forces
inertial forces

. (8)

This can be written as

Eu =
∆pA
pd A

=
∆p
pd

, (9)

where pd is the dynamic pressure and A is a characteristic
area. The dynamic pressure is

pd =
v2 ρ

2
=

V̇ 2 ρ
2A2 , (10)

where v is the velocity, which is proportional to the volu-
metric flow rate. Substituting (10) into (9) yields

Eu =
2∆pA2

ρ V̇ 2 . (11)

U.S. DOE (2021) and Haves et al. (2014) reported
a model in EnergyPlus that describes these multidimen-
sional relationships of fans. The model is based on two
steps: First, it expresses the fan performance using a non-
dimensional equation that is derived from the Euler num-
ber as

Eu∗ =
∆pD4

ρ V̇ 2 , (12)

where Eu∗ is the modified Euler number, D is the fan
wheel outer diameter, and ρ is the medium density at the

mover inlet. Because D is constant for the same fan and
ρ is approximately constant across the operating region in
HVAC applications, the ratio of the modified Euler num-
ber can be expressed as

Eu∗

Eu∗p
=

∆p
V̇ 2

V̇ 2
p

∆pp
, (13)

where the subscript p denotes the peak operation point at
which ηhyd attains its maximum, and the quantities with-
out subscript are any operating point.

Second, it expresses the ratio of hydraulic effi-
ciency ηhyd/ηhyd,p using an exponential-conditioned
skew-normal function that takes the ratio of the modi-
fied Euler number Eu∗/Eu∗p as an argument. U.S. DOE
(2021) shows that this relationship is remarkably simi-
lar across different fan sizes and types, both within the
stall and non-stall regions. The normalized exponential-
conditioned skew-normal function is

ηhyd

ηhyd,p
=

exp(−0.5Z2
1)

(
1+ Z2

|Z2|
erf

(
|Z2|√

2

))

exp(−0.5Z2
3)

(
1+ Z3

|Z3|
erf

(
Z3√

2

)) , (14)

where

Z1 = (x−a)/b, (15)
Z2 = (exp(cx)d x−a)/b, (16)
Z3 =−a/b, (17)
x = log10(Eu∗/Eu∗p), (18)

and

a =−2.732094, (19)
b = 2.273014, (20)
c = 0.196344, (21)
d = 5.267518. (22)

Note that with this formulation, the user merely needs to
provide values for V̇p, ∆pp and ηhyd,p, from which ηhyd
can be solved for any operating condition.

U.S. DOE (2021) and Haves et al. (2014) discussed this
similarity in the context of fan but not pumps. But from
(11) and (12) it follows that

Eu
Eup

=
Eu∗

Eu∗p
. (23)

From (23), we conclude that (13) is applicable regardless
of medium, thus it is also applicable for pumps. Next, it
remains to be shown that the empirical relation (14) is also
applicable for pumps. In Figure 2 we overlaid operating
points of fans and pumps to the empirical relation (14).
As can be seen from the figure, pump operation points
also match the empirical relation (14). To the best of our
knowledge, this is the first report that shows the validity
of (14) for pumps. Further validation based on the model
that is described in Section 3 is given in Section 4.

19

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA22

4 2 0 2 4 6

log

10

(Eu/Eu

p

)

0.0

0.2

0.4

0.6

0.8

1.0

*

/

*

p

 Lower p

Lower V

Correlation

Pumps

Fans

Case Study Fan

Figure 2. Normalized efficiency curves in dimensionless space
and mover performance data. Each colour represents one dataset
of seven fan models and eighteen pump models.

3 Modelica Implementation
The Buildings.Fluid.Movers package (Wetter 2013)
of the Modelica Buildings Library (Wetter et al. 2014)
was revised to implement the reported method. The re-
vised model is available through commit 346f5a0 and will
be released in future versions of the Modelica Buildings
Library. In the previous model, the user could provide
either data for P = f (V̇), or data for ηhyd = f (V̇) and
ηmot = f (V̇). The new implementation separated the com-
putation of the three efficiency terms, η , ηhyd , and ηmot ,
allowing a user to specify two such that the third is com-
puted by Equation 7. The efficiency η∗ and the power
P∗ are pre-computed using the Euler number to con-
struct two 2D look-up tables that are implemented using
Modelica.Blocks.Tables.CombiTable2Ds. These
two variables are then found through two-dimensional in-
terpolation during the simulation. There are a number of
rationales for this approach:

1. Storing pre-computed values avoids having to eval-
uate (14) at each time step. This is preferable espe-
cially because (14) is computationally expensive and
not globally differentiable.

2. As can be seen from (18), both ∆p and V̇ must be
bounded away from zero to avoid the logarithm at
zero and the division by zero. This is more eas-
ily managed when the power and efficiency are pre-
computed.

3. As can be seen in Figure 2, in (18) and in (13),
ηhyd → 0 when either ∆p → 0 or V̇ → 0. This
would cause the computed power P to approach in-
finity. Again, this is more easily avoided by using
pre-computed tabulated values.

To construct the tables, the support points are computed
from (14) in 10% equidistant increments as

{∆pi}10
i=0 = {∆pmax i/10}10

i=0, (24)

where ∆pmax = ∆p(V̇ = 0,n = 1) and n is the normalized
speed, and similarly

{V̇i}10
i=0 = {V̇max i/10}10

i=0, (25)

where V̇max = V̇ (∆p = 0,n = 1). The efficiency η∗ at
boundary points (∆p = 0 or V̇ = 0) is set to zero. The
power P∗ at these boundary points is extrapolated except
at ∆p = 0 and V̇ = 0 where it is set to zero.

4 Validation
We validated the implemented method by comparing the
model output of η∗ and P∗ against values interpolated
from performance maps. The peak performance data ∆pp,
V̇p, and ηp were obtained from the mover curve at maxi-
mum speed. They are then used by the model to compute
the look-up tables. The efficiency and power as computed
by the model were then compared to the original perfor-
mance curves. It is important to note that although full
performance curves were used here to find the peak point
for the purpose of this validation, the user only needs to
provide the peak point to use the model.

4.1 Nominal Speed
Figure 3 shows the validation results using the perfor-
mance curve at nominal speed N = 4100 rpm in Fig-
ure 1. The computed efficiency and power are compared
against values interpolated from the performance map.
Figure 3(e) shows that the fan reproduces the pressure
curve at a constant speed. As can be seen from Figure 3(a)
and Figure 3(b), the computed efficiency closely follows
the values from the performance map for the full range of
V̇ and ∆p. The computed power is also accurate for most
of the range but the two curves diverged slightly at high
V̇ and more so at low ∆p. Power values computed from
constant efficiencies are plotted through the grey shaded
region. When the efficiency was assumed constant at its
peak value of ηhyd = 0.68, the computed power was al-
ways underestimated. As expected, when a lower value of
ηhyd = 0.46 is used for the constant efficiency, the com-
puted power was overestimated in some region and un-
derestimated in some other, as reported by Englander and
Norford (1992a). Either way, if a constant efficiency is
used, the power goes to zero as the flow approaches zero,
which is physically incorrect if the mover continues to cre-
ate pressure rise.

Figure 4 shows the errors from a sample of eighteen
sets of pump data and seven sets of fan data. First, the dis-
tributions of the errors are almost all skewed to the same
direction in each subplot. The errors of η∗ have tails on
the negative side at high V̇ and low ∆p and the errors of
P∗ are skewed to the opposite direction. Second, with the
outliers and boxes at extreme V̇ or ∆p values put aside, the
errors are all roughly within 20%. If the threshold is tight-
ened to 15%, this method provided satisfactory results for
η in the range of 20% - 80% of V̇max and 30% - 90% of
∆pmax, and for P in the range of 20% - 70% of V̇max and
40% - 90% of ∆pmax, excluding outliers.

19

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 23

0 2 4

V [m

3

/s]

0.0

0.5

h
y
d

[
1
]

(a)

Interpolated

Model Output

0 1000 2000 3000

p [Pa]

0.0

0.5

(b)

0 2 4

V [m

3

/s]

0

10000

W

h
y
d

[
W
]

h

y

d

=

0

.

4

6

=

0

.

6

8

(c)

0 1000 2000 3000

p [Pa]

0

10000

h

y

d

=

0

.

4

6

=

0

.

6

8

(d)

0 2 4

V [m

3

/s]

0

2000

p

[
P
a
]

(e)

Figure 3. Hydraulic efficiency and power values that were interpolated from the performance map (red lines) and computed by
the model (blue lines). The grey shaded area is bounded by the simplified assumption of a constant hydraulic efficiency between
ηhyd = 0.68 (peak of this fan) and ηhyd = 0.46 and shown here to visualize the wrong results of this oversimplification.

10% 30% 50% 70% 90%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

E
r
r
o
r

f
o
r

*

(a)

10% 30% 50% 70% 90%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

(b)

10% 30% 50% 70% 90%

of V

max

-60%

-40%

-20%

0%

20%

40%

60%

E
r
r
o
r

f
o
r

P

*

(c)

10% 30% 50% 70% 90%

of p

max

-60%

-40%

-20%

0%

20%

40%

60%

(d)

Figure 4. Box-whisker plots for errors of computed efficiency and power against values interpolated from performance maps. The
sample consists of eighteen sets of pump data and seven sets of fan data. The middle lines in the boxes correspond to the medians.
The outliers are defined as points more than 1.5 interquartile ranges away out from the maximum or the minimum.

4.2 Reduced Speed

We also validated the method for reduced speed. Figure 5
shows the power computed by the implemented method
compared to interpolated values at three different speeds.

The interpolation was done from Figure 1 at N = 4100
RPM (n = 1), 3400 RPM (n = 0.83), and 2500 RPM
(n = 0.61). The figure shows that the error patterns are
remarkably similar across the different speeds.

19

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA24

0 2 4

V [m

3

/s]

5000

10000

W

h
y
d

[
W
]

(a)

Interpolated

Model Output

0 1000 2000 3000

p [Pa]

5000

10000

(b)

0 2 4

V [m

3

/s]

0

1000

2000

3000

p

[
P
a
]

(c)

n=1.00

n=0.83

n=0.61

Figure 5. Hydraulic power values that were interpolated and that were computed by the model at nominal (n = 1) and reduced
(n < 1) speeds.

5 Discussion
Figure 4 shows that the error distributions within each sub-
plot are skewed to the same direction. The errors of η∗ are
consistently negative. This is likely caused by the fact that
the global maximum of efficiency is above the curve of
maximum speed, which leads to η∗

p being underestimated.
Because η∗ is computed based on η∗

p , η∗ will also be con-
sistently underestimated. Consequently, the errors of P∗

are skewed to the positive side as P∗ ∝ 1/η∗.
Figure 5 suggests that, when compared to the manufac-

turer data, the increased discrepancies of Ẇhyd mostly oc-
cur at the lower right region of the fan performance map.
A properly-sized fan or pump should operate somewhere
near the midpoint on its nominal speed curve at full load.
At reduced load, its operating point moves to the left be-
cause of reduced flow. A mover is therefore unlikely to op-
erate in this region in which the discrepancy is the largest.

Besides ηhyd , the implementation allows the user to
specify ηmot as well, although the part-load behaviour of
ηmot is beyond the scope of this work.

We note that the Euler method does not reproduce ef-
ficiency degradation along constant system curves, e.g.,
along the curves ∆p = kV̇ 2, for any constant k ≥ 0. This
limitation follows from (14), which has the functional
form

ηhyd

ηhyd,p
= f (x) = f

(
log10(Eu∗/Eu∗p)

)

= f

(
log

(
∆p
V̇ 2

V̇ 2
p

∆pp

))
. (26)

As V̇ 2
p and ∆pp are constants, the functional depen-

dency (26) can be further reduced to

ηhyd

ηhyd,p
= g

(
∆p
V̇ 2

)
. (27)

Therefore, the efficiency ηhyd is constant along any
curve ∆p = kV̇ 2, and it remains at its peak along the
curve for which k = ∆pp/V̇ 2

p . This is in line with the
simplification often used by fan manufacturers to gener-
ate fan curves at different speeds (Stein and Hydeman
2004) and this simplification is explicitly permitted by
ASHRAE Standard 51-16 (ANSI/AMCA Standard 210-
16) (ASHRAE 2016). For this reason, fan or pump perfor-
mance maps whose reduced-speed performance is mea-
sured are difficult to find. Turbines share similar fluid-
flow principals to fans and pumps and their performance
maps often display contours of constant efficiency that
suggest that there is no constant efficiency line along such
a quadratic curve (e.g. Leylek (2012) and Garrett Motion
(2019)).

This further indicates that the Euler number method
is less accurate than using the measured data at reduced
speed. However, such measured data are rare for fans or
pumps. In this case the reported method has the same ac-
curacy in theory and it would depend on whether the user
finds it more convenient to only use one data point of peak
operation instead of entering a whole curve into the model.
Still, it is important to emphasize that the Euler number
method is implemented to help with the situation where
the mover data are unavailable.

19

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 25

6 Conclusion
This work describes the Modelica implementation of a
method that computes fan or pump efficiency and power
using the dimensionless Euler number. With this method,
the only input required from the user is the flow rate, pres-
sure rise, and hydraulic efficiency at the peak operation
point where the hydraulic efficiency is at its maximum.
This practice is valuable because it provides the user with
an accurate computation that requires only limited data,
and it does not suffer from the errors that occur if a con-
stant efficiency is used.

The implemented method was validated with seven sets
of fan and eighteen sets of pump data obtained from manu-
facturers. Across the sample and between the values com-
puted from the reported method and from interpolation
of manufacturer data, the errors of efficiency were within
15% in the range of 20% - 80% of V̇max and 30% - 90%
of ∆pmax, excluding outliers. The errors in power were
within 15% in the range of 20% - 70% of V̇max and 40% -
90% of ∆pmax, excluding outliers. The errors were larger
when V̇ was high or when ∆p was low. These discrepancy
patterns remained largely the same at reduced speeds. Be-
cause the increased discrepancies mostly occurred in a re-
gion in which a properly-sized mover is unlikely to oper-
ate, they have little effect on the accuracy of this method
compared to using manufacturer data in common HVAC
applications.

The paper shows how an underestimated peak effi-
ciency introduces consistent and systematic errors. Im-
proving the methodology for finding the peak efficiency
on the manufacturer-provided power map would increase
the accuracy of the model. Furthermore, more uncertainty
analysis is needed to understand how the errors of the es-
timation of the peak point influence the errors of the com-
puted efficiency and power. Understanding the uncertainty
is important for this application because it is intended to
be used when the user has limited information and must
make reasoned estimations.

Acknowledgements
This research was supported by the Assistant Secretary
for Efficiency and Renewable Energy, Office of Build-
ing Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associa-
tion (IBPSA). Project 1 will develop and demonstrate a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation.

References
ASHRAE (2016). ASHRAE Standard 51-16 (ANSI/AMCA Stan-

dard 210-16), Laboratory Methods Of Testing Fans For Cer-
tified Aerodynamic Performance Rating. ASHRAE.

ASHRAE (2020). ANSI/ASHRAE/IES Standard 90.1-2019: En-
ergy Standard for Buildings Except Low-Rise Residential
Buildings. ASHRAE.

Englander, SL and LK Norford (1992a). “Saving fan energy
in VAV systems- part 1: analysis of a variable-speed-drive
retrofit.” In: ASHRAE Winter Meeting, Anaheim, CA, USA,
01/25-29/92, pp. 3–18.

Englander, SL and LK Norford (1992b). “Variable Speed
Drives: Improving Energy Consumption Modeling and Sav-
ings Analysis Techniques.” In: Proc. of the ACEEE Summer
Study 1992, pp. 3.61–3.78.

EQUA Simulation AB (2013-02). User Manual: IDA Indoor
Climate and Energy Version 4.5. Date accessed: 31-Mar-
2022. URL: http : / / www . equaonline . com / iceuser / pdf /
ice45eng.pdf.

Garrett Motion (2019). Turbo Tech 103 | Expert: Compressor
Mapping. Date accessed: 29-Aug-2022. URL: https://www.
garrettmotion . com / wp - content / uploads / 2019 / 10 / GAM _
Turbo-Tech-103_Expert-1.pdf.

Greenheck Fan Corporation (2012). Double-Width Centrifugal
Fan Performance Supplement. Date accessed: 2-Dec-2021.
URL: https : / / content . greenheck . com / public / DAMProd /
Original/10002/CentrifugalDWPerfSuppl_catalog.pdf.

Haves, Philip et al. (2014-09). Development of Diagnostic and
Measurement and Verification Tools for Commercial Build-
ings. Tech. rep. CEC-500-2015-001. Lawrence Berkeley Na-
tional Laboratory.

Hydeman, Mark et al. (2003-10). Advanced VAV System Design
Guide.

Leylek, Zafer (2012-10). An Investigation into Performance
Modelling of a Small Gas Turbine Engine. Tech. rep. DSTO-
TR-2757. Defence Science and Technology Organisation.
URL: https : / /www.dst .defence .gov.au / sites /default /files /
publications/documents/DSTO-TR-2757.pdf.

Stein, Jeff and Mark Hydeman (2004). “Development and Test-
ing of the Characteristic Curve Fan Model.” In: ASHRAE
transactions 110.1.

The Trane Company (2019-02). TRACE 600 Engineering Man-
ual. Date accessed: 31-Mar-2022. URL: https : / / tranecds .
custhelp .com/ci / fattach/get /120633/0/filename/TRACE_
600_Engineering_Manual%5C%5B1%5C%5D.pdf.

U.S. DOE (2014-04). Determining Electric Motor Load and Ef-
ficiency. Date accessed: 10-Mar-2022. URL: https : / / www.
energy.gov/sites/prod/files/2014/04/f15/10097517.pdf.

U.S. DOE (2021-09). EnergyPlus Version 9.6.0 Documentation:
Engineering Reference. Date accessed: 2-Dec-2021. URL:
https : / / energyplus .net /assets /nrel_custom/pdfs /pdfs_v9 .
6.0/EngineeringReference.pdf.

Wetter, Michael (2013-08). “Fan and Pump Model That Has a
Unique Solution for Any Pressure Boundary Condition and
Control Signal”. In: Proc. of the 13th Conference of the In-
ternational Building Performance Simulation Associationn.
Chambéry, France, pp. 3505–3512.

Wetter, Michael et al. (2014). “Modelica Buildings Library”. In:
Journal of Building Performance Simulation 7.4, pp. 253–
270.

19

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA26 26

Transient Simulation of an Air-source Heat Pump under Cycling of
Frosting and Reverse-cycle Defrosting

Jiacheng Ma1 Donghun Kim2 James E. Braun1

1School of Mechanical Engineering, Purdue University, USA, {ma516,jbraun}@purdue.edu
2Lawrence Berkeley National Laboratory, USA, donghunkim@lbl.gov

Abstract
Frost accumulation is a common but undesired phe-
nomenon for air-source heat pump (ASHP) systems in
winter operations. Reverse-cycle defrosting that applies
heat to the outdoor coil by reversing the thermodynamic
cycle, is one of the predominant means for periodic re-
moval of the accumulated frost. This paper presents a dy-
namic modeling framework for ASHPs under cycling of
frosting and reverse-cycle defrosting operations. A uni-
form model structure was applied to frost formation and
melting models, which were incorporated into the evapo-
rator model, without a need for reinitializing the system
when the operating mode switches between heating and
defrosting. The developed model was simulated to pre-
dict transients of a residential ASHP under multiple cycles
of frosting and defrosting operations, and results yielded
good agreement with measurements.
Keywords: dynamic modeling, heat pump, non-uniform
frosting, reverse-cycle defrosting

1 Introduction
Frost accumulation on evaporator coil surfaces can signif-
icantly degrade the performance of air-source heat pump
(ASHP) systems in winter operations. The continued
buildup of frost eventually necessitates a defrosting mode
to remove the accumulated frost and return the system to
its normal operating characteristics. Among various ap-
proaches currently employed on ASHP systems, reverse-
cycle defrosting (RCD) that applies heat to the outdoor
coil by reversing the thermodynamic cycle, is one of
the predominant means because of its easy implemen-
tation without additional heat sources. The nature of
frosting-defrosting cycling operations imposes significant
challenges for ASHP control designs, optimization, fault
detection and diagnostics (FDD). Therefore, a simula-
tion tool capable of capturing the system dynamics under
mode-switching operations is extremely useful in devel-
opment and evaluation of improved control and FDD al-
gorithms.

Due to the complicated underlying physical behaviors
of frosting and defrosting of ASHPs and significant com-
putational complexities, a very limited number of system-
level modeling efforts can be found in the open litera-
ture. Many studies solely focus on performance of heat ex-

changers either with frost formation or during RCD, e.g.,
(Dopazo et al. 2010; Breque and Nemer 2017; Padhman-
abhan et al. 2011). Within the context of complete cycle
modeling considering the dynamics on both the refriger-
ant side and air side, Qiao, Aute, and Radermacher (2017)
integrated a one-dimensional frost growth model into an
evaporator model coupled to other components of a two-
stage flash tank vapor injection heat pump system. Tran-
sients of the system going through a start-up period, a sta-
ble frosting stage, followed by an unstable hunting stage
due to the performance degradation by frost accumula-
tion were simulated. Comparisons of the simulation re-
sults against experimental data indicate that the developed
model can reasonably predict the system responses under
frosting conditions. Steiner and Rieberer (2013) simulated
the defrosting process of a CO2 heat pump system used for
an electric vehicle by integrating a lumped frost melting
model into the heat exchanger model. Predictions of the
refrigerant dynamics and the compressor power showed
reasonable agreements with the measurements. Then the
model was used to conduct a parametric analysis on dif-
ferent expansion valve openings during defrosting. It was
found that an optimal valve opening existed regarding de-
frost time and efficiency. However, only the system op-
eration after the refrigerant pressure levels were equalized
and the compressor was turned on again in defrost cycle,
was simulated omitting the reverse flow transients. Han
et al. (2022) carried out a simulation study of a residen-
tial heat pump system during defrosting cycles. A multi-
stage frost melting model was coupled to a finite volume
heat exchanger model. Results were compared with ex-
perimental data and yielded good agreement. Similar to
Steiner and Rieberer (2013), both studies concentrated on
system dynamics during a short time period of the defrost-
ing cycle, and excluded the refrigerant pressure equaliza-
tion stage triggering flow reversal. In a subsequent simula-
tion study, Qiao, Aute, and Radermacher (2018) incorpo-
rated a multi-stage frost melting model in the evaporator
model. With a reversing valve model, the system model
was able to capture transients when the refrigerant flow
was reversed during initiation and termination of RCD.
No experimental validation was provided.

To address the need for a general simulation tool that is
directly applicable to control and FDD, this paper presents
a dynamic modeling framework of ASHP incorporated

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 2726

with frost formation and melting. The developed cycle
model was validated using experimental data collected
from a residential ASHP unit operating under multiple cy-
cles of frosting and RCD. Section 2 presents major com-
ponent models. Implementation of the developed models
for simulating the system dynamics under cycling of frost-
ing and defrosting is then described in Section 3. Sec-
tion 4 reports simulation results and comparisons against
the measurements, followed by conclusions of the present
work summarized in Section 5.

2 Model development
2.1 Heat exchanger model
Much of the modeling efforts have focused on heat ex-
changer models since the dominant dynamics of a general
vapor compression system reside in two-phase heat ex-
changers. In the present work, a heat exchanger model is
integrated with detailed frost formation and melting mod-
els to investigate the overall impact of frost on the system
performance. To describe dynamics of the refrigerant in
heat exchanges, a number of assumptions are required to
simplify the model construction of two-phase flow:

• The refrigerant flow is one-dimensional with uniform
fluid properties at cross sections.

• Changes in kinetic energy and potential energy are
negligible; viscous dissipation is negligible; axial
heat conduction along the refrigerant flow direction
is negligible.

• The liquid and vapor of the two-phase region are in
thermodynamic equilibrium.

• Body forces are neglected in the momentum balance.

The finite volume approach, that segments a heat ex-
changer into an arbitrary number of equally sized con-
trol volumes, is utilized for discretization. The refrigerant
pressure and enthalpy as a pair of independent thermody-
namic properties are chosen as state variables to express
the discretized governing equations. A staggered grid
scheme is adopted to solve the balance equations in those
control volumes (CVs) (Laughman et al. 2015). As shown
in Figure 1, the mass and energy balances are solved in
the upper grid, referred to as volume cells, where thermo-
dynamic properties are determined, while the momentum
balances are solved in the lower grid, referred to as flow
cells, where dynamics of the mass flow rate are evaluated
for neighboring volume cells.

With a discretization of n control volumes for a heat
exchanger, n− 1 momentum balances are formed, where
each of the two boundary flow cells has an extended
length of half the cell. In this way, the momentum bal-
ances solves interface mass flow rates on the n − 1 in-
ner edges of the volume cells, leaving mass flow rates on
the outer edges (ṁ1, ṁn+1) as boundary conditions to the
grid. Meanwhile, the first and last volume cells expose the

Figure 1. Staggered grid for discretization of balance equations.

thermodynamic states. As a result, connection with other
flow devices avoids the solution of large nonlinear systems
for algebraic pressures (Franke, Casella, Sielemann, et al.
2009). The discretized governing equations of refrigerant
mass, momentum and energy balances are given respec-
tively in (1)-(3),

Vi

[(∂ρ
∂ p

∣∣∣∣
h

)
i

d pi

dt
+
(∂ρ

∂h

∣∣∣∣
p

)
i

dhi

dt

]
= ṁi − ṁi+1 (1)

Li
dṁi

dt
= ρi−1v̄2

i−1Ai−1 −ρiv̄2
i Ai

+
Ai−1 +Ai

2
(

pi−1 − pi
)
−Ff ,i (2)

V
[(

hi
∂ρ
∂ p

∣∣∣∣
h
−1

)
i

d pi

dt
+
(

hi
∂ρ
∂h

∣∣∣∣
p
+ρ

)
i

dhi

dt

]

=Hi −Hi+1 + Q̇i (3)

where Vi denotes the volume of each volume cell, Li de-
notes the length of a flow cell, v̄i denotes the average ve-
locity of a volume cell, Q̇i is the convective heat trans-
fer rate with the metal wall, Hi denotes the enthalpy flow
rate computed at the edge of a volume cell. The upwind
difference scheme is used to approximate thermodynamic
quantities at the volume cell interfaces. Therefore, the en-
thalpy flow rate under the nominal flow direction can be
calculated as

{
Hi = ṁihi−1,upstream

Hi+1 = ṁi+1hi.
(4)

In determining quantities transported via convection such
as the specific enthalpy, it is important to note that up-
stream and downstream are concerned with a certain flow
direction. Since this work deals with reverse-flow mod-
eling, flow dependent values need to be evaluated as the
mass flow rate crossing zero. In Modelica-based model-
ing, this is handled by using stream variables that can de-
scribe the bi-directional flow in a numerically reliable way
when singularity arises at zero mass flow (Franke, Casella,
Otter, et al. 2009). Friction force across a flow cell is eval-
uated by the equivalent frictional pressure drop ∆p f ,i:

Ff ,i = As,i∆p f ,isign(ṁi) (5)

where As,i is the surface area of a control volume. Note
that a sign function of the mass flow rate is applied since

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA28 26

the friction force is always in the direction opposite to the
flow.

Assuming a uniform temperature of the tube wall and
associated fins, conservation of energy for the coil metal
structure can be derived as

(
Mf incp, f in +Mtcp,t

)
i
dTw,i

dt
= αr,iAs,i(Tr,i −Tw,i)+ Q̇ f ,i

(6)

where Q̇ f ,i denotes heat conduction with the frost layer.
The air temperature and humidity profile can be derived
from one-dimensional, quasi-steady-state mass and en-
ergy balances with a uniform surface temperature and inlet
air conditions,

Tai,out = Tas,i +(Ta,in −Tas,i)e−Ntu (7)

ωai,out = ωa,in − (1− e
− Ntu

Le2/3)max{0,ωa,in −ωas,i} (8)

where Ntu is the number of transfer units for sensible heat
transfer,

Ntu =
αa,i(At +η f inA f in)i

ṁa,icp,a
(9)

ωas,i is the saturated humidity ratio evaluated at the sur-
face temperature Tas,i. The heat and mass transfer analogy
through the Lewis number Le2/3 = 0.9 is adopted to cor-
relate convection coefficients of heat and mass transfer,
which is valid in both cases of condensation and sublima-
tion (Bergman et al. 2011; Leoni et al. 2017). The total
heat transfer consisting of sensible and latent parts can be
obtained by

Q̇i = ṁa,icp,a(Tai,out −Ta,in)+ ṁa,i(ωai,out −ωa,in)∆hlat
(10)

where ∆hlat represents the latent heat of condensation or
sublimation according to the surface temperature. When
the coil fan is off, heat transfer between the ambient air
and coil through natural convection becomes dominant.
The heat transfer rate is calculated assuming a uniform
air temperature around the coil and neglecting latent heat
transfer,

Q̇i = αa,i(At +η f inA f in)i(Tas,i −Ta,in). (11)

The value of the Grashof number over the square of
the Reynolds number Gr/Re2 measures effects of buoy-
ancy forces relative to inertial forces, which can be applied
to indicate the dominant effect when the coil fan is ener-
gized and shut off. In this work, (7) - (10) are used when
Gr/Re2 ≤ 0.1, otherwise the air-side heat transfer rate is
calculated from (11).

The prediction of frost formation on the outdoor coil is
essential to characterize the performance of an ASHP sys-
tem under frosting conditions due to blockage of the air
flow passage and additional thermal resistance. To make

Figure 2. Schematic of one-dimensional frost growth.

a numerical model tractable, it is often assumed that frost
growth normal to the cold surface is of primary interest.
The frost layer growth and densification rates can be de-
termined by solving the heat and mass diffusion equations.
As shown in Figure 2, at the frost-air interface, the total
heat flux from the air stream q

′′
tot is composed of sensible

and latent heat due to the temperature and humidity differ-
ences,

q
′′
tot = αh(Ta −Tf s)+αm(ωa −ω f s)∆hsg (12)

where αh denotes the heat transfer coefficient, αm denotes
the mass transfer coefficient, Tf s denotes the frost surface
temperature, ω f s denotes the saturated humidity ratio at
the frost surface, ∆hsg denotes the water sublimation heat.
Note that a heat transfer rate obtained from (12) repre-
sents the same heat transfer rate as (10) under frosting
conditions. Indeed, the heat transfer rate will be imple-
mented as a connection variable of the air flow model and
the frost formation model, such that a equation system can
be formed to solve for intermediate variables (e.g., frost
surface temperature). It also gives the amount of heat con-
ducted to the metal structure (Q̇ f ,i) in (6), assuming that
the frost growth process is quasi-steady-state. When the
frost layer is of thickness δ f ,i and lumped density ρ f ,i,
mass conservation of the frost layer can be formed as

d
dt
(ρ f ,iδ f ,i) = αm,i(ωai,in −ω f s,i) = ṁ

′′
a,i (13)

which can rewritten as

ρ f ,i
dδ f ,i

dt
+δ f ,i

dρ f ,i

dt
= ṁ

′′
δ ,i + ṁ

′′
ρ,i = ṁ

′′
a,i. (14)

(14) indicates that the total water mass flux ṁ
′′
a,i is di-

vided into two components: ṁ
′′
δ contributes to an incre-

ment of the frost thickness and ṁ
′′
ρ , which is diffused into

the frost layer, contributes to its densification. Consider
a differential control volume of thickness dx within the
frost layer, the heat and mass diffusion can be formulated
and then solved associated with boundary conditions at

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 2926

the wall surface and the frost-air interface. For the sake
of brevity, the solution procedure is not included in the
present paper. Refer to (Qiao, Aute, and Radermacher
2017) for derivations to obtain the mass fluxes in (14).

Since the model is derived following a quasi-steady-
state assumption, the frost thickness and density are up-
dated at a fixed time step ∆t

ρ f ,i(t +∆t) = ρ f ,i(t)+
ṁ

′′
ρ,i

δ f ,i
∆t (15)

δ f ,i(t +∆t) = δ f ,i(t)+
ṁ

′′
δ ,i

ρ f ,i
∆t (16)

which enables the overall frost growth process to remain
transient over time.

The rather stochastic frost melting process is idealized
such that the defrost process progresses through several
predictable stages. The present work applies a five-stage
defrost model subdividing the overall process into pre-
heating, melting start, melting, vaporizing, and dry heat-
ing (Qiao, Aute, and Radermacher 2018). The governing
equations of each stage are presented in Appendix. The
model is basically established by a lumped-capacitance
analysis along with energy and mass conservation at in-
terfaces, and switches between different stages according
to the current temperature profile and phase presence. The
overall melting process is illustrated in Figure 3.

A switching algorithm based on the Fuzzy logic is im-
plemented (Kim et al. 2021). Since transitions between
different stages are triggered by values of the wall temper-
ature Tw,i, frost and a water film thickness δ f ,i and δwater,i,
three linguistic variables Tw,i−Tmelt, δwater,i/δwater,max and
δ f ,i are defined. Tmelt is the melting temperature of water
(e.g., 273.15 K). δwater,max is a constant maximum thick-
ness of melted water retained on the coil due to surface
tension. Fuzzy numbers and their associated member-
ship functions are constructed for each linguistic variable.
For example, Figure 4 shows Fuzzy numbers N, P and
membership functions for Tw,i −Tmelt. Denote the govern-
ing equations of each stage as f j(·) (j = {1,2,3,4,5}).
The system dynamics can be determined based on linguis-
tic descriptions of IF-THEN rules (Rule i, i={1,2,3,4,5}),
which are subsequently converted into numerical outputs
(known as the defuzzification process). Take the rule for
the first stage (preheating) as an example,

Rule 1: IF Tw,i −Tmelt is N THEN ẋ = f1(x)

where x is a state vector consisting of temperatures and
thicknesses of different phase presences. Then a numeri-
cal output associated with the rule can be obtained

ω1 = µN(Tw,i −Tmelt) (17)

which is used to compute a weighted combination of dy-

namics from all the stages as described in (18).

ẋ =

5

∑
j=1

ω j f j(x)

5

∑
j=1

ω j

(18)

In this way, the IF-THEN conditional rules can be elim-
inated, and the overall dynamics are evaluated by weight-
ing the dynamics of all stages. The proposed switching
algorithm systemically covers all possible switches and
avoids discontinuities in switches. Consequently, the frost
melting model can be used to evaluate dynamics of the
frost density and thickness during RCD,

dρ f ,i

dt
= fρ,melt(ρ f ,i,δ f ,i) (19)

dδ f ,i

dt
= fδ ,melt(ρ f ,i,δ f ,i) (20)

where fρ,melt(·) and fδ ,melt(·) are the corresponding gov-
erning equations.

2.2 Component models
A quasi-static model is developed to describe performance
of a variable-speed compressor using efficiency maps.
The refrigerant mass flow rate is determined by

ṁ = ρsucηvVs
N
60

(21)

where Vs is a fixed displacement, N is the number of rota-
tions per minute. The volumetric efficiency ηv is regressed
by a polynomial of pressure ratio and compressor speed,

ηv = a0
(pdis

psuc

)
+a1

(pdis

psuc

)2
+a2

(N
60

)
+a3 (22)

where a0 − a3 are constant coefficients. The power con-
sumption is estimated using an isentropic efficiency

ηis =
ṁ(hdis,is −hsuc)

Ẇ
(23)

which is fitted by

ηis = b0
(pdis

psuc

)
+b1

(pdis

psuc

)2
+b2

(N
60

)

+b3
(pdis

psuc

)(N
60

)
+b4. (24)

The refrigerant discharge state can be determined by
forming an energy balance for the compressor,

Ẇ = ṁ(hdis −hsuc)+ fqẆ (25)

where the heat loss ratio has a strong dependence on the
operating conditions and the ambient temperature Tamb,

fq = c0ṁ+ c1Tamb + c2
(N

60
)
+ c3. (26)

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA30 26

Figure 3. Five-stage frost melting process.

Figure 4. Fuzzy numbers and membership functions for linguis-
tic variable Tw,i −Tmelt.

The expansion process is assumed to be isenthalpic.
The mass flow rate is determined by

ṁ =CdAv
√

2ρin(pin − pout) (27)

where Av is the varying valve opening area, and Cd is the
discharge coefficient that accounts for corrections to the
mass flow rate at different operating conditions. Note that
the valve is modeled as a bi-directional device that the in-
let and outlet can switch when flow is reversed. The open-
ing area is adjusted based on superheat control. An empir-
ical correlation based on a power law is utilized to estimate
the discharge coefficient (Liu, Cai, and Kim 2022):

Cd = d0φ d1
(Tsc

Tc

)d2 (28)

where Tsc is the subcooling at the valve inlet, Tc is the crit-
ical temperature of the refrigerant, and φ is the normalized
valve opening.

An accumulator is modeled assuming that vapor and
liquid inside are saturated and in thermal equilibrium,
which lead to the mass and energy conservation equations

as shown in (29)-(30),

d
dt

(
Vgρg +Vf ρ f

)
= ṁin − ṁout (29)

d
dt

(
Vgρgug +Vf ρ f u f

)
= ṁinhin − ṁouthout. (30)

Note that these saturated properties are solely depen-
dent on the refrigerant pressure, thus the lumped pressure
can be selected as a state variable. Given the constituent
relation that the total volume of the tank is occupied by
the saturated liquid and vapor volumes Vf +Vg =Vacc, ei-
ther one of the volumes can be selected as another state
variable. The exit flow is assumed to be saturated vapor
to account for the fact that the superheated vapor from the
evaporator mixes with the liquid refrigerant stored inside
the accumulator.

The coil fan is described via a polynomial characteristic
curve:

∆prise = a0 +a1V̇ +a2V̇ 2 +a3V̇ 3. (31)

where V̇ is the total volume flow rate. Since the coil pres-
sure drop is assumed to be solely a result of friction, a
hydraulic equilibrium is established between the fan and
the coil, which leads to the system of equations below:

∆prise = ∆pa,i i = 1, . . . ,n (32)

where ∆pa,i is the air side pressure drop of the ith control
volume. Along with the mass balance

ρaV̇ =
n

∑
i=1

ṁa,i (33)

where ṁa,i represents the air flow distribution of each
control volume, a non-linear algebraic equation system is
formed to solve the air flow maldistribution under non-
uniform frost formation.

A reversing valve model is essential to switch the
heat pump system model between heating and defrost-
ing modes. It is challenging to model the exact physi-
cal process of a reversing valve, since it mainly involves

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 3126

Figure 5. Model representation of a reversing valve.

mechanical movements. In the current work, two pairs
of check valves are used to represent the reversing valve
model (Qiao, Aute, and Radermacher 2015). As shown
in Figure 5, each port of the reversing valve has a pair of
check valves to control the flow direction. One is kept
fully opened, while the other is closed. When the on-off
statuses of them are switched, the refrigerant flow direc-
tion is reversed. A check valve is modeled as

ṁ =

{
φAv

√
2ρin(pin − pout) pin > pout

0 pin ≤ pout
(34)

where Av is the fully opened area, φ is valve opening
degree normalized between 0 and 1. When reverse flow
needs to be triggered, opening and closing a check valve
is achieved by changing the valve opening. However, this
process is not instantaneous during mode switching. For
numerical stability concerns, a first-order filter is applied
to smooth the transition,

dφ
dt

=
1
τ
(φSP −φ) (35)

where φSP is the opening setpoint, which is either 1 or 0
depending on the on/off status of each check valve. The
heat loss from the high pressure side is primarily driven by
the temperature difference between the discharge gas and
the suction gas, and can be characterized by heat trans-
fer loss/gain coefficients (Damasceno, Rooke, and Gold-
schmidt 1991).

3 Model implementation
To simulate the cycling behavior of non-uniform frost
growth and melting on the outdoor coil, the frost for-
mation and melting models are integrated into each dis-
cretized control volume of the heat exchanger model. Fig-
ure 6 depicts the cross-flow heat exchanger model com-
posed of flow and heat&mass transfer elements. The
equivalent refrigerant flow length is divided into n equally
sized control volumes (CVs). Of each discretized length,

four elements can be identified across the predominant
heat flow direction, which is perpendicular to the refrig-
erant flow direction: the refrigerant flow, the coil metal
structure, the frost layer, and the air flow. Note that the
frost layer in Figure 6 represents simultaneously running
the frost growth and melting models. These frost mod-
els are implemented as generic control volumes to main-
tain a consistent model structure, thus the frost layer dy-
namics coupled to the heat pump system dynamics can
switch between frost growth and melting, according to the
system operating mode. The standard HeatPort extended
from Modelica.Thermal.HeatTransfer is employed at the
interface between the frost and air flow. However, at the
interface between the frost and metal wall, a heat source
is utilized for the metal wall model whose input switches
between computed heat flow rates from the frost growth
and melting models. Furthermore, the lumped metal wall
temperature is considered as an input to the frost models.
Since the frost density and thickness characterize its dy-
namics, they are selected as internal states. That means,
the current states of frost density and thickness at each
time step are treated as known and inputs to the frost mod-
els, while their dynamics are obtained as outputs for pre-
dictions over the next time interval.

After that, the overall frost dynamics are evaluated as
a weighted combination of dynamics obtained from these
two models. Nonetheless, due to different assumptions
applied for derivations, it is not straightforward to imple-
ment the scheme before having a uniform structure among
them. Since the frost formation model is derived in a
quasi-steady-state fashion, and updates the frost density
and thickness in a fixed time step as shown in (15, 16),
the progress made over time can be considered as refer-
ence values. Then a first-order filter is applied to track the
reference values

dρ f ,i

dt
=

1
τ
(ρref,i −ρ f ,i) (36)

dδ f ,i

dt
=

1
τ
(δref,i −δ f ,i) (37)

where ρref,i and δref,i are quantities evaluated in (15, 16),
ρ f ,i and δ f ,i are states representing the frost behavior, τ
is a time constant, which should be selected such that the
signal tracking is faster than update of the reference val-
ues. In this way, dynamics of the frost formation can be
described in a continuous-time domain. Note that these
reference values evaluated in the frost formation model are
non-decreasing. This is because throughout the derivation
the mass flux is assumed to be non-negative, meaning that
no melting behavior is considered in the frost formation
model. Therefore, in case of a mode switch from defrost-
ing to frosting (heating), the reference values should be
reset to the states at the termination of frost melting as
initial conditions for the next frosting period. The overall

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA32 26

Figure 6. Segments of finite-volume heat exchanger model with frost incorporated.

frost dynamics are evaluated by

dρ f ,i

dt
= φ

(1
τ
(ρref,i −ρ f ,i)

)
+(1−φ) fρ,melt(ρ f ,i,δ f ,i)

(38)
dδ f ,i

dt
= φ

(1
τ
(δref,i −δ f ,i)

)
+(1−φ) fδ ,melt(ρ f ,i,δ f ,i)

(39)

where fρ,melt(ρ f ,i,δ f ,i) and fδ ,melt(ρ f ,i,δ f ,i) are the dy-
namics obtained from the frost melting model, φ is a vari-
able that switches the frost dynamics between frost forma-
tion and melting. The reversing valve opening in (35) can
be used for this purpose. The scheme allows the frost for-
mation and melting models to run simultaneously during
online simulations, which enables modeling the cycling of
frosting and defrosting without interruptions.

Consequently, component models are interconnected
through the standard fluid connectors to form a cycle
model. Refrigerant properties are evaluated using a re-
gression approach based on Artificial Neural Networks
(Ma, Kim, and Braun 2018).

4 Simulation results and validation
This section presents simulation results and experimen-
tal validations of the developed cycle model for capturing
transient characteristics of a residential heat pump sys-
tem under multiple cycles of frosting and reverse-cycle
defrosting (RCD). The heat pump unit is a commercial
variable-speed system having a nominal capacity of 2 tons
that utilizes R410A as the working fluid. The split system
was installed in a pair of independently controlled psy-
chrometric chambers, where the indoor unit was ducted to
a nozzle box for air flow rate measurements. The experi-
mental setup was fully instrumented with T-type thermo-
couples, pressure transducers, and a coriolis flow meter
on the refrigerant loop. T-type thermocouple grids and
chilled mirror dew point meters were installed for air-side
measurements. Power meters were installed to measure
power of the indoor and outdoor units as well as the out-
door fan. The temperature set points of the indoor and
outdoor conditions were 291.5 K and 271 K, respectively.
The relative humidity was set to 40% for the indoor and
85% for the outdoor. The unit was turned on in heating

mode after these conditions were met. At low ambient
temperature, a system built-in controller determined op-
erating modes between heating and defrosting based on
a fixed-interval defrost logic. During defrost cycles, the
compressor is operated at a lower speed than the heating
mode but never shut off. The EXV opening is regulated
to control the evaporator outlet superheat in the heating
mode but is fully opened in the defrosting as well as cool-
ing modes. The indoor and outdoor coil fan speeds are
controlled according to the compressor speed, however,
the outdoor fan is off in defrost cycles. The defrost in-
terval, representing the compressor run time between two
defrost cycles, was set to 120 minutes as the longest. How-
ever, upon startup of the unit, the first defrost interval was
defaulted to 30 minutes. Regarding this defrost control
pattern, a test that lasted three hours ran through a start-up
with minor frost accumulation for 30 minutes, followed
by the first defrost cycle, then normal heating operation
for 120 minutes with considerable frost buildup, followed
by a second defrost cycle, and then another heating opera-
tion period of about 10 minutes. Even though the inlet air
conditions were kept constant in both chambers, various
durations of each frosting cycle and different defrost cycle
durations yielded different cycling transients of the sys-
tem, since frost buildup and removal are inherently tran-
sient processes.

Each heat exchanger was discretized into 30 control
volumes based on a preliminary sensitivity analysis that
the number of control volumes is determined until the so-
lution is invariant to further increases of control volumes.
The heat pump cycle model was initialized using the pres-
sure and temperature measurements across various com-
ponents. The initial refrigerant pressure of each compo-
nent was almost at the same level, though the temperature
differed depending on the room temperature. As a result,
initial conditions of most components reflect gas phase
refrigerant presence, while the refrigerant residing in the
outdoor coil was initialized as two-phase. Without access
to the liquid level of the suction accumulator, steady-state
initialization was performed using the cycle model to de-
termine the vapor and liquid volumes. Simulations were
carried out to predict the complete cycling operations of
frosting and reverse-cycle defrosting lasting three hours.

Figure 7 reports validations of the refrigerant discharge

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 3326

Figure 7. Validations of the refrigerant discharge and suction
pressures.

Figure 8. Compressor speed.

and suction pressures. As the compressor is powered on,
its speed increases to the desired setting regulated by the
control board in 3 minutes as shown in Figure 8, which
results in the rapid rise of the discharge pressure. The
EXV is fixed to a preset position during this period be-
fore the superheat control is enabled. After that, rise of
the discharge pressure slows down since the compressor
is running at a pre-defined speed. As the EXV is clos-
ing to achieve the superheat set point temperature, the re-
sulting mass flow imbalance between the compressor and
EXV leads to the continuing pressure increase. As men-
tioned before, the first defrost cycle is defaulted to 30 min-
utes after the initial power-up of the compressor. When
the system initiates defrost operation, the EXV is fully
opened, which leads to a dramatic pressure change due to
the pressure equalization across the EXV. Shortly the re-
versing valve is energized, which further brings down the
discharge pressure, and slightly increases the suction pres-
sure due to the connection to the high pressure side when
the valve is switching port positions. After the flow is re-
versed, the discharge gas is pumped into the outdoor coil,
which operates as a condenser, and the liquid refrigerant
residing in the indoor coil, which operates as an evapora-
tor, vaporizes due to the abrupt pressure drop and flows
towards the vapor line. As a consequence, the discharge
and suction pressures increase until termination of the de-
frost mode. The first defrost cycle lasts about 5 minutes.

Then the reversing valve is energized again to switch the
flow directions, that reduces the pressure difference be-
tween the high pressure side and the low pressure side.
Meanwhile, the EXV opening is reset to an initial position,
and then adjusted following superheat control. A similar
trend of the discharge pressure can be observed as dur-
ing the start-up, a rapid rise due to the compressor speed
regulation, followed by a gradual increase from 40 min
to around 100 min as the refrigerant mass flow is being
balanced between the vapor-line and liquid-line. Though
frost starts to form shortly after the system switches back
to heating mode, the refrigerant dynamics during this pe-
riod are dominated by the mass flow imbalance without
noticeable impact from the frost accumulation. However,
performance degradation due to frost formation becomes
more evident since 100 min until initiation of the next de-
frost cycle (160 min). The reduced air flow due to frost
blockage results in a slight decline of the evaporating pres-
sure (see zoom-in plot in Figure 7), yet a significant de-
cline of the discharge pressure which is more sensitive to
changes on the suction side. The second defrost cycle is
initiated as the accumulated compressor run time reaches
the preset defrost interval. The refrigerant pressures ex-
hibit a similar trend as the previous defrost cycle, triggered
by the same consecutive actuation of the EXV and revers-
ing valve, although the pressure rises are relatively smooth
because a large amount of heat is taken to melt frost that
slows down the refrigerant energy storage. This defrost
cycle lasts 10 minutes, after which the system returns to
heating mode. The simulation results agree sufficiently
well with the measurements, which demonstrate that the
developed cycle model is able to capture the complicated
system dynamics under the frosting-defrosting cycling op-
erations. The discrepancy between the predictions and
measurements during defrost cycles is due to model sim-
plification and unknown response times of actuators in-
cluding EXV and reversing valve that trigger the mode
switches. For instance, rises in the predicted suction pres-
sure around 35 min and 170 min during mode switches are
not observed in the measurements. This is due to imple-
mentation of the reversing valve model using a system of
check valves. When check valves are closed to switch flow
direction, the rapid mass flow decrease almost results in a
pressure equalization of the discharge and suction pres-
sures.

Figure 9 shows the refrigerant mass flow rate predic-
tion in the indoor liquid-line. It is important to note that
the refrigerant flow can be bi-directional in most of the
components depending on the operating mode. Follow-
ing the sign convention that inflow quantities are positive
and outflow quantities are negative, a positive mass flow
rate at the inlet of a component indicates the nominal flow
direction (e.g., heating mode), while a negative flow rate
indicates reverse flow (e.g., defrosting mode). The sign
convention applies to both mass flow and heat flow in the
following context. In heating mode, the refrigerant mass
flow rate undergoes abrupt changes when the compressor

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA34 26

Figure 9. Liquid-line refrigerant mass flow rate.

speed is regulated, otherwise fluctuates according to the
discharge and suction properties. From 87 min until ini-
tiation of the second defrost cycle at 160 min, the mass
flow slightly declines during the stable heating operation
due to an insignificant decline of the pressure ratio. When
the system switches to defrost mode at 30 min and at 160
min, a spike of the liquid-line flow rate occurs as the EXV
is fully opened. The reversing valve is then engaged to
trigger the flow reversal. The mass flow rate steadily in-
creases during the defrost cycle since expansion valves are
kept fully open as the reversed refrigerant flow develops,
until the flow is reversed at the end of each cycle. Note
that the output signal of the mass flow meter saturates to
zero when the flow direction is opposite to the configured
direction in the test. That means, the flow rate measure-
ment during defrost cycle is unavailable. The compari-
son between the simulated and measured mass flow shows
that the model can capture major flow transients in heating
operations and the flow reversal between mode switches.
The discrepancy during each start-up in heating mode can
be attributed to prediction errors of quasi-static models
of the compressor and EXV that were correlated using
steady-state data. As can be seen from 80 min to 160 min,
the nearly steady-state mass flow after start-up transients
is well captured.

Figure 10. Validations of the indoor unit air-side capacity and
compressor power.

Simulation results of the indoor unit air-side capacity

and the compressor power are revealed in Figure 10. The
indoor unit fan is continuously running throughout the
test. The air flow rate climbs after the fan motor is pow-
ered, and reaches a constant value based on the measure-
ments. The air-side capacity evolves corresponding to the
refrigerant dynamics. Since the compressor operates at a
nearly fixed speed, a decline of the heating capacity can be
observed during 100 min to 160 min, when the refrigerant
condensing pressure drops due to the frosting operation.
In defrost mode, the indoor coil operates as an evaporator
and the heat flow direction is reversed compared to heating
mode. During this period, heat is removed from the indoor
space, which can potentially result in thermal discomfort.
The model captures dynamics of the indoor capacities un-
der both condenser and evaporator modes well.

The change of compressor power consumption follows
regulation of the compressor speed, while also varying due
to the refrigerant dynamics. During heating cycles, the
power consumption changes mainly due to transients of
the discharge pressure, which in turn dominates the pres-
sure ratio. The lower power consumption of defrost cycles
can be attributed to the lower compressor speed (Figure 8)
and the smaller pressure ratio. Predictions of the compres-
sor power correspond well with the measurements since
the model accurately captures refrigerant pressures.

Figure 11. Simulated frost thickness of CVs 1, 10, 20, 30.

Figure 12. Simulated frost density of CVs 1, 10, 20, 30.

Figure 11 and Figure 12 show the simulated frost thick-
ness and density trajectories associated with selected con-
trol volumes. Note that the CVs are indexed following the

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 3526

Figure 13. Simulated free airflow passage of the outdoor coil.

flow direction in heating mode, with CV1 representing the
inlet connected to the EXV and CV30 representing the exit
connected to the reversing valve. A significant amount of
frost is formed during the 2-hour frosting cycle. Clearly
more frost accumulates close to the liquid-line of the coil,
where the refrigerant temperature is lower at the beginning
of each frosting cycle. Correspondingly, the frost tends to
be denser close to the vapor-line. During defrost cycles,
the frost is considered to be completely melted when the
thickness is smaller than 0.01 mm. Then the frost den-
sity is reset to 25 kg/m3 to provide a reasonable initial
condition for the next frosting cycle. Figure 13 shows the
simulated free airflow passage of the outdoor coil due to
frost blockage. It can be noted that 23% of the total flow
passage is blocked after two hours of frosting operation.

Figure 14. Normalized error residuals (NER) for: discharge
pressure pdis, suction pressure psuc, indoor air-side capacity Q̇a
and compressor power Pc.

5 Conclusions
This paper presents a complete heat pump cycle model
under cycling of frosting and reverse-cycle defrosting op-
erations. Comparisons between the model predictions and
measurements demonstrate capabilities of the developed
model to capture system characteristics with non-uniform
frost formation and melting. The overall simulation re-
sults yield good agreements with the measurements. Fig-
ure 14 shows quantification of transient prediction errors

using normalized error residuals (NER). Relatively large
values of NER in the indoor air-side capacity and com-
pressor power can be attributed to prediction errors in the
refrigerant mass flow rate associated with performance
maps. However, results of NER all lie below 0.025, which
are sufficiently good for transient simulations. Addition-
ally, predictions of the evolution of frost properties over
time provides insights into the non-uniform frost forma-
tion and melting phenomena, which are typically difficult
to measure and characterize experimentally at a system
level. The proposed models are attractive for development
and evaluation of improved control and fault detection de-
signs for ASHPs with frosting and defrosting taken into
considerations.

Nomenclature
α Convective heat transfer coefficient [Wm−2K−1]

δ Thickness [m]

ṁ Mass flow rate [kgs−1]

Q̇ Heat flow rate [W]

V̇ Volume flow rate [m3 s−1]

Ẇ Power [W]

ω Humidity ratio [kgkg−1dryair]

ρ Density [kgm−3]

A Area [m2]

cp Specific heat capacity [Jkg−1K−1]

F Force [N]

H Enthalpy flow rate [Js−1]

h Specific enthalpy [Jkg−1]

L Length [m]

M Mass [kg]

N Rotations per minute [min−1]

p Pressure [Pa]

T Temperature [K]

V Volume [m3]

v Velocity [ms−1]

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA36 26

References
Bergman, Theodore L, Frank P Incropera, David P DeWitt, and

Adrienne S Lavine (2011). Fundamentals of heat and mass
transfer. John Wiley & Sons.

Breque, Florent and Maroun Nemer (2017). “Modeling of a
fan-supplied flat-tube heat exchanger exposed to non-uniform
frost growth”. In: International Journal of Refrigeration 75,
pp. 129–140.

Damasceno, G, S Rooke, and VW Goldschmidt (1991). “Effects
of reversing valves on heat pump performance”. In: Interna-
tional journal of refrigeration 14.2, pp. 93–97.

Dopazo, J Alberto, Jose Fernandez-Seara, Francisco J Uhıa, and
Ruben Diz (2010). “Modelling and experimental validation
of the hot-gas defrost process of an air-cooled evaporator”.
In: International journal of refrigeration 33.4, pp. 829–839.

Franke, Rüdiger, Francesco Casella, Martin Otter, et al. (2009).
“Stream connectors-an extension of Modelica for device-
oriented modeling of convective transport phenomena”. In:
Proceedings of the 7th International Modelica Conference.
Linköping University Electronic Press, pp. 108–121.

Franke, Rüdiger, Francesco Casella, Michael Sielemann, Katrin
Proelss, and Martin Otter (2009). “Standardization of thermo-
fluid modeling in Modelica. Fluid”. In: Proceedings of the
7th International Modelica Conference. Linköping Univer-
sity Electronic Press, pp. 122–131.

Han, Binglong, Tong Xiong, Shijie Xu, Guoqiang Liu, and Gang
Yan (2022). “Parametric study of a room air conditioner dur-
ing defrosting cycle based on a modified defrosting model”.
In: Energy 238, p. 121658.

Kim, Donghun, Jiacheng Ma, James E Braun, and Eckhard A
Groll (2021). “Fuzzy modeling approach for transient vapor
compression and expansion cycle simulation”. In: Interna-
tional Journal of Refrigeration 121, pp. 114–125.

Laughman, Christopher R, Hongtao Qiao, Vikrant Aute, and
Reinhard Radermacher (2015). “A comparison of transient
heat pump cycle models using alternative flow descriptions”.
In: Science and Technology for the Built Environment 21.5,
pp. 666–680.

Leoni, Aurélia, Michèle Mondot, François Durier, Rémi Revel-
lin, and Philippe Haberschill (2017). “Frost formation and de-
velopment on flat plate: Experimental investigation and com-
parison to predictive methods”. In: Experimental Thermal
and Fluid Science 88, pp. 220–233.

Liu, Haopeng, Jie Cai, and Donghun Kim (2022). “A hierar-
chical gray-box dynamic modeling methodology for direct-
expansion cooling systems to support control stability analy-
sis”. In: International Journal of Refrigeration 133, pp. 191–
200.

Ma, Jiacheng, Donghun Kim, and James E Braun (2018). “De-
velopment Of A Fast Method For Retrieving Thermodynamic
Properties To Accelerate Transient Vapor Compression Cy-
cle Simulation”. In: 17th International Refrigeration and Air
Conditioning Conference at Purdue.

Padhmanabhan, SK, DE Fisher, L Cremaschi, and E Moallem
(2011). “Modeling non-uniform frost growth on a fin-and-
tube heat exchanger”. In: International journal of refriger-
ation 34.8, pp. 2018–2030.

Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher
(2015). “Transient modeling of a flash tank vapor injection
heat pump system–Part I: Model development”. In: Interna-
tional journal of refrigeration 49, pp. 169–182.

Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher
(2017). “Dynamic modeling and characteristic analysis of a
two-stage vapor injection heat pump system under frosting
conditions”. In: International Journal of Refrigeration 84,
pp. 181–197.

Qiao, Hongtao, Vikrant Aute, and Reinhard Radermacher
(2018). “Modeling of transient characteristics of an air source
heat pump with vapor injection during reverse-cycle defrost-
ing”. In: International journal of Refrigeration 88, pp. 24–
34.

Steiner, Alois and René Rieberer (2013). “Parametric analysis
of the defrosting process of a reversible heat pump system
for electric vehicles”. In: Applied thermal engineering 61.2,
pp. 393–400.

Appendix
The governing equations of the preheating stage are:

ρ f ,icp, f ,iδ f ,i
dTf ,i

dt
= k f ,i

Tw,i +Tf s,i −2Tf ,i

δ f ,i/2
(40)

k f ,i
Tf ,i −Tf s,i

δ f ,i/2
= q

′′
a,i (41)

where Tf s,i is the temperature of the frost-air interface, q
′′
a,i

is the heat flux transfer to the surrounding air. At this
stage the wall surface temperature is still below the freez-
ing point of water (273.15 K in the following equations),
which indicates that no phase change occurs.

The governing equations of the melting start stage are
(41), (42)-(45)

ρwater,icp,water,iδwater,i
dTwater,i

dt
=

kwater,i
Tw,i +273.15−2Twater,i

δwater,i/2
(42)

ρ f ,icp, f ,iδ f ,i
dTf ,i

dt
= k f ,i

273.15+Tf s,i −2Tf ,i

δ f ,i/2
(43)

−ρ f ,i∆hs f
dδ f ,i

dt
= kwater,i

Twater,i −273.15
δwater,i/2

− k f ,i
273.15−Tf ,i

δ f ,i/2
(44)

ρwater,i
dδwater,i

dt
=−ρ f ,i

dδ f ,i

dt
(45)

where the latent heat of fusion ∆hs f is 334 kJ/kg.
As the frost starts to thaw, a water film appears between

the wall and the frost layer. It is assumed that temperature
of the water-frost interface remains at 273.15 K. This stage
terminates until the maximum amount of water that can
be retained on the coil surface is reached. The maximum
water film thickness is set to δwater,max = 0.05 mm.

The frost continues to thaw during the melting stage,
but the melted water is assumed to be drained immedi-
ately, causing the development of an air gap between the
water film and the frost. The temperature of the air-frost

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 3726

interface remains at 273.15 K. The governing equations of
this stage are (41), (43), (46)-(50)

ρwater,icp,water,iδwater,i
dTwater,i

dt
= kwater,i

Tw,i −Twater,i

δwater,i/2

−
Twater,i −Ta,i
δwater,i
2kwater,i

+
δa,i
2ka,i

(46)

ρa,icp,a,iδa,i
dTa,i

dt
=

Twater,i −Ta,i
δwater,i
2kwater,i

+
δa,i
2ka,i

− ka,i
Ta,i −273.15

δa,i/2
(47)

−ρ f ,i∆hs f
dδ f ,i

dt
= ka,i

Ta,i −273.15
δa,i/2

− k f ,i
273.15−Tf ,i

δ f ,i/2
(48)

dδa,i

dt
=−

dδ f ,i

dt
(49)

dδwater,i

dt
= 0. (50)

The governing equations of the vaporizing stage are

ρwater,icp,water,iδwater,i
dTwater,i

dt

= kwater,i
Tw,i +Twater,s,i −2Twater,i

δwater,i/2
(51)

ρwater,i
dδwater,i

dt
= cv(ρamb −ρwater,s,i) (52)

kwater,i
Twater,i −Twater,s,i

δwater,i/2
= q

′′
a,i (53)

δ f ,i

dt
= 0 (54)

δa,i

dt
= 0 (55)

where Twater,s,i is the water layer surface temperature that
appears in this stage as an intermediate variable to quan-
tify heat dissipation to the ambient, ρamb and ρwater,s,i are
water vapor densities evaluated at the ambient temperature
and the water layer surface temperature, respectively. cv is
the vaporization coefficient (Qiao, Aute, and Radermacher
2018).

In the dry heating stage, heat is directly dissipated from
the metal wall to the ambient air. Variables of the thick-
nesses and temperatures in the frost melting model are in-
active.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA38 38

Simulation of the on-orbit construction of structural variable
modular spacecraft by robots

Matthias J. Reiner1

1German Aerospace Center (DLR), Institute of System Dynamics and Control (SR), Wessling, Germany,
Matthias.Reiner@dlr.de

Abstract
This paper gives an overview on the simulation of the on-
orbit construction of structural variable modular space-
craft by robots using Modelica. For this purpose, a
new concept using so-called tensor bodies was developed
which enables the fast and continuous simulation of com-
plex scenarios even during structural changes. This re-
search was part of two ESA and EU projects. An overview
of the modeling and simulation approach will be given.
The scenarios include the on-orbit re-configuration of a
modular satellite with a walking robot manipulator and
the construction of a modular space antenna array plat-
form with a walking robot with two arms and a torso.
Keywords: Modelica, variable structure, walking robot,
on-orbit servicing

1 Introduction
Future advanced spacecraft and orbital platforms can re-
quire on-orbit assembly either because of the size of the
structures (e.g. large antennas, solar facilities or tele-
scopes) or because of a desired modularity. Since on-
orbit human labor is extremely expensive and danger-
ous, on-orbit assembly and servicing tasks should be done
(mostly) autonomously by robots. Because of the com-
plexity and cost of these types of missions, simulation and
demonstrator studies on earth should be performed before
committing necessary resources for a real mission. Re-
cent research projects by ESA and the EU are working on
this topic and DLR-SR was involved in the modeling and
simulation of these complex scenarios.

Within the Horizon 2020 EU-funded project MOSAR
(Modular and Re-Configurable Spacecraft, see (Letier,
Yang, et al. 2019)) a ground demonstrator for on-orbit
modular and re-configurable satellites as well as the sup-
porting software and control system was developed.

The basic idea of the project is to use a set of re-usable
spacecraft modules as part of a global eco-system. Each
individual module can be dedicated to a specific function
such as control, power, thermal management or sensors.
Once assembled, they will allow the full functionality of
the spacecraft. A symmetric walking robotic manipula-
tor (WM, see (Deremetz, Letier, et al. 2020)) allows to
capture, manipulate and position the spacecraft modules,
while being able to reposition itself on the standard inter-

faces (abbreviated as SI or Hotdock, see (Letier, Siedel,
et al. 2020)) of the spacecraft or on the modules. These
SIs provide mechanical, data, power and thermal transfer
for interconnection between the modules, spacecraft and
the walking manipulator. They are actuated to ensure a
safe connection when closed and are containing tubes for
the heat transfer as well as connector ports for data and
electricity. Within MOSAR, DLR-SR was responsible for
the development of a Functional Engineering Simulation
(FES) environment and design tool, offering assistance for
module design, system configuration and operation plan-
ning, with the support of a multi-physics engine.

The FES as well as the design tool were developed in
Modelica with an additional MATLAB interface for the
project partners. Fig. 1 shows an example for the graphical
output of the FES using DLR SimVis (see (T. Bellmann
2009), (Hellerer, Tobias Bellmann, and Schlegel 2014)
and (Kümper, Hellerer, and Tobias Bellmann 2021)) for
one of the simulated on-orbit scenarios, which is gener-
ated directly during the simulation by the Modelica model.
The visualization displays a simplified representation of
the most important components of the MOSAR scenario.
The colored box blocks represent the individual modules.
The pipes within the modules represent the (possible) flow
of power and heat within the modules. The spheres within
the modules are used to represent the powered state of the
module (symbolized by a green or red star in the middle)
and the color of the sphere represents the current temper-
ature. The seven-axis robot WM is shown in grey The
visualization was imported from CAD data provided by
SpaceApplications.

In a similar (still ongoing) ESA project call MIRROR
(Multi-arm Installation Robot for Readying ORUS and
Reflectors), the on-orbit assembly of a large reflector con-
sisting of hexagonal shaped modules is investigated using
a ground equivalent laboratory demonstrator. For this pur-
pose, the novel Multi-Arm Robot (MAR) is used which
is a modular robot composed of three robotic subsystems:
a torso and two symmetrical 7-degree of freedom (DOF)
anthropomorphic arms. The arms are based on the WM
design from the MOSAR project. The torso has one ad-
ditional DOF and is the main body of the robot. This
mechanical hub can equip three other appendages (limbs
or payloads) or can be attached directly to the spacecraft
structure (see (Deremetz, Grunwald, et al. 2021)) using

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 3938

Figure 1. Visualization generated by the FES for an on-orbit assembly scenario investigated in the MOSAR project.

SIs. In this project, DLR-SR is responsible for the simula-
tion of the scenario as well. A simulation tool called MIR-
ROR Kinematic Dynamic & Graphical Simulator (abbre-
viated in the following as KDG) was developed, which ex-
tends the FES from the MOSAR project and is also devel-
oped in Modelica with an additional MATLAB interface.
Fig. 2 shows the visualization generated by the KDG (also
using SimVis). The hexagonal elements, which are used
to build up the array, are taken from a stack on the servicer
satellite (simplified represented by the yellow bar connec-
tor) by the MAR. In the configuration shown in the figure,
the MAR is connected to a module with its SI at one of
its WM arms and places another module at the edge of the
array. In this configuration it has a very long reach. Alter-
natively, the MAR can also be connected to the array with
its torso to enable handling with two arms simultaneously.

The focus of both projects is different, but from a simu-
lation standpoint they share a lot of similarities. The focus
for both simulation tools is to get insight in the dynamics
of the systems at an early development stage and to test
control algorithms for the robots and the logic and han-
dling of the modular components and the standard inter-
faces, which are used to connect the elements as well as
to allow the robots to move over the modules. To enable
this the robots have the same SI connectors at the tip of
the arms and torso. This allows the MOSAR symmetric
walking manipulator (WM) to move by connecting one
end of the robot to an SI and then with the other end to
another (and switching the working base in the process).
The MAR with its two arms and torso has even more pos-
sibilities to move in a similar manner.

The SI connectors can not only provide a mechanical
connection, but can also be used to transfer power and ex-
change heat, what also has to be considered for the simu-

lation.
The modular and changing nature of the MIRROR and

MOSAR scenarios make the modeling and simulation a
challenging task. Key challenges are the following:

• Complex structural variable systems consisting of
modular satellite or array components. Modelica
(and most other multi-body systems) do not directly
support structural variable systems. The number of
states must be constant during the simulation.

• Hybrid and stiff systems with discrete and contin-
uous parts. The discrete elements result from the
switching behavior of the SIs and algorithms for the
control logic.

• Many disciplines involved: e.g. power and thermal
management, robot control, and orbital mechanics

• Dynamic robot arm docking and pick & place op-
erations with a high number of potential connection
points. The term pick & place operation is used here
for the following sequence of operations:

1. The robot moves to the location of the module,
ready to grasp the module

2. The module is unfixed from the spacecraft and
connected to the robot using the SIs

3. The robot moves the module to the desired lo-
cation

4. The module is fixed at its new position via one
or more SIs and disconnected from the robot
SI.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA40 38

Figure 2. Visualization generated by the MIRROR Kinematic Dynamic & Graphical Simulator for an assembly scenario using the
Multi-Arm Robot.

The model development and simulation of the scenar-
ios with a focus on the Modelica aspects and unique de-
sign decisions will be described in the following sections.
Since the models are quite complex only a brief overview
can be given.

2 Model Development

The MOSAR Functional Engineering Simulator and the
MIRROR Kinematic Dynamic & Graphical Simulator
(both are abbreviated together as simulator, or individual
as FES or KDG in the following) are built in the multi-
physics modeling language Modelica to simulate the cor-
responding scenarios. The focus of the simulator is the
walking robotic manipulator (WM and MAR) and the
satellite platform with its modules and connectors (SIs,
Hotdocks). The models were built up object-oriented,
and allow to exchange individual components to generate
different models for example to enable simulations with
faster computational performance or more detailed mod-
els including additional dynamical effects.

The space environment of the MOSAR and MIRROR
scenarios are implemented using the DLR SpaceSystems
(Reiner and Bals 2014) and DLR Environment (Briese,
Klöckner, and Reiner 2017) libraries, the robots working
on these modules are modeled using the DLR Robot and
RobotDynamics libraries (see (Reiner 2011) and (Tobias
Bellmann, Seefried, and Thiele 2020)), the visualization
is implemented directly in Modelica using the DLR Visu-
alization library . A short summary of the content of these
main libraries are listed in the following:

DLR SpaceSystems and Environment Libraries

The Modelica SpaceSystems library (SSL) has been de-
veloped at DLR over several years, to model space sys-
tems in a realistic space environment, ranging from satel-
lites to launch vehicles, including their subsystems, com-
ponents, and physical behavior, such as structural dynam-
ics of solar panels and launcher stages. The SSL enables
advanced controller design and verification, trajectory op-
timization, as well as development of path planning and
other algorithms for new modular satellites, on-orbit ser-
vicing and reusable launcher concepts. It is a state-of-
the-art enabling tool for future space dynamics and con-
trol activities. Various environmental effects on space
systems can be represented with the co-developed envi-
ronment models inside the DLR Environment library. In
particular, an extendable and replaceable so-called World
model is provided by the DLR Environment library. The
World model defines coordinate systems, manages time
and date, calculates sun and planet positions and provides
state-of-the-art gravity models like EGM96. Optionally,
models to calculate atmospheric conditions depending on
the geodetic height of space vehicles, atmospheric drag,
wind or other physical environmental effects can be acti-
vated within the analyses to provide a more realistic ap-
proximation of the relevant environmental conditions for
space systems during all flight phases.

DLR Robots and RobotDynamics Libraries

The Modelica Robots and RobotDynamics libraries were
designed to model serial kinematic robots. The li-
braries consist of components for the mechanical design
of robots, including flexible elements and powertrains as

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 4138

well as models for different robot control structures. They
were developed and refined over many years and are used
in various projects. The libraries focus on the efficient and
exchangeable implementation of robot kinematics and dy-
namics. They also provide algorithms to solve forward
and inverse kinematics problems. In addition, the libraries
provide tools for the visualization of robots.

DLR Visualization Library
The DLR Visualization library provides an advanced,
model-integrated visualization tool for Modelica models.
The visualizer elements are directly part of the Modelica
model using mechanical connectors and the visualization
is generated directly at runtime. The library contains vi-
sualizers for basic shapes, CAD files, flexible bodies, sur-
faces, textures, light, energy and mass flow visualizers,
analogue instruments and weather effects. A virtual cam-
era system can be used to define the point of view man-
ually or controlled by simulation. For space applications
with a large difference in distances, a logarithmic Z-buffer
has been implemented to be able to simulate the environ-
ment with an exact scale. SimVis is the software tool
which displays the output generated by the Visualization
Library.

Modeling Approach
A main simulation challenge for both MOSAR and MIR-
ROR is the appropriate modeling of the assembly and re-
configuration of the modules. In both cases, a standard
module is removed from its original position at the space-
craft, attached to an SI at a robot end effector, and inte-
grated at a new position. Each of these transitions causes
discontinuous changes in the mass and inertia properties
of the involved subsystems which has to be adequately
considered in the description of the dynamic system and
selected modeling technique dealing with re-configurable
systems.

The preferred solution for systems with a limited total
number of configurations and with a limited number of
configuration switches is the preparation of independent
models for each configuration which are run sequentially.
At a configuration switch from A to B, the model end state
of configuration A will be used as the initial state of con-
figuration B. In the MOSAR and MIRROR scenarios, both
the number of possible configurations and the number of
configuration switches exceeds a reasonable number for
predefined model architectures. For a moderate number
of configurations, the preferred method is working with
controllable constraints. If the condition for a configura-
tion switch is fulfilled, e.g. a body A has reached its final
plug-in pose relative to body B, an event is triggered that
causes a change in the connector constraint settings. In
this example the constraint will switch from “free motion”
to “rigidly connected”.

Mechanically, the constraint conditions are switching
from zero forces/torques at plug and socket to identical po-
sition, velocity, and acceleration. The implementation is

based on a method used at DLR-SR previously for rocket
separation simulation (Acquatella and Reiner 2014) using
force constraints with a variant of the Baumgarte stabi-
lization. The basic idea is given in the simplified pseudo
Modelica code in listing 1.

Listing 1. Simplified pseudo Modelica code to calculate switch-
able mechanical force constraint

�� � �
 �
 & � � � � � � � � � � � �
 (�
 � �
 & �
 �

g_con = constraintForceAndTorque.frame_a.
r_0 - constraintForceAndTorque.frame_b.
r_0;

G_con = Frames.relativeRotation(
constraintForceAndTorque.frame_a.R,
constraintForceAndTorque.frame_b.R);

�� � �
 �
 & � � � � � � � � � (� � � (�
 � �
 & �
 �

g_con_dot = der(g_con);
G_con_dot = Frames.angularVelocity2(G_con);

�� � �
 �
 & � � � � � & ((� � �
 & � � �
 (�
 � �
 & �
 �

g_con_ddot = der(g_con_dot);
G_con_ddot = der(G_con_dot);

�� �
&' � � (�
 � �
 & �
 � �� � � (�

if not constrained then
f_c = {0,0,0};
tau_c = {0,0,0};

else
g_con_ddot + 2*eta*g_con_dot + eta*eta*(

g_con - pos_offset) = {0,0,0};
G_con_ddot + 2*eta*G_con_dot
+ eta*eta*
(Frames.Orientation.equalityConstraint(
constraintForceAndTorque.frame_a.R,

constraintForceAndTorque.frame_b.R) -
angle_offset) = {0,0,0};

end if;

The code in listing 1 shows how the switchable connec-
tor is working: when the connector is open, the constraint
force and torque are set to zero, so they can move freely.
When the connector is closed, the force and torque be-
tween the two connector frames are computed such that
the resulting relative position, velocity and acceleration
are zero. The additional (Baumgarte) damping term (eta)
is used to compensate numerical drift, caused by small in-
tegration errors. The parameter eta is used to define the
stiffness and damping of the compensation.

However, extrapolating this technique to systems with
a high number of switchable connectors would end up
in huge stiff differential equation systems with an unac-
ceptably high computational load. For a large number of
potential configurations, a modeling technique was devel-
oped at the DLR during the MOSAR project that specifies
only a general system architecture topology: the manipu-
lator connected to the spacecraft with its end effectors us-
ing switchable constraints. Pick and place operations are
then dynamically equivalent to adapting mass and iner-
tia properties of the arrays to be assembled or the module
stack to be reconfigured and of the modules at the robot
end effectors.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA42 38

The Tensor Body Concept

For this purpose, a new and innovative way to implement
variable structure models was developed: individual con-
figurations of the reflector or module stack are realized
in the simulator by so-called tensor body models. These
are, in essence, modifiable rigid bodies, which are con-
sisting of individual sub-components and can change their
inertia, mass and geometric shape. To clarify, since the
word tensor is used very widely and differently in mul-
tiple fields, in this paper the term tensor is used to de-
scribe multidimensional arrays. These adaptable tensor
bodies allow for activating and deactivating grid elements
in terms of mass and inertia and also connectors depend-
ing on the actual operations. Thus, the simulator consists
of a relatively simple model of the system dynamics and
a logic component that adapts the tensor body model of
the reflector or module stack at reconfiguration events as
well as the corresponding tensor body located at the robot
end effector. After each transition, the tensor bodies are
re-computed based on the new configuration. This leads
to an extreme reduction in the number of necessary states
(depending on the number of modules) and improved nu-
merical stability and computational speed. The properties
of the components are dynamically re-calculated when the
stack changes. The components of the body are defined
via a tensor definition/syntax. They can also consider
orientation and connectors of each individual component.
Using the tensor body concept allows a simulation with-
out restart/recompilation, because the number of states re-
mains the same for the whole simulation duration. Re-
action forces between the robot and platform/modules are
fully considered. In addition, a special connection algo-
rithm can check if an electrical connection can exist be-
tween the modules, considering the connectors of all in-
volved components. It is implemented as a path finding
search. The thermal balance is also computed in a similar
way: a full grid of all possible module locations is dynam-
ically updated when a reconfiguration occurs. This means
the thermal capacity and thermal resistance of the connec-
tors is updated depending on the current module type and
the state of the connectors (including their current orien-
tation). To make this possible, the thermal SI connectors
are approximated by thermal resistors, which can switch
from a very high resistance to a very low resistance value
to simulate open or closed connectors. This results in a
certain loss of accuracy, but leads to very fast simulation
times and constant number of states for the thermal sub-
model of the tensor body. Since at an early mission state,
most thermal data values are only rough estimates, this
loss of accuracy can be accepted.

The current configuration of the modular satellite or
mirror array is defined by the variable called shapeTen-
sor with three dimensions for each spatial direction (ten-
sor_nx, tensor_ny and tensor_nz). This maximum tensor
size cannot be changed without a re-compilation of the
Modelica model, however the content of shapeTensor can

be modified during the simulation to account for the re-
configuration of modules.

Different types of modules have been implemented,
they are given a number to differentiate them, while 0
stands for no module at that tensor location. The prop-
erties of these individual module types can be changed via
the corresponding parameters (e.g. mass, inertia, thermal
capacity, SI configuration etc.). The initial configuration
of the arrangement of these modules is defined by a pa-
rameter shapeTensorInit.

Whenever the robot moves a module from A to B, the
tensor body is re-calculated automatically (by triggering
a recomputeTensor event) internally and the required con-
nectors are automatically opened and closed as needed to
realize the new configuration. In addition, tensor body el-
ements are also located at each SI of the robot, such that
the handling of all types of modules is possible. If no com-
ponent is connected to a robot SI, the tensor body at the SI
is just a dummy mass with a very small inertia and mass
(called epsMass) to avoid a division by zero and to enable
a constant number of states.

To be able to identify which exact module is located at
each position within the tensor grid, each existing com-
ponent is also given a unique ID in addition to its general
module type number.

Each individual module within the tensor also has an
individual orientation (relative to the tensor body base
frame), and up to seven connectors for the hexagonal ele-
ments (and six for the cubic modules).

The following simplified pseudo Modelica code list-
ing 2 shows the base algorithm for the tensor body, where
some details were omitted for brevity.

Listing 2. Simplified pseudo Modelica code for the main algo-
rithm of the tensor body

when {initial(),edge(recomputeTensor)} then
�� (��(� � � � � � ' � � (�

�(� � �
 � ���� �&��

� �
 � �
 � & � ��
 � � �	

(poweredTensor,connectionTensor,...) :=
Components.Electrical.

VarTensorBodyConnectionAlgorithm(..)
�� �
 � � � & � � � � 	�(�&
 �(& � �
 � � �
 � � � �

m := 0;
r_CM := {0,0,0};
�� � � �
 & � � ���
 � � & � � & � � �
 ��
 � �	�
� ��
�

for ii_x in 1:tensor_nx loop
for ii_y in 1:tensor_ny loop
for ii_z in 1:tensor_nz loop
�� (��(� � � � ��	�
� � � � � � �

if shapeTensor[ii_x, ii_y, ii_z] > 0
then

��&�� (�
 � �
 � � 	&�� �
��
�
	& � � ���

��� �

��	&��#�
 �� � � & � � (� �
 ���(� (�
 � & �
 �

��� �
 � � � � � � & � 	&�� � � ���

� � � (� � � (����� ����

��
%��� � � & � �
 ��
 ����
 � � & � � � �

� � � � � � �
 � � (� �
 � � �
 �&(� � � � � � ' � �

� ��	�
� � � (& � � �
 �
 ��� �� ��
 ��

�
 � � �

r_CM := r_CM + massPerEle[shapeTensor[

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 4338

ii_x, ii_y, ii_z]]*r_ele[ii_x, ii_y
, ii_z, :];

��&�� � � � & � 	&��

m := m + massPerEle[shapeTensor[ii_x,
ii_y, ii_z]];

end if;
end for;

end for;
end for;
�� � � � � � � '� � � � & � 	&�� � &�� �� � � � ��

if m < epsMass then
m := epsMass;

end if;
r_CM := r_CM/m;
��(�	���� �
 �
 � � & � �
 ��
 ��
 � � � �
 � � � � � � � �

(�	����� �"

�� �
 � �

I := zeros(3, 3);
for ii_x in 1:tensor_nx loop
for ii_y in 1:tensor_ny loop
for ii_z in 1:tensor_nz loop
�� �
 �
 � � & � � � � � (�'� �� ���� $ � � �
 �
 ��
	

�� (��(� � � � ��	�
� � � � � � �

if shapeTensor[ii_x, ii_y, ii_z] > 0
then

�� (�

 �
 �
 � � & � � �
 � �
 ��� � ��	�
�

R_ele := rotMatTensor[ii_x, ii_y, ii_z
, :, :];

�� �
 �
 � � & � �
 � � � (� � � (� ��	�
�

I_ele := inertiaPerEle[shapeTensor[
ii_x, ii_y, ii_z],:,:];

I := I + R_ele*I_ele*transpose(R_ele);
�� � � � � �
 �&
 � �� � � � � &
 (� �� �"

rx := r_ele[ii_x, ii_y, ii_z, 1] -
r_CM[1];

ry := r_ele[ii_x, ii_y, ii_z, 2] -
r_CM[2];

rz := r_ele[ii_x, ii_y, ii_z, 3] -
r_CM[3];

�� $ � � �
 �
 � �
 ��

I := I + massPerEle[shapeTensor[ii_x,
ii_y, ii_z]]*[ry^2 + rz^2,-rx*ry,-
rx*rz; -rx*ry,rz^2 + rx^2,-ry*rz;
-rx*rz,-ry*rz,rx^2 + ry^2];

end if;
end for;

end for;
end for;
�� &�� �� � � � ��

if I[1, 1] + I[2, 2] + I[3, 3] < epsMass
then

I[1, 1] := epsMass;
I[2, 2] := epsMass;
I[3, 3] := epsMass;

end if;
�����&�� � � ��&� �
 � � 	���� &
� ����

� � & � � � � $! (�

�(� � �
 � �	�����

(...)
end when;

The code listing 2 shows the main mechanical algo-
rithm to re-compute a tensor body when it is changed. A
logical algorithm in the model (not shown) triggers the
recomputeTensor event and checks which tensor bodies
are involved and how they should be changed. For a pick
& place operation this leads to the re-computation of the

properties of the main tensor body, as well as the cor-
responding tensor body at an end effector on one of the
robot arms. For each involved tensor body, first the new
Center of Mass (CM) is computed based on the change
of the stack of modules or array elements represented in
the tensor variable shapeTensor, which is modified by the
logical algorithm. Using the newly computed CM as the
new center, an updated inertia tensor is computed for the
tensor body which considers all individual orientations of
the individual tensor body elements as well as the individ-
ual inertia tensors for each module. Since after a pick &
place operation, no module can be left at an end effector
of a robot, a very small (dummy) mass and inertia are used
to approximate this. Since all involved tensor bodies are
updated and recalculated with the same event at the same
time, no discontinuities can occur, and the total mass al-
ways stays constant.

Modeling Overview
The base coordinate system for the KDG and FES simula-
tion is an Earth Centered Inertial (ECI) system. The orbit
of the robot and satellite or antenna array can be defined
by using appropriate start position and velocity vectors,
together with the simulation date. The date is used to com-
pute the current rotation of the earth and the position of the
moon and sun. Other planets are neglected because only
the LEO (Low Earth Orbit) or GEO (Geosynchronous
Equatorial Orbit) are considered here. This allows for a
very generic simulation of nearly every LEO and GEO or-
bit and can also be used to consider lighting and heating
conditions from the resulting sun position. For the simula-
tion it is considered, that the servicer spacecraft and client
satellite or platform are already docked and that the pos-
sible locations of all modules are known beforehand. For
the cubic shape of the modules this is quite straight for-
ward and leads to three-dimensional tensor shape, for the
hexagonal modules of the MIRROR project, the possible
locations are stored in a table (called r_ele in listing 2)
which is used within the tensor body calculation.

The spacecraft modules (SM): The spacecraft modules
are modeled as tensor bodies. It is generally a full SM
stack with individually and dynamically activatable and
de-activatable SM for implementing the modular reconfig-
uration, depending in the SIs’ respective lock status. The
SMs can have individual inertia properties, depending on
their respective internal equipment. Each cubic module
has up to 6 connectors (around all the sides). These can
be used to grasp the modules, and to walk the robot over
them. For the hexagonal modules a similar approach was
implemented in the KDG simulator where each module
can have up to seven SI connectors along the sides of the
hexagonal modules and one on top. The simplified mod-
els of the electric and thermal domain are integrated in the
tensor models.

The robot models consist of kinematic and dynamic
models. For MOSAR they also include powertrain and
sensor models. For the detailed model variants also the

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA44 38

joint torque and position controllers are implemented very
close to their actual implementation using the DLR Robot-
Dynamics and Modelica Standard library. The robots are
equipped with SI interfaces to enable walking and mod-
ule grasping capabilities. The SI modules are modeled
as switchable force/torque constraints, as described previ-
ously. The robot model includes the joint motor and fric-
tion as well as joint nonlinear elasticity for the complex
simulator variants. For the simulation the full dynamic
coupling of the robot’s interaction with the satellite is con-
sidered.

The simulators contain many additional features and as-
pects which can only be briefly mentioned and referenced
here. The following list gives an overview over the main
features of the simulator:

• Dynamic satellite platform and modules based on
the tensor body approach: After each transition,
the tensor bodies are re-computed depending on the
new configuration. This allows simulation with-
out restart/recompilation for the complete simulation
scenario (number of states remains constant). Reac-
tion forces between the robot and platform are fully
considered and the heat flow between components
can be modeled. A path finding connection algo-
rithm can check if an electrical connection to a power
source module exists.

• Visualization of components and important proper-
ties.

• Detailed WM and MAR robot model using data
from Unified Robot Description Format (URDF).
For the WM also powertrain models with motor fric-
tion brake, nonlinear flexible joint models for gear-
box and nonlinear friction as well as joint position
and torque controllers are included.

• Variable module design with individual mass and in-
ertia as well as individual SM configuration includ-
ing heat and power properties.

• Detailed orbit model: orbital dynamics, including
sun and moon.

• Simplified surface heat model including solar,
albedo, deep space and planet infrared radiation. The
models consider the position of the sun, moon and
earth for the shadows as well as the spacecraft at-
titude. The implementation is based on (Posielek
2018) but is extended to be compatible with the ten-
sor body concept.

• Surface contact model with friction: Contact forces
between robot TCPs, modules and platform are con-
sidered and are dynamically updated depending on
the shape of the tensor body. The implementation
is based on previous work at DLR-SR, see (Reiser
2021).

• To stabilize the platforms and satellites, when the
robots are moving, a Quaternion attitude controller
is implemented, as a simplified Guidance, navigation
and control (GNC) system.

• To allow the simulator to obtain signals from other
software components and high-level control systems
a UDP interface was implemented. This allows for
the communication with an external high-level WM
controller (developed by the Institute of Robotics
and Mechatronics DLR-RM). The implementation is
based on (Thiele et al. 2017).

3 Demonstrator Overview
Since the MIRROR project is still ongoing, this section
will focus on the end results for the MOSAR project in-
corporating the FES. The FES is only one small part of the
overall demonstrator setup of the MOSAR project, which
involved many project partners: SpaceApps, GMV, MAG-
SOAR, Thales Alenia Space (France and UK), SITAEL,
Elidiss Technologies, University of Strathclyde, Glasgow
and DLR (SR and RM) (see (Letier, Yang, et al. 2019)).
Figure 3 shows pictures of some results of the MOSAR
project.

The demonstrator setup consists of a physical assem-
bly of prototype modules and the WM as well as multiple
software components. The WM was designed to be able
to work under the earth’s gravity conditions. For the much
larger MAR of the MIRROR project a weight compensa-
tion construction is being developed for the demonstrator
on earth.

For the final demonstration of the MOSAR project mul-
tiple scenarios were developed and executed. For each
scenario the starting and desired end configurations of the
module stacks and the WM pose were defined with the
help of the design tool, which was based on the FES, and
a static simulation analysis of the configurations, to check
the module SI connector compatibility and power source
configuration.

A planning algorithm (developed by GMV) uses this
configuration information to plan a sequence of operations
for the WM and the SI connectors to move and reorient
the modules collision free from the starting to desired end
configuration. Because of the limited reach of the WM,
this can also include relocating the WM between different
steps of the operational plan.

The planning module communicates with a high-level
robot controller developed by DLR-RM. This controller
can communicate with the FES as well as the real hard-
ware setup, since the interfaces were defined analogously.
To ensure the safe operation of the WM and to validate the
operation plan. The complete sequence is simulated using
the FES first, before moving the real hardware.

The high-level WM controller can move the robot both
in position mode (Cartesian and joint command possible),
as well as in a compliance mode, using the robots joint
torque sensors. For the simulation the high-level WM

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 4538

Figure 3. The mosaic overview taken from an internal MOSAR report shows some results obtained within the MOSAR project from
the involved project partners SpaceApps, GMV, MAGSOAR, Thales Alenia Space (France and UK), SITAEL, Elidiss Technologies,
University of Strathclyde, Glasgow and DLR (SR and RM). The top left shows the physical demonstrator setup with the WM
relocating an SM. The top middle gives a closer look on the SIs and a thermal testing setup. The top right shows a setup for the
visual inspection of the modules. The lower left shows a screenshot of the MATLAB interface of the FES with plotted simulation
results. In the lower middle a closer view of an SM configuration and its corresponding software setup can be seen. The lower right
corner shows the result of a camera-based damage inspection of an SM.

controller sends the desired joint position or torque com-
mands as well as SI commands to the FES using the UDP
interface. The low-level joint axis controllers for both
the torque and position control mode are implemented
within the FES. The FES uses this input data to compute
the resulting motion and sends simulated sensor informa-
tion back to the WM controller. The communication is
synchronized by using a blocking UDP implementation,
which waits for the corresponding resulting data package
before executing the next step. The high-level WM con-
troller also communicates with the planning module, to
enable a re-planning in case something goes wrong or a
plan is not feasible and needs to be re-planned.

After a completed simulation run, the resulting simu-
lation data generated by the FES can be analyzed by an
expert team before starting the same procedure with the
real hardware setup to ensure a safe operation. For exam-
ple, joint limitations and safety distances to objects can be
checked there.

Since most project partners did not use Modelica di-
rectly, the Modelica model used within the FES was ex-
ported as an S-function, using a tool provided by Dassault
Systems Dymola. This S-function can then be used and
configured in MATLAB/Simulink. The visualization can
also work together with the generated S-functions.

Since the definition of the scenarios and parameters
is quite complex, the parameter settings, as well as the
output processing were done using MATLAB scripts (.m

files) which also enables the use of algorithms to simplify
the definition and output generation.

4 Conclusions and outlook
The simulation of the complex scenarios in Modelica with
the FES was possible because of the newly developed fea-
tures, such as the tensor body concept for the structural
variable SM stack, as well as the integration of many pre-
viously developed Modelica libraries at DLR-SR.

Using the complete demonstrator setup and all devel-
oped software components from all project partners, all
demonstration scenarios could be successfully performed
at the end of the MOSAR project.

The concept was used in the MIRROR project which
enabled a very fast development time for the simulator
there, and with small adaptations could also be used for
many similar applications both on-orbit as well as on earth
(e.g. building construction).

However, the tensor body concept and switchable force
constraints also lead to a significant increase in the overall
model complexity (especially the required logical parts)
and some approximations and simplifications are neces-
sary and restrict what is possible to simulate.

An extension of the Modelica language (and simulation
tools) to directly handle structural variable systems or new
developments within similar languages such as the model-
ing language Modia (Elmqvist et al. 2021) could improve

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA46 38

this aspect in the future and would enable the direct imple-
mentation of structural variable systems in a more classi-
cal object-oriented way.

Acknowledgements
The work presented here would not have been possible
without the great support of colleges at the DLR-SR who
provided Modelica libraries that were part of the simula-
tion as well as the good collaboration within the MOSAR
and MIRROR project with the involved partners.

The MOSAR part of this work was funded by the Euro-
pean Commission Horizon 2020 Space Strategic Research
Clusters on Space Robotics and Electric Propulsion pro-
gramme under grant number 821966 (MOSAR: Modu-
lar Spacecraft Assembly and Reconfiguration). The fol-
lowing companies and institutions were involved in the
MOSAR project: SpaceApps, GMV, MAGSOAR, Thales
Alenia Space (France and UK), SITAEL, Elidiss Tech-
nologies, University of Strathclyde, Glasgow and DLR
(SR and RM).

The MIRROR part of this work is still ongoing and
funded by the European Space Agency (ESA) in the
framework of the Technology Research Program (contract
No. 4000132220/20/NL/RA) entitled Multi-arm Instal-
lation Robot for Readying ORUS and Reflectors (MIR-
ROR). The following companies and institutions were in-
volved in the MIRROR project: SpaceApps, Thales Ale-
nia Space, LKE, Leonardo, Frentech Aerospace and DLR
(SR and RM).

References
Acquatella, P. and M. Reiner (2014). “Modelica Stage Sepa-

ration Dynamics Modeling for End-to-End Launch Vehicle
Trajectory Simulations”. In: Proceedings of the 10th Interna-
tional Modelica Conference, pp. 589–598.

Bellmann, T. (2009). “Interactive Simulations and advanced Vi-
sualization with Modelica”. In: Proceedings of the 7th Mod-
elica Conference, pp. 541–550. URL: https://www.modelica.
org/publications.

Bellmann, Tobias, Andreas Seefried, and Bernhard Thiele
(2020). “The DLR Robots library - Using replaceable pack-
ages to simulate various serial robots”. In: Asian Modelica
Conference 2020. Linköping Electronic Conference Proceed-
ings 174. Linköping University Press, pp. 153–161. URL:
https://elib.dlr.de/138327/.

Briese, L., A. Klöckner, and M. Reiner (2017). “The DLR En-
vironment Library for Multi-Disciplinary Aerospace Appli-
cations”. In: 12th International Modelica Conference. DOI:
10.3384/ecp17132929.

Deremetz, Mathieu, Gerhard Grunwald, et al. (2021-12). “Con-
cept of Operations and Preliminary Design of a Modu-
lar Multi-Arm Robot using Standard Interconnects for On-
Orbit Large Assembly”. In: 72nd International Astronautical
Congress (IAC), URL: https://elib.dlr.de/147153/.

Deremetz, Mathieu, Pierre Letier, et al. (2020-10). “MOSAR-
WM: A relocatable robotic arm demonstrator for future on-
orbit applications”. In: International Astronautical Congress,
IAC 2020. IAF. URL: https://elib.dlr.de/139962/.

Elmqvist, Hilding et al. (2021-09). “Modia - Equation Based
Modeling and Domain Specific Algorithms”. In: 14th In-
ternational Modelica Conference. Ed. by Martin Sjölund
et al. Linköping Electronic Conference Proceedings 181.
Linköping University Electronic Press, pp. 73–86. URL:
https://elib.dlr.de/144872/.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014-03). “The DLR Visualization Library - Recent devel-
opment and applications”. In: The 10th International Model-
ica Conference 2014. Linköping Electronic Conference Pro-
ceedings. LiU Electronic Press, pp. 899–911. URL: https : / /
elib.dlr.de/92153/.

Kümper, Sebastian, Matthias Hellerer, and Tobias Bellmann
(2021-09). “DLR Visualization 2 Library - Real-Time Graph-
ical Environments for Virtual Commissioning”. In: 14th
Modelica Conference. Ed. by Martin Sjölund et al. Model-
ica Association and Linköping University Electronic Press,
pp. 197–204. URL: https://elib.dlr.de/144780/.

Letier, Pierre, Torsten Siedel, et al. (2020-10). “HOTDOCK: De-
sign and Validation of a New Generation of Standard Robotic
Interface for On-Orbit Servicing”. In: International Astro-
nautical Congress, IAC 2020. IAF. URL: https://elib.dlr.de/
139963/.

Letier, Pierre, Xiu Yang, et al. (2019-05). “MOSAR: Mod-
ular Spacecraft Assembly and Reconfiguration Demonstra-
tor”. In: 15th Symposium on Advanced Space Technologies in
Robotics and Automation. URL: https://elib.dlr.de/129392/.

Posielek, Tobias (2018). “A Modelica Library for Spacecraft
Thermal Analysis”. In: The American Modelica Conference
2018. URL: https://elib.dlr.de/123229/.

Reiner, M. (2011). “Modellierung und Steuerung eines struk-
turelastischen Roboters”. PhD thesis. Technische Universität
München.

Reiner, M. and J. Bals (2014). “Nonlinear inverse models for the
control of satellites with flexible structures”. In: Proceedings
of the 10th International Modelica Conference, pp. 577–587.

Reiser, Robert (2021-09). “Object Manipulation and Assem-
bly in Modelica”. In: 14th International Modelica Confer-
ence. Ed. by Martin Sjölund et al. Modelica Association and
Linköping University Electronic Press, pp. 433–441. URL:
https://elib.dlr.de/144864/.

Thiele, Bernhard et al. (2017-05). “Towards a Standard-
Conform, Platform-Generic and Feature-Rich Modelica De-
vice Drivers Library”. In: 12th International Modelica
Conference. Ed. by Jiri Kofranek and Francesco Casella.
Linköping University Electronic Press, 2017, pp. 713–723.
URL: https://elib.dlr.de/118601/.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 4747

Extending a Multicopter Analysis Tool using Modelica and FMI for
Integrated eVTOL Aerodynamic and Electrical Drivetrain Design

Meaghan Podlaski1 Luigi Vanfretti1 Robert Niemiec2 Farhan Gandhi2

1Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
{podlam,vanfrl}@rpi.edu

2Center for Mobility with Vertical Lift (MOVE), Rensselaer Polytechnic Institute, Troy, NY, USA
{niemir2,gandhf}@rpi.edu

Abstract
This paper describes how the Functional Mock-up Inter-
face (FMI) standard for model-based systems engineer-
ing can be used to expand the capabilities of aerodynamic
multicopter analysis tools to perform integrated design of
electric vertical take-off and landing (eVTOL) systems.
The proposed eVTOL system, which consists of a driv-
etrain and battery, was developed using Modelica and ex-
ported to MATLAB/SIMULINK using model exchange to
interact with a domain-specific tool specializing in calcu-
lating the aerodynamics of the aircraft. This shows the
value of FMI to extend the capabilities of tools for multi-
copter aerodynamic analysis to design eVTOL using inte-
grated multi-domain system simulation.
Keywords: eVTOL, multi-domain modeling, FMI

Glossary

BLDCL Brushless DC Drives Library
eVTOL Electric Vertical Take-Off and

Landing
FMI Functional mock-up interface
FMIT FMI Toolbox for MATLAB

and SIMULINK
FMU Functional mock-up unit
PWM Pulse width modulation
RMAC Rensselaer Multicopter Anal-

ysis Code

1 Introduction
1.1 Motivation
Distributed electric propulsion has enabled the develop-
ment of electric vertical take-off and landing (eVTOL)
systems, such as NASA’s Advanced Air Mobility (NASA
2020 (retrieved Nov 3, 2020)) and Uber Elevate (Holden
and Goel 2016). The design of such systems requires to
engineer sub-systems of multiple engineering domains,
where simulation studies of each sub-system can pro-
vide insight on which components and designs provide
the greatest benefit prior to building a physical prototype.
However, specialized design tools tend to focus on a spe-

cific domain only, which creates difficulties for integrated
system desing.

The development of distributed electric propulsion
systems would greatly benefit from well-defined multi-
engineering models at various levels of modeling fidelity
to understand system behavior. However, expanding do-
main specific tools to encompass all domains poses a
tremendous development challenge. On the other hand,
the Functional Mock-Up Interface (FMI) standard can en-
able the interaction of models that do not exist in domain
specific tools, using commercial as well as open-source
Modelica models, to further expand their capabilities and
understand the overall integrated system. This would only
require the domain specific tool to implement the FMI’s
import specification, providing a faster route to expand the
capabilities of existing domain specific tools. The biggest
benefit for this approach to modeling is that it allows for
collaboration with researchers and developers that are not
familiar with Modelica but have created domain specific
tools, just by adding support to the FMI Standard to their
software. This allows us to fully integrate tools created for
previous research and development, enriching simulation
studies with relatively low effort.

In this paper, the Rensselaer Multicopter Analysis
Code (RMAC) (Niemiec and Gandhi 2019) developed
within the MATLAB/SIMULINK environment, is ex-
tended to support the FMI standard using the FMI Tool-
box (FMIT)(Modelon 2018; Henningson, Akesson, and
Tummescheit n.d.). This allows to import electrified drive-
train models developed in Modelica, which once imported
into RMAC, can be used for integrated analysis of eV-
TOL vehicles. To illustrate the new capabilities of RMAC,
its aerodynamic vehicle model is coupled with a electri-
fied drivetrain modeled in Modelica and exported as an
FMU to MATLAB/SIMULINK to study the interaction
between the the aerodynamics and electrified drivetrain.
The RMAC tool contains mathematical models for the air-
craft rotor dynamics, which are coupled to the FMU, so
that the drivetrain can be studied with accurate aerody-
namics used within the multicopter domain. The use of
the FMI standard creates a flexible environment that can
be easily interfaced with RMAC’s code, expanding analy-
sis capability for multi-domain studies.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA48 47

1.2 Related Works

The development of eVTOL systems has been of inter-
est recently, especially focused on applications to Urban
Air Mobility for passenger transport operations. Many
of these systems, such as Uber Elevate (Holden and Goel
2016), do not have large-scale physical prototypes, mak-
ing model-based systems engineering an attractive ap-
proach for development and analysis of new architectures.

Novel electrified aircraft concepts, such as fixed-wing
aircraft, have been studied using Modelica. The More
Electric Aircraft Systems (MOET) project utilized Mod-
elica to develop and study novel aircraft concepts to un-
derstand system behavior prior to building physical pro-
totypes (Bals et al. 2009). In addition, distributed elec-
tric propulsion concepts have been modeled using Mod-
elica to better study the electrical architecture as other
disciplines improve their specific components, for exam-
ple electrical energy storage devices increasing capacity
(Zhou et al. 2018). However, these projects have not cou-
pled their electrical drivetrain models to other programs
for integrated multi-domain system design, which could
be beneficial in designing the entire vehicle.

A unique example of multi-domain system design is
presented in (Velden and Casalino 2021), where multi-
ple tools have been integrated to conduct studies on eV-
TOL systems for flight and noise assessment using multi-
fidelity models. This study shows how FMI can be ap-
plied to utilize the features of other tools in the Dassault
3DEXPERIENCE suite for analysis of the eVTOL sys-
tem. However, the electrified drivetrain models were not
included in the system design.

1.3 Paper Contributions

This paper contributes a framework for eVTOL de-
sign through integrated multi-domain model develop-
ment where the electrified drivetrain can be defined
with multiple levels of modeling fidelity using Model-
ica. These models are coupled to a domain specific multi-
copter aerodynamics tool, RMAC, developed in the MAT-
LAB/SIMULINK environment using the FMI Toolbox to
study the eVTOL drivetrain dynamics. This application
highlights the benefits expanding the capabilities of pre-
exisitng tools by incorporating models developed using
Modelica, which is possible thanks to the FMI standard.

1.4 Paper Organization

The paper is organized as follows. Section 2 outlines
the development of the drivetrain models using Model-
ica. Section 3 discusses FMU development and interfac-
ing with the RMAC toolbox in MATLAB/SIMULINK for
integrated multi-domain dynamic simulation. Section 4
shows results of the drivetrain studied at various levels of
modeling fidelity. Section 5 describes the conclusions of
this work.

2 eVTOL Model Development
The aircraft modeled in this work is a 300 lb quadcopter
used in (Walter et al. 2020). The rotors are assumed to
be linearly twisted and tapered and have a 10% R tip
clearance. The motor parameters are based on the Hacker
Q150-45-4 (Hacker Q150-45-4 Series Datasheet 2021).
The drivetrain models are described in further detail with
their behavior validated in (Podlaski et al. 2021).

The aircraft was configured using two different power
system architectures: (1) with a centralized battery (one
battery powering all four drivetrains) and (2) with individ-
ual batteries powering each of the drivetrains (four bat-
teries in total). These two architectures allow to study
the performance of the battery and electrical system con-
figuration on the eVTOL system aerodynamics. The
schematic of the system with a centralized battery is
shown in Figure 1, and the schematic of the system with
a distributed battery is shown in Figure 2. Each drivetrain
has a speed input to determine the duty cycle of the in-
verter and a torque that is applied to the machine’s rotor.
The torque and speed of each motor is used as an output
to adjust the controller as necessary and interact with the
RMAC rotor aerodynamics.

2.1 Drivetrain Model
The drivetrain consists of four components: a controller,
pulse width modulation (PWM) of the converter, a DC/DC
converter, and a DC machine. The component models are
from Dassault System’s Brushless DC Drives (BLDCL)
(Dassault Systemes 2022) and the Modelica Standard Li-
brary (MSL). The drivetrain was developed in Modelica
using the Dymola software, and is shown in Figure 3. The
system consists of multiple domains, with the electrical,
mechanical, and control domains represented.

The components of the drivetrain system in Figure 3 are
labeled as follows:

A. FMU inputs
B. FMU outputs
C. Controller (replaceable model)
D. Modulation method (replaceable model)
E. Inverter (replaceable model)
F. Machine (replaceable model)
G. Electrical connection to battery
H. Rotor inertia

The controller, modulation method, inverter, and ma-
chine models are all modeled as replaceable compo-
nents, meaning that components with different levels of
detail can be easily replaced using different model vari-
ants for various dynamic simulation studies. For example,
the machine was modeled with different losses and dy-
namic behaviors included, resulting in four different ma-
chine models to be considered in the studies. By using
replaceable models, these cases can be easily changed
to observe different dynamic behaviors in the model.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 4947

Figure 1. Multi-rotor aircraft model with a centralized battery.

Figure 2. Multi-rotor aircraft model with a distributed battery.

Figure 3. Drivetrain in Modelica using BLDCL and MSL.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA50 47

Figure 4. Implemented simplified variant of the motor model.

2.1.1 Machine Models
The machine model is shown as block F in Figure 3, which
can be modeled at multiple levels of modeling fidelity.
A simple motor model was developed as shown in Fig-
ure 4. This model is typically used to represent entire
electrified power trains in the eVTOL community (Pod-
laski et al. 2021). While useful for preliminary studies,
it limits the ability to perform integrated design of both
aerodynamic and electrical sub-systems concurrently. In
contrast, the BLDCL (Dassault Systemes 2022) contains
machine models with averaged and trapezoidal back-EMF
(see Figure 5, which enables studies to consider vari-
ous non-ideal behavior and the electrical switching effects
from the inverter. The model’s architecture allows to use
all three variants for different analysis, with low effort, for
example, the averaged model helps to better represent fric-
tional losses while the trapezoidal model allows to capture
electrical and mechanical heat of the machine.

The speed of the motor in Figure 4 is calculated by
Equation 1, where I is the rotor inertia, and the right-
hand side of the equation is the net moment applied to the
drivetrain. The motor torque is proportional to the current
as calculated in Equation 2. Equation 3 gives the current
drawn by the motor as a function of the resistance, induc-
tance, and voltage applied to the motor. The motor can
also be further simplified by setting the inductance L = 0,
which eliminates any current delay in the electrical dy-
namics.

I
dΩ
dt

= Qmotor −Qaero (1)

Qmotor = Kei (2)

L
di
dt

=V −Ri−KeΩ (3)

The trapezoidal motor is the most complex model con-

Figure 5. Trapezoidal variant of the machine model from the
BLDCL

sidered in the study, which is shown in Figure 5. The
trapezoidal motor model uses a three phase input connec-
tor, as designated by plug_sn and plug_sp. This is due
to the three-phase input needed to produce the trapezoidal
back-EMF waveform that is produced by the switching of
the inverter.

2.1.2 Controller, Inverter, and Modulation Models
The selection of the machine model defines which con-
troller, inverter, and modulation models are used. When
the averaged back-EMF and simplified motor models like
the one in Figure 4 are used, the inverter model is an ideal
buck DC-DC converter with a feed-through controller and
modulation method as the duty cycle is a function of the
actual and desired speed of the motor. The ideal buck con-
verter steps down the battery voltage to the motor voltage
as a function of the duty cycle as denoted by Equations 4
and 5.

Vmotor =Vbattery ∗dutyCycle (4)
ibattery =−imotor ∗dutyCycle (5)

In the case of the trapezoidal motor, more complex
power electronics converters, controllers, and modula-
tion methods must be considered. The inverter now in-
cludes diodes and switches to created a three-phase sig-
nal to be applied to the motor, resulting in a trapezoidal
back-EMF. The inverter is shown in Figure 6, which in-
cludes the same buck converter calculations in Equations
4 and 5. A three-phase star connection from the ideal
buck component creates the three-phase voltage applied
to the switches, upperSwitch and lowerSwitch, and

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5147

Figure 6. Inverter model with switching components from the
BLDCL.

diodes, upperDiode and lowerDiode. Input u[] con-
trols the switching on and off of the upperSwitch and
lowerSwitch to produce a trapezoidal signal to apply to
the motor via three-phase output plug.

The input u[] in Figure 6 comes from the a six-step
control command generated by Hall sensor outputs to con-
trol each of the half-bridges in the inverter model. This
is exemplified in Figure 7, where for the instant denoted
by the black line the PWM signals denote that the upper
switch for the third phase and the lower switch for the
first phase are closed. This means that Va is connected
directly to ground, Vb is falling linearly between Vbattery
and ground, and Vc is equal to Vbattery. The Modulation
block converts the boolean states from the six-step con-
troller into switching signals to control the half-bridges,
effectively linking the different domains in the model.

2.2 Battery Model
The battery model is a look-up table-based open-circuit
voltage (OCV) model from the Dassault Systems Battery
Library (Dassault Systems 2022). The model considers
both electrical and thermal behavior, and utilizes data col-
lected from experiments to populate look-up tables. These
tables are then used to determine the parameters of the
battery’s electrical components for various operating con-
ditions. The electrical schematic of the OCV battery is
shown in Figure 8, where each cell of the battery is pow-
ered by an ideal voltage source. The values of the resistors

and capacitors in the circuit in Figure 8 are determined
from the operational state and values from the look-up ta-
bles.

The battery model in Dymola is shown in Figure 9 and
shows both the thermal and electrical domains modeled.
The components are modeled as follows:
A. Electrical connections to the drivetrain
B. Thermal housing model and connection to outside

thermal models
C. Electrical scaling component
D. Thermal scaling component
E. Battery cell electrical model
F. Data connections for analysis of the battery

The battery cell model in Figure 9, block E con-
sists of the electrical circuit shown in Figure 8. The
electricalScaling in block C of Figure 9 scales the
number of cells by m cells in parallel and n cells in se-
ries, as shown in Figure 8. Every cell produces a voltage
given by Equation 6. The impedance in each cell is given
by Equation 7, where the values of R1, C1, R2, and C2
are determined from the look-up tables as a function of
battery state of charge and operating temperature.

Vbattery,i j = OCVi j −Zbattery,i jii j (6)
Zbattery,i j = (R1i j||C1i j)+(R2i j||C2i j)+Ri j (7)

For the vehicle studied in this paper, the battery in a
centralized configuration in Figure 1 has 15 cells in series
and 20 cells in parallel for a 60 V with a capacity of 43
Ah. In the distributed battery configuration in Figure 2,
the capacity of each battery is a quarter of the centralized
battery: 15 cells in series and 5 cells in parallel. This
results in a 60 V battery with a 10.75 Ah capacity.

3 Coupling FMUs to RMAC
The drivetrain model in Figure 3 was coupled to the bat-
tery model in Figure 9, then exported as an FMU using the
model exchange specification supported in Dymola. The
FMU is imported into Simulink through a FMU for model
exchange provided by the FMI toolbox (Modelon 2018)
to be simulated with RMAC. The interfaces between the
FMU and RMAC are shown in Figure 10. The FMU
uses an input of a desired speed command, rotor torque,
and a rotation direction of the motor (clockwise/counter-
clockwise). The speed command is derived from the ve-
hicle’s attitude and heave control; the rotor torque is pro-
duced from RMAC’s aerodynamic model. The FMU out-
puts the speed of the motor to interact with RMAC, as well
as machine current and torque for monitoring and analysis.
The motor speed output from the FMU is used to model
the aerodynamic forces and moments about the rotor hub.
These forces and moments are then coupled with the ve-
hicle dynamics model.

Because the model in Figure 3 requires the duty cycle
as an input, RMAC must also provide a controller. The

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA52 47

Figure 7. Switched three-phase converter with averaged input voltage.

Figure 8. Electrical schematic of battery.

Figure 9. Battery model in Dymola using the Dassault Battery Library.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5347

Figure 10. Interfaces between the electric drivetrain FMU and the RMAC rotor model in MATLAB/SIMULINK.

controller calculates the duty cycle of the drivetrain as a
function of the rotor speed and the commanded speed.
The controller is an explicit-model-following controller
that can be tuned based on handling qualities requirements
such as those in (Niemiec, Gandhi, et al. 2020), (Walter et
al. 2020), and (Bahr et al. 2020).

Different electrified drivetrains can be used with the
proposed interfacing approach, as long as the generated
FMU can provide the same inputs and outputs for each
variant, which are simple to define in Modelica. In this
way, different model variants and architectures can be sim-
ulated by simply loading the desired FMU into the FMIme
block from the FMI Toolbox (Modelon 2018). Thus,
the integrated aerodynamic of RMAC and the electrical
drivetrain developed in Modelica are simulated in MAT-
LAB/SIMULINK.

4 Results
Using the proposed integration of RMAC with the FMI
standard using the FMI Toolbox, both electrical architec-
ture configurations of the eVTOL system in Figures 1 and
2 are analyzed next. All case studies simulate a heave
command that is applied to study the interplay between
the electrical drivetrain configuration and the aircraft dy-
namics. Six different cases were considered:
1. Centralized battery modeled using an ideal 60V volt-

age source.
2. Distributed (individual) battery modeled using an ideal

60V voltage source.
3. Centralized battery starting at 100% state of charge.
4. Distributed (individual) starting at 100% state of

charge.
5. Centralized battery starting at 30% state of charge.
6. Distributed (individual) starting at 30% state of

charge.
For the ideal voltage source cases, the battery is as-

sumed to stay at a constant 60 V and would be able to
supply power to the multicopter indefinitely, which is un-
realistic. Thus, to highlight the importance of adequately
modeling the battery, the model in Figure 9 is used for
cases 3-6, where we apply the maneuver to the aircraft at
the beginning of a flight (100% state of charge) and at the

Figure 11. Pitch command and vehicle response.

end of flight (30% state of charge).
To observe the closed-loop dynamic behavior of the ve-

hicle subject to pitch, the command in Figure 11 is applied
to the electrified drivetrains. The system is subject to a
10 degree pitch command for 5 seconds and a -10 degree
pitch command for 5 seconds, as denoted by the blue line.
The actual response of the controller is denoted by the red
line in Figure 11. The command model in RMAC for pitch
is a second-order model (ζ = 0.7,ωn = 3.46 rad/s).

The front and rear rotors receive opposite commands to
achieve the pitch behavior, as shown in Figure 12. The
current drawn at each of the motors is shown in Figure 13,
where the opposite speed commands are also reflected in
the current draw. Since all of the motors are connected to
one central battery, the current spikes in the motors cancel
each other out when observing the total current draw from
the battery (Figure 14).

Next, the distributed battery system in Figure 2 is sub-
jected to the same pitch command. The speed response
and current draw of the front and rear motors are identi-
cal to the centralized battery case, as shown in Figure 12.
Since the spikes in the current draw from the front and
rear motors cannot cancel each other out in this configu-
ration, this ripple is observed in the battery voltage shown
in Figure 15.

By exporting these mutlicopter models as FMUs to in-
teract with RMAC, we can produce commands to show

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA54 47

Figure 12. Speed response of multi-rotor system to pitch com-
mand.

that the system must be sized to accommodate the sys-
tem architecture and desired commands. This modeling
method allows us to compare both a centralized and dis-
tributed battery architecture, where both architectures pro-
duce the same speed response for a pitch command and
thus have the same current draw per motor. This behav-
ior is not observed in the electrical dynamics, where the
current spikes are cancelled out when observed from the
battery for a centralized architecture. If a centralized bat-
tery architecture is selected for the vehicle, the pitch com-
mand will not be the limiting factor that the battery must
be sized to complete. When a distributed architecture is
considered for a vehicle, the battery must be sized to ac-
commodate for the current spikes produced by cases such
as those of the pitch command.

5 Conclusions
The premise of the FMI standard is to enable model porta-
bility and re-usability, i.e. the usage of one model in
many tools. This provides tremendous opportunities to ex-
tend the modeling capabilities of existing domain-specific
tools. In the case of the emerging field of eVTOL, ex-
isting multicopter aerodynamic analysis tools can be ex-

Figure 13. Current response of front and rear motors of multi-
rotor system to pitch command.

panded with relatively low effort to incorporate electric
power train modeling capabilities.

In this multi-domain electrified drivetrain study for eV-
TOL, we showed how the FMI standard allowed us to
integrate Modelica models with an existing specialized
multicopter aerodynamic research tool (RMAC). To cou-
ple both modeling domains, RMAC provided aerody-
namic inputs and feedback for the aircraft model in MAT-
LAB/SIMULINK. Then, using the FMI Toolbox from
Modelon, RMAC was extended to support electrified driv-
etrain models with specific input/output interfaces. Mean-
while, the FMI standard enabled us to utilize a multi-
domain eVTOL drivetrain model developed in Modelica
by using Dymola’s export support for the Model Exchange
specification. Thus, to couple the electrified drivetrains
with RMAC it was possible to simply import the differ-
ent model variants into MATLAB/SIMULINK to interact
with RMAC.

The proposed coupling approach helped to obtain simu-
lation results that enable a new understanding of the trade-
offs between different types of propulsion architectures
for new eVTOL vehicles. A centralized battery architec-
ture can take advantage of canceling effects in the required

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5547

Figure 14. Current response of centralized battery of multi-rotor
system to pitch command.

voltage/current, while a distributed architecture will need
the battery to be sized by considering the load require-
ments resulting from heave commands.

Acknowledgements
This work was supported in whole or in part by the
National Aeronautics and Space Administration under
award number 80NSSC19M0125 as part of the Center
for High-Efficiency Electrical Technologies for Aircraft
(CHEETA), and in part by The Boeing Company through
its Charitable Partnership with Rensselaer Polytechnic In-
stitute.

The first author is supported by the National Science
Foundation Graduate Research Fellowship Program under
Grant No. DGE 1744655 and the Chateaubriand Fellow-
ship of the Office for Science & Technology of the Em-
bassy of France in the United States.

References
Bahr, Matthew et al. (2020-10). “Handling Qualities Assessment

of Large Variable-RPM Multi-Rotor Aircraft for Urban Air
Mobility”. In: 76th Annual VFS Forum. Virtual.

Bals, Johann et al. (2009). “Model based design and integration
of more electric aircraft systems using modelica”. In: Moet
forum at European power electronics conference and exhibi-
tion.

Dassault Systemes (2022-05). CATIA Systems Brushless DC
Drives Library. https : / / www . 3ds . com / fileadmin /
PRODUCTS / CATIA / DYMOLA / PDF / 3DS _ 2017 _ CAT _
BrushlessDCDrives_Flyer_A4.pdf.

Dassault Systems (2022). CATIA Systems Engineering: Battery
Library. URL: https://www.3ds.com/fileadmin/PRODUCTS/
CATIA/DYMOLA/PDF/3DS_2015_CATIA_BTY_Battery_
_Flyer_A4_WEB.pdf.

Hacker Q150-45-4 Series Datasheet (2021). https : / /
HackerMotorUSA . com. URL: https : / / HackerMotorUSA .
com.

Figure 15. Voltage response of front and rear motors of multi-
rotor system to pitch command.

Henningson, Maria, Johan Akesson, and Hubertus Tummescheit
(n.d.). “An FMI-Based Tool for Robust Design of Dynamical
Systems”. In: Proceedings of the 10th International Modelica
Conference;

Holden, Jeff and Nikhil Goel (2016-10). Fast-Forwarding to
a Future of On-Demand Urban Air Transportation. Avail-
able at: https://www.uber.com/elevate.pdf [Accessed 10 Oct.
2019].

Modelon (2018-07). FMI Toolbox User’s Guide 2.6.4. Tech. rep.
Modelon AB.

NASA (2020 (retrieved Nov 3, 2020)). AAM Overview | NASA.
https://www.nasa.gov/aeroresearch/aam/description/.

Niemiec, Robert and Farhan Gandhi (2019). “Development
and Validation of the Rensselaer Multicopter Analysis Code
(RMAC): A Physics-Based Comprehensive Modeling Tool”.
In: Proceedings of the 75th Vertical Flight Society Annual Fo-
rum.

Niemiec, Robert, Farhan Gandhi, et al. (2020-10). “System Iden-
tification and Handling Qualities Predictions of an eVTOL
Urban Air Mobility Aircraft Using Modern Flight Control
Methods”. In: 76th Annual VFS Forum. Virtual.

Podlaski, Meaghan et al. (2021). “Multi-Domain Electric Driv-
etrain Modeling for UAM-Scale eVTOL Aircraft”. In: Pro-
ceedings of the 77th Vertical Flight Society Annual Forum.

Velden, Wouter van der and Damiano Casalino (2021). “Flight
and Noise Assessment of an eVTOL Vehicle using a Multi-
Fidelity Model-Based System Engineering Methodology”.
In: DICUAM 2021, Delft International Conference on Urban
Air-Mobility.

Walter, Ariel et al. (2020-10). “Hover Handling Qualities of
Fixed-Pitch, Variable-RPM Quadcopters with Increasing Ro-
tor Diameter”. In: 76th Annual VFS Forum. Virtual.

Zhou, Yan et al. (2018). “Modeling and simulation of a
distributed electric propulsion aircraft by modelica”. In:
CSAA/IET International Conference on Aircraft Utility Sys-
tems (AUS 2018). IET.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA56 56

Multirotor drone sizing and trajectory
optimization within Modelon Impact

Clément Coïc1 Marc Budinger2 Scott Delbecq3
1Modelon, Germany, clement.coic@modelon.com

2Institut Clément Ader (ICA), Université de Toulouse, CNRS-INSA-
ISAE-Mines Albi-UPS, Toulouse, France

3ISAE-SUPAERO, Université de Toulouse, France

Abstract
The design of multirotor drones often relies on optimizing
its performance in terms of maximum speed requirements
and hover time. This is well suited to undefined tasks. In
the case of repetitive tasks, the drone trajectory can be
added as a third degree of freedom. This paper focuses on
the use of Modelon Impact and its dynamic optimization
capabilities to reach a multirotor drone design and 1-D
trajectory optimization. In comparison to other options
investigated by the authors in a separate publication,
Modelon Impact based optimization proved to be much
simpler, more robust, and faster – for this use case.
Keywords: Multirotor, Drone, Dynamic optimization,
Trajectory optimization, Sizing, Modelon Impact,
Optimica,

1 Introduction
Multirotor drones are often associated with toys that are
fun to pilot. The drone designer does not know in advance
who will use the drone and how it will be used. Therefore,
these drones are typically designed based on performance
requirements. For a toy drone to be fun, the user expects
it to be fast and to have a satisfying autonomy. The toy
drone designer often takes as requirement a maximum
speed and a given hover time.

On the other side, multirotor drones are also being
developed for some industry applications for a variety of
roles – from packages delivery to military assistance or
payload lifting in substitution to cranes. Contrarily to the
toy drones, industry drones typically have well defined
missions often expressed as:

• Start point: initial elevation, hover time

• End point: final elevation, horizontal distance from
the initial point and hover time

Missions including more points can be described as
sequences of start and end points.

Getting back to the sole mission of the drone – in
comparison to optimizing for performance requirements –
relaxes an entire degree of freedom: the drone trajectory.
Solving both the drone sizing and trajectory optimizations
allows focusing on optimization criteria such as

minimizing energy consumption or the cost function, if
willing to associate a cost to the parts that compose the
drone and its utilization (time of utilization – including
potential operator – and energy consumption).

This paper presents how easy it is to perform sizing and
trajectory optimization of a system within Modelon
Impact. A drone is selected as example system. A selected
case study – payload lifting – is introduced in section 2.
The drone model is discussed in section 3 of this paper,
with a particular focus on the propeller. In section 4, we
present the optimization problem, the simplicity of its
implementation in Modelon Impact and the associated
results. Finally, section 5 is a collection of advantages that
come with optimizing using OPTIMICA and Modelon
Impact.

2 Case Study – Payload lifting
2.1 Use Case
It is typical on construction sites – mostly when
approaching the end of the construction – to either keep a
crane operating for a longer period time to lift some minor
equipment or material, or to carry this payload by human
strength. While the former solution is often expensive, the
latter requires manpower and can affect physical health.
The use of drones to lift these small payloads
(Draganfly, 2022) is an economically attractive solution
which has a low impact on physical health.

Figure 1. Illustration of the load lifting use case.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5756

This paper focuses on a drone design aimed at a
repetitive task: small payload lifting – below 25 kg – from
ground to the top of a building.

2.2 Main Requirements
To match the use case presented in section 2.1, the main
requirements for the drone designs are related to the lifting
operation in terms of payload and endurance:

• Payload: The drone shall lift masses up to 25 kg
during its full operation.

• Endurance: The drone shall operate at least
150 climbs of at least 10 m height with 5 seconds
hovering – for the handling of the payload.

For this use case, the drone returns to ground without any
payload and thus with very little energy consumption.
Should the drone carry payload on the descent, the number
of climbs would be reduced inevitably.

3 From Drone Architecture to Model
This section details the drone architecture, technological
choices, the sizing problem formulation and discusses the
associated model.

3.1 Drone Architecture
Different architectural choices can be made depending on
the purpose and the mission. For multirotor drones, the
main choices are the number of arms and the number of
propellers per arms but also the materials and technologies
of the components.

As the main usage of such a drone is in urban area, it
was decided to select a fully electric drone design. Indeed,
electric motor emit less pollution – in terms of emissions,
smell, and noise – than the combustion ones. In the
presented work, a single architecture is considered for the
multirotor drone. The architecture is presented in Figure 2
and is composed of:

1. Four (4) fixed pitch propellers

2. Four (4) out-runner brushless motors

3. Four (4) electronic speed controllers (ESC) mainly
made from MOSFET inverters

4. One (1) battery based on Li-Ion cells

5. One (1) mechanical structure (frame) consisting of
four (4) arms and one (1) central body

Investigating variable architecture designs is let as
perspective to this work.

Figure 2. Multirotor drone architecture and components.

3.2 Discussion on the Drone Model Fidelity
As for physical systems, a simulation model is developed
for a given purpose. This purpose guides technological
choices on the model development, such as general
assumptions, the physical effects modeled, the level of
details, the smoothing, etc. These are all gathered within
the so-called model fidelity.

The purpose of the multirotor drone model for this
paper is to perform a component sizing and
simultaneously optimize the 1-D trajectory of the drone to
perform a well-defined task. From these two purposes, we
can extract a few technological choices.

Sizing purpose
Implications on model causality
When it comes to sizing a system based on a desired
trajectory – here, imposed by the optimization algorithm
– , it is often necessary to reverse the power chain. This is
also known as bicausality.

A performance simulation of the drone model would
typically require a known load at the propellers and would
compute the resulting speed of the drone, for a given
command. On the contrary, a sizing scenario would
provide both the load at the rotors and the drone speed.
These two variables define the required power output,
which can be propagated upstream on the power chain to
compute the require power at the power generation or
storage – here, the battery.

As the design validation would require a performance
simulation, the acausality of the Modelica language is
clearly a benefit to solve sizing problems. The sizing
solving requires propagating the power variables through
the component ports in one way or another – e.g. by
having flow and non-flow which product would lead to the
power or by adding the power to a connector.

Selection of model complexity
For cost reasons, we assume the drone will be assembled
using off-the-shelf components. The sizing problem thus
consists mainly of finding a good order of magnitude for
each component size. Therefore, physical effects to be
modeled should only be the dominant ones and their

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA58 56

implementation complexity could be quite low.
Consequently, scaling laws are used to design the
components and efficiencies are often used to assume
losses – instead of overloading the model with multiple
separate physical losses, e.g. each separate friction.

Optimization purpose
Most optimization algorithms rely on gradients to define
on which direction they should perform the next step. This
means that the variables of the model should, at least, be
continuous and derivable. A special effort is made in the
Modelica code to respect this constrain.

In addition, minimum, maximum and nominal values of
the design variables are provided to allow respectively to
bound and normalize the variables and equations – key for
optimization convergence.

Finally, dynamic optimization benefits from having
both an initial and a nominal trajectory that match the
specified requirements – without necessarily be optimal.
This is easily achieved by simulating first the drone
behavior with a smooth trajectory command. Here, the
acausality of the Modelica language becomes once more
convenient.

3.3 Drone Model – Focus on Propeller
The drone Modelica model serves two purposes:

1. It includes the scaling laws for all components to
allow their sizing.

2. It encodes the physics equations to model the flight
performance and power consumption.

The component sizing models used are scaling laws,
linear regressions of data sheet and surrogate models –
detailed by Budinger (2020). The physics equations are
well known equations from components and are presented
by Delbecq (2021). It is however relevant to present here
the propeller model, as a representative component of the
drone.

The propeller represents a key component in the drone
propulsion chain. Its performance can be expressed as a
function of two coefficients CT and CP, respectively
expressing thrust (1) and mechanical power (2) equations:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑇𝑇𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4 (1)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟 = 𝐶𝐶𝑃𝑃𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛3𝐷𝐷5 (2)

where ρair represents the air density in [kg/m3], n the
rotational speed in [rev/s] and D the propeller diameter in
[m].

While CT and CP are dimensionless, they are not
constant. These depend on further variables such as the
blade pitch p, the air Bulk Modulus K, the relative airspeed
V (normal to the rotor plane). It is here assumed that:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉) (3)

→ 𝐶𝐶𝑇𝑇 = 𝑓𝑓(𝐷𝐷, 𝑝𝑝, 𝜌𝜌, 𝐾𝐾, 𝑛𝑛, 𝑉𝑉)/(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2𝐷𝐷4) (4)

Performing a dimensional analysis on these equations
allows identifying a reduced set of dimensionless
variables that can define this equation. Note that
Buckingham’s theorem gives us the insight that these
dimensionless variables are in number of 3 (6 variables
and 3 units dimensions). The detailed dimensionless
analysis is available on request – please email the authors.
This gives us the following three dimensionless numbers:

• The pitch to diameter ratio: 𝛽𝛽 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝ℎ/𝐷𝐷.

• The advance ratio: 𝐽𝐽 = 𝑉𝑉/ (𝑛𝑛𝐷𝐷).

• The air compressibility indicator: 𝐵𝐵 = 𝐾𝐾/(𝜌𝜌𝑛𝑛2𝐷𝐷2)

The analysis on CP reveals the same dimensionless
numbers. As both the thrust and power coefficients are
surface responses, these are better fitted with polynomial
regression rather than with power regression – as
discussed in (Sanchez 2017).

A sensitivity study was conducted in (Budinger 2020)
on the three dimensionless numbers within the domain of
usage of the drone. It showed that both CT and CP are quite
insensitive to the air compressibility indicator, within this
domain. Finally, the fitting revealed the following
equations:

 𝐶𝐶𝑇𝑇 ≈ 0.02791 − 0.06543𝐽𝐽 − 0.23504𝐽𝐽2

+ 0.02104𝐽𝐽3 + 0.11867𝛽𝛽
+ 0.27334𝛽𝛽2 − 0.28852𝛽𝛽3

+ 0.18677𝛽𝛽𝐽𝐽2

(5)

𝐶𝐶𝑃𝑃 ≈ 0.01813 − 0.00343𝐽𝐽 − 0.12350𝐽𝐽2

+ 0.06218𝛽𝛽 + 0.35712𝛽𝛽2

− 0.23774𝛽𝛽3 + 0.07549𝛽𝛽𝐽𝐽
(6)

The surface responses and the corresponding datasets are
presented below for both coefficients.

Figure 3. Surface response of CT and reference dataset (dots).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 5956

Figure 4. Surface response of CP and reference dataset (dots).

This gives us the performance model of the propeller, that
needs to be completed by its sizing model. For the
propeller, that parameters of interest are the mass and the
inertia. These are computed based on scaling laws. The
propeller mass Mprop is found to be proportional to the
cube of its diameter. From the mass, the inertia Iprop can
be computed. Note that scaling laws require similar
reference data to scale on to.

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Mref(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟)2
 (7)

Iprop = Mprop(𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/2)3/3 (8)

From this complete set of equations, we get the propeller
sizing and associated performance – impacted by the
sizing. Similar models are developed for all components
and the following parts of the paper will focus on the
general sizing problem formulation and optimization
problem, rather than detailing each component. As a
reminder, these equations are available in (Budinger
2020) and the propeller model fidelity is representative of
the rest of the model. If of interest, a more detailed
Modelica performance model is presented by Podlaski
(2020).

3.4 Sizing Problem Formulation
The main sizing scenarios, design drivers and models for
vertical flight applications of multirotor drones are
summarized in Figure 5. Such applications consist of
three sizing scenarios to be considered in the design
problem that are:

1. the hovering flight with the advance ratio of the
propeller J = 0 – as the air speed V is null.

2. the takeoff phase which requires maximum power to
accelerate the drone with an increasing J – increasing
air speed V.

3. the climb phase with a constant vertical speed and
thus constant J.

Figure 5. Design drivers and equations of the multirotor drone.

The overall sizing model has been adapted from (Delbecq
2021) which is tailored for vertical flight applications of
multirotor drones, and should be consulted for a more
detailed sizing formulation.

4 Optimization Problem
4.1 Optimization Problem Formulation
The simultaneous trajectory and design optimization
problem can be formulated as a mass optimization
problem including the trajectory variables (motor torque
command and final time):

minimize 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
with respect to 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑘𝑘𝑁𝑁𝑁𝑁, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚, 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚,𝑠𝑠𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠

𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠, 𝑘𝑘𝑏𝑏𝑏𝑏𝑚𝑚,𝑣𝑣𝑝𝑝𝑣𝑣𝑚𝑚𝑏𝑏𝑣𝑣𝑟𝑟, 𝑘𝑘𝑏𝑏𝑝𝑝𝑚𝑚, 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡), 𝑎𝑎𝑚𝑚0, 𝑡𝑡𝑟𝑟
subject to 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚0 − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0

𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑚𝑚 − 𝐸𝐸𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0
𝑈𝑈𝑚𝑚𝑝𝑝𝑚𝑚 − 𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 0
𝑈𝑈𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑈𝑈𝑏𝑏𝑏𝑏𝑚𝑚 ≤ 0

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 0
𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚(𝑡𝑡) − 𝑀𝑀𝑚𝑚𝑝𝑝𝑚𝑚,𝑚𝑚𝑏𝑏𝑚𝑚 ≤ 0

ℎ − 𝑧𝑧(𝑡𝑡𝑟𝑟) ≤ 0
�̇�𝑧(𝑡𝑡𝑟𝑟) = 0

(9)

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA60 56

The objective is to minimize the weight of the vehicle for
the defined mission with respect to design variables such
as the propeller pitch βpro or the nominal motor torque
Tmot. The design has to respect some constraints to respect
the technological constraints of components such as motor
maximum electromagnetic torque Tmot,max as well as
others to respect voltages consistency in the power train
(Umot ≤ UESC and UESC ≤ Ubat). Some consistency
constraints are used to solve multidisciplinary couplings
as suggested by Delbecq (2020) (Emission ≤ Ebat and
MTOWf ≤ MTOW). This also requests to add normalized
design variables such as kMTOW and kbat,mass.

Instead of minimizing the drone weight, minimizing the
energy could have been used as objective. Unfortunately,
within the time given to investigate this solution, this
seemed to be a less robust option. Minimizing the mass is
a conscious problem simplification – a lower mass means
less energy to carry it. The authors acknowledge that
minimizing the energy might lead to a slightly different
optimum to this problem.

4.2 Optimica Implementation
Modelon Impact (Coïc 2020-b) is a state of the art, cloud-
based modeling and simulation environment, relying on
open standards such as Modelica, FMI and Python.
Modelica models can be developed within Modelon
Impact by composition (drag and drop and connect) of
existing models from available Modelica libraries, or by
writing Modelica code within the code editor. Modelon
Impact compiler, Optimica Compiler Toolkit (OCT),
compiles the models – either in steady-state or dynamic
simulation mode.

As many engineering problems can be cast as
optimization problems – including optimal control,
minimum time problems, optimal design, and model
calibration – Modelon Impact compiler supports
optimization of dynamic and steady state models. This is
achieved relying on the extension of Modelica language
for optimization: OPTIMICA (Åkesson 2008).

As the OPTIMICA language extends the Modelica
language, it is convenient to opt for a similar approach
when formulating an OPTIMICA optimization problem.
Thus, the optimization model could be built as follow:

1. Create an optimization class and provide modifiers
to set up the objective and time constraints.

2. Extend the Modelica model and provide modifiers to
fix or relax parameters as well as minimum,
maximum and nominal values.

3. Optionally add more variables and equations.

4. Add the constraints of the optimization problem.

The Optimica code of the drone optimization is listed in
Listing 1.

Listing 1. OPTIMICA Code of the Drone Optimization
optimization SizingAndTrajectoryOptim (
 objective=M_total(startTime),
 finalTime(free=true, min=1, max=10, start=5))
// Minimize the total drone mass and relax the final simulation
time within bounds.

 import Modelica.Units.SI.DimensionlessRatio;

 extends Drone(
 x(start = 0, fixed=true),
 xp(start = 0, fixed=true),
 a(start = 0, fixed=true),
 beta(free=true, min=0.3, max=0.6, start=0.4),
 D(free=true, min=0, max=1),
 T_nom_mot(free=true, min=0),
 K_mot(free=true, min=0),
 M_bat(free=true, min=0, max=100),
 P_esc(free=true, min=0),
 k_D(free=true, min=0.01, max=1, start=0.05),
 D_out_arm(free=true, min=0.001, max=1));
// Inherit the Modelica drone model, fix initial conditions and relax
design parameters within bounds.

 Modelica.Blocks.Interfaces.RealInput Traj_in;
// Add input to the trajectory to optimize

 DimensionlessRatio n_norm(start=1, fixed=true)=n/n_hover;

 DimensionlessRatio N_norm(min=-1, max=1,
nominal=0.8)=ND/ND_max;

 DimensionlessRatio T_hov_norm(min=0, max=1,
nominal=0.6) = T_hover/T_nom_mot;

 DimensionlessRatio T_norm(min=-1, max=1, nominal=0.95) =
T/T_max_mot;

 DimensionlessRatio U_norm(min=0, max=1, nominal=0.5) =
U_mot/V_bat;

 DimensionlessRatio P_norm(min=0, max=1, nominal=0.5) =
P_mot/P_esc;

 DimensionlessRatio E_norm(min=0, max=1, nominal=0.25) =
E_drone/E_bat;

 DimensionlessRatio sigma_norm(min=-1, max=1,
nominal=0.15) = sigma/sigma_max;
// Create additional normalized variables with bounds as inequality
constraints

equation

 T=Traj_in; // Bind drone trajectory with optimization input

constraint

 x(finalTime) = 10;

 xp(finalTime) = 0;

 a(finalTime) = 0;
// Define end time constraints.

end SizingAndTrahjectoryOptim;

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6156

It appears that the OPTIMICA language is straightforward
for a person used to the Modelica language – which itself
is quite straightforward for many engineers. This way, the
threshold to develop an optimization model is minimized.

4.3 Optimization Results
The result of the optimization problem – solving both the
design (component pre-sizing) and trajectory optimization
problems – are shown in dashed lines, for some variables,
in Figure 6.

The solution of the sole trajectory optimization – with
a separate sizing – is presented in full lines. This highlights
the differences in trajectories when sizing is added as part
of the optimization. When combining both, the optimizer
could assess that it was more energy efficient to increase
the size of the propeller, reducing its rotational speed,
allow a smoother trajectory and compensating by a bigger
battery – that can allow the relevant number of ascents.

After scaling to 150 climbs (endurance requirement),
the optimum resulted in a drone weighting about 45 kg
(without payload) with a battery contributing to more than
half of the weight (about 27 kg). A drone designer might
find interesting to investigate an easily replaceable battery
pack in order to reduce the endurance requirement –
leading to potentially more convenient (and safer) drones
to operate.

These results were obtained with similar orders of
magnitude with both Modelon Impact and a comparative
solution based on FAST-OAD (David 2021).

5 The Benefits of Modelon Impact
There are several advantages in using Modelon Impact
compared to a separate optimization with a Python
package or in a dedicated optimization platform such as

OpenMDAO, even if relying on a FMU for the plant
model.

A key advantage of using Modelon Impact is that it
relies on its OPTIMICA compiler and the OPTIMCA
language, as mentioned previous, extends the Modelica
language. Hence, a fair amount of the benefits listed below
are Modelica features serving the optimization purposes.

5.1 Solving Initialization Problem
The Modelica language can deal with both Initial Value
Problem (IVP) and Boundary Value Problem (BVP) for
the model initialization. In the former case, the user
provides the initial values for every state. In the latter, the
number of independent initial values should match the
number of states but is not necessarily their initial values.

Therefore, Modelon Impact compiler solves an initial
problem – different from the dynamic problem – to resolve
the BVP. In this process, the compiler can solve linear and
non-linear systems, which is often not tolerated out of the
box with a different solution. For example, in the Python
optimization, it was necessary to adapt the code, define
iteration variables (coefficient factors) and residuals
(equations that should tend to zero) to solve these non-
linear problems.

5.2 Acausality – One Model Several Purposes
A second advantage is that the Modelica language is
acausal. This way, defining a Drone model based on the
equations of the physics makes it useful for several use
cases: position, speed or torque command. In our example,
we want to optimize the torque trajectory while sizing the
drone. Nevertheless, it is convenient to provide the
optimizer a start trajectory not too far from our
constraints. This is easily achieved by simulating the same

Figure 6. Comparison of resulting trajectories for the trajectory optimization with and without the sizing.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA62 56

model, providing a position trajectory which not
optimized at all but matching our requirements.

5.3 Normalization for Convergence
Modelica models and FMUs usually use variables
expressed in SI units. Variable values may therefore differ
by several orders in magnitude (Coïc 2020-a). A typical
example is thermodynamic models containing pressures,
temperatures and mass flows. Such large differences in
scales may have a severe deteriorating effect on the
performance of numerical algorithms and may in some
cases even lead to the algorithm failing. In order to relieve
the user from the burden of manually scaling variables,
Modelica offers the nominal attribute, which can be used
to automatically scale a model. Modelon Impact compiler
can use these nominal attributes to scale the variables (and
thus objective) of the optimization problem. In addition, it
is possible to provide a reference trajectory for scaling at
every time step of the simulation.

5.4 Derivatives at Hand of the Optimization
Finally, the Optimica language, being an extension of
Modelica, has access to all the equations of the model and
can process these. Thus, the compiler automatically
computes all the derivatives it requires to secure a fast and
robust convergence to a global optimum of the problem.

5.5 Simpler, Faster and More Robust
Modelon Impact solution also proved to be much simpler
than the python with FAST-OAD approach. The Modelica
code wasn’t written differently for performance
simulation and for optimization purposes as it was the case
for its Python version. Also, the optimization problem
formulation in OPTIMICA language is very simply
expressed, as mentioned above (see Listing 1), and does
not diverge much from the Modelica language – which
makes it really easy for a Modelica developer to ramp up
on OPTIMICA

The same optimization problem was solved in Modelon
Impact and using FAST-OAD. For this optimization
problem that consists of 10 design variables, 7 inequality
and 1 equality constraint, Modelon Impact could solve the
problem in less than 30 seconds while it took more than
2 minutes to FAST-OAD. This can be explained by the
different level of information on the model the optimizer
has – by default FAST-OAD does not have access to the
internal derivatives of the model.

Finally, and this might sound unfortunately qualitative,
the Modelon Impact solution was more robust, more
straightforward to converge. While it took several hours
of debugging to get the Python code running and
optimization solving with FAST-OAD, it appeared to
work almost directly with Modelon Impact. In all
transparency, the first attempt did not involve
normalization of the added variables for inequality

constraints, and it failed to converge. Normalizing solved
the issue.

5.6 The Benefits of FAST-OAD
There are many applications for which higher model
fidelities are required. FAST-OAD supports easy coupling
with Computational Flow Dynamics or Finite Element
models. FAST-OAD scales also very well with the
number of models involved in the optimization process.
Therefore, the authors value both technologies and,
indeed, some authors are major contributors to FAST-
OAD development.

6 Conclusion
This paper uses a multi-rotor drone (pre-)sizing and
trajectory optimization to illustrate the needs for solving
such a problem. The model fidelity is not necessarily the
highest but constrains on the numerical aspect of the code
are highlighted – e.g. acausality, smoothness, etc. The
models shall be “optimization-friendly”. The propeller
model is detailed to emphasize the level of details
sufficient for such a purpose.

In a second step, the optimization problem has been
expressed, first analytically and then in OPTIMICA
language – supported by Modelon Impact. The solving of
the problem is achieved, and the benefit of this solution
are discussed, in a generic way, and in comparison with
another implementation using Python and FAST-OAD.

The results proved that solving the sizing problem in
combination with the trajectory optimization leads to a
better design, compared to solving both problems
sequentially. All industries could benefit from optimizing
systems – that are meant to exist – in a more complete
manner, e.g. including dynamic optimization of
trajectories.

As a perspective of work, we could show how the same
model serve the purpose of Model Predictive Control of
the multi-rotor drone to actually reach the optimum
trajectory it was designed for. Another axis of
improvement could be to use one of Modelon’s 6 degrees
of freedom drone model to be able to include
environmental constraints – such as a wind field – in the
overall design optimization problem.

References
Åkesson Johan (2008). “Optimica—An Extension of Modelica

Supporting Dynamic Optimization”. In 6th International
Modelica Conference, Bielefeld, Germany, 2008.

Budinger Marc, Aurélien Reysset, Aitor Ochotorena and Scott
Delbecq (2020). “Scaling laws and similarity models for the
preliminary design of multirotor drones”. In Aerospace
Science and Technology, 98. 1-15. ISSN 1270-9638.

Coïc Clément, Moritz Hübel and Matthis Thorade (2020).
“Enhanced Steady-State in Modelon Jet Propulsion Library,
an Enabler for Industrial Design Workflows”. In American
Modelica Conference 2020, Boulder, Colorado, USA.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6356

Coïc Clément, Johan Andreasson, Anand Pitchaikani, Johan
Åkesson and Hemanth Sattenapalli (2020). “Collaborative
Development and Simulation of an Aircraft Hydraulic
Actuator Model”. In Asian Modelica Conference 2020,
Tokyo,Japan.

David Christophe, Scott Delbecq, Sébastien Defoort, Peter
Schmollgruber, Emmanuel Benard, Valérie Pommier-
Budinger (2021). “From FAST to FAST-OAD: An open
source framework for rapid Overall Aircraft Design”. In 10th
EASN Virtual International Conference on Innovation in
Aviation & Space to the Satisfaction of the European Citizens.

Delbecq Scott, Marc Budinger, Clément Coïc, and Nathalie
Bartoli (2021). “Trajectory and design optimization of
multirotor drones with system simulation”. In American
Institute of Aeronautics and Astronautics, Inc, SciTech,
DOI: 10.2514/6.2021-0211.

Delbecq Scott, Marc Budinger and Aurélien Reysset (2020).
“Benchmarking of monolithic MDO formulations and
derivative computation techniques using OpenMDAO”. In
Structural and Multidisciplinary Optimization, Vol. 62,
No. 2, 2020, pp. 645–666. DOI: 10.1007/s00158-020-02521-
7.

Draganfly website – heavy lift, accessed in August 2022.
https://draganfly.com/heavy-lift/

Podlaski Megan, Luigi Vanfretti, Hamed Nademi and Hao
Chang (2020). “UAV Dynamics and Electric Power Systems
Modeling and Visualization using Modelica and FMI”. In
American Modelica Conference 2020

Sanchez Florian (2017). “Génération de modèles analytiques
pour la conception préliminaire de systèmes multi-physiques
: application à la thermique des actionneurs et des systèmes
électriques embarqués”. Doctoral’s thesis. Université
Toulouse 3 Paul Sabatier, France. URL: http://thesesups.ups-
tlse.fr/3555/1/2017TOU30081.pdf.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA64 64

Applying Design of Experiments Method for the Verification of a
Hydropower System

Le Nam Hai Pham1 Dietmar Winkler2

1University of South-Eastern Norway, Porsgrunn, Norway, Le.Pham@usn.no
2Department of Electrical Engineering, IT and Cybernetics, University of South-Eastern Norway, Porsgrunn, Norway,

dietmar.winkler@usn.no

Abstract
Today, renewable energy plays a major role in the tran-
sition towards environment-friendly energy sources. Hy-
dropower is one of the most important renewable energy
sources leading to the high interest of research associated
with the development of new technologies. These tech-
nologies aim to examine and predict the characteristics
and behaviour of hydropower plants during different oper-
ating conditions and are often associated with simulation
models. In the progress of creating accurate simulation
models, it is necessary to have an organised and systematic
method to verify and optimise the model with the help of
available data. This is where the “Design of Experiments”
(DoE) principles should be applied.

A simulation model of a reference hydropower plant lo-
cated in Seljord municipality in the south-east of Norway
was implemented using the modelling language Modelica.
All parts of this hydropower plant model were tuned ac-
cording to DoE procedure with the purpose of design ver-
ification and optimisation. The results of the experiments
are a complete and optimised hydropower plant model that
gives reliable simulation results.
Design of Experiments, DoE, hydropower, modelling,
Modelica, OpenHPL

1 Introduction
In the contemporary society, there is no denying that
the use of renewable energy is an absolute must when it
comes to trying to reduce the greenhouse effect and slow
down climate change. Among renewable energy sources,
hydropower has existed for hundreds of years and, de-
pending on the geographical location, represents a large
amount of the current electricity supply. According to
IEA (International Energy Agency 2022), hydropower is
remaining the largest renewable source of electricity, gen-
erating more than all other renewable technologies com-
bined. Because of the large capability of producing elec-
tricity along with the clean, reliable and flexible advan-
tages, research of hydropower is of the highest interest and
is often associated with the development of new technolo-
gies. In the era of modelling and simulation, a hydropower
plant simulation model is often built with the purpose of
examining and predicting the characteristic and behaviour

of real plant during the different operating conditions.
In Norway, around 98 percent of all power generation

comes from hydropower and Norway is one of the world’s
largest electricity producer per capita (Energy 2016).

In cooperation with the company Skagerak Kraft AS,
based in Porsgrunn, Norway, a hydropower system model
of one of their power plants located in the south-east of
Norway, Grunnåi power plant, was implemented in order
to study the dynamic characteristics of the plant. In the
progress of building the simulation model, it is necessary
to have an organised and systematic method to verify and
optimise the model with the help of as much measurement
data as possible.

In the recent past, many researchers have investigated
the methodology of verification and validation of simula-
tion models (Sargent 2008; Kleijnen 1995). Most of them
introduced basic approaches to help research community
grasp the concept, but lack realistic cases or focus in a par-
ticular simulation model. To overcome this shortcoming,
this paper contributes a methodology of verification and
validation, focusing to real-world hydropower plant simu-
lation model. This is where the “Design of Experiments”
(DoE) principles should be applied to perform a series of
experiments on the simulation model.

To build such model and implement different experi-
ments of model verification, the object-oriented modelling
language Modelica (Modelica Association 2021) is used
to model the complex physical power plant. The com-
mercial modelling and simulation environment Dymola
was used. In addition, OpenHPL (OpenSimHub 2022),
an open-source hydropower library that consists of hy-
dropower unit models, was used for building the complete
hydropower system.

2 Design of Experiment
The “Design of Experiments” (DoE) is a systematic,
efficient methodology that can be effective for general
problem-solving, as well as for improving or optimising
product design and manufacturing processes. DoE in-
cludes a series of applied statistics tools used to system-
atically classify and quantify cause-and effect relations
between variables and outputs in the studied process or
phenomenon, which may result the finding the settings
and conditions under which the process becomes opti-

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6564

mised (Jankovic, Chaudhary, and Goia 2021).
In DoE, a linear regression method, which is a linear

approach for modelling the relationship between a scalar
response and one or more explanatory variables, is broadly
applied (Brownlee 2016). A general multiple linear re-
gression model with one response and i repressor variables
is expressed as:

y = β0 +β1x1 +β2x2 + · · ·+βixi (1)

where:

y Response variable

x j, j=0,1,...,i Input variables or input factors

β j, j=0,1,...,i Regression coefficients or parameters, repre-
sents expected change in response variable per unit
change in input variable

2.1 Basic Principles of DoE

2.1.1 Randomisation

Randomisation is the practice of using chance methods to
assign treatments to experimental units in a manner that
protects against unintended influences on the assignments.
A treatment, which is one specific combination of several
factors at specific levels, are applied to a set of experi-
mental units to plan an experiment to ensure valid statis-
tical analysis is possible. Randomisation allows exper-
imenters to safeguard against unforeseeable and uncon-
trollable variables which might have mask relationships
between the factors and the response (Emily Divis et al.
2020).

2.1.2 Replication

Replication means repetitions of the entire basic experi-
ment or a portion of it under one or more conditions. In
other words, it is a process of running the experimental
trials in a random sequence. Replication is very princi-
pal because it adds information about the reliability of the
conclusions or estimates to be drawn from the data. There-
fore, it has two important properties.

These are:

• Allowing the experimenter to gain the experimental
error estimation

• Permitting the experimenter to gain a more precise
estimate of the factor/interaction effect

It is noted that if the number of replicates is equal to
one or unity, the conclusions of the effect of the factors
or interactions cannot be given. Therefore, it is necessary
to have a sufficient number of replicates. (Antony 2014;
eMathZone 2014)

2.1.3 Blocking
Blocking is a method of eliminating the effects of extrane-
ous variation according to noise factors, thereby improv-
ing the efficiency of experimental designs (Antony 2014).
In the statistical theory of the design of experiments, the
experimental units in groups or blocks, which are similar
to one other, are arranged. Generally, a blocking factor is
a source of variability that is not of primary interest of the
experimental designs (eMathZone 2014). Experimenters
can collect data under the same experimental conditions
in the same block and determine the variability between
blocks from the experimental error, which increases the
precision of the experiments (Antony 2014).

2.2 DoE steps
This section describes the steps to perform experiments
on a hydropower plant simulation model which then are
later implemented. To gain good results of experiments,
the key steps of DoE can put into categories.

These are:

1. Objective recognition: A clear statement of the
problem or the objectives for an experiment can be
given to gain the understanding of what needs to be
done. The statement should contain a specific and
measurable objective that can optimise the practical
value. Clearly defined goals or objectives of the ex-
periments are important and influence the later steps
of experiments. (Antony 2014)

2. Selection of response: The selection of a suitable re-
sponse for the experiment is important to the success
of the experiment. The response, or output of exper-
iment which are potentially influenced by the factors
and their respective levels, should be certain to pro-
vide the useful information about the process under
study. (MoreSteam 2022)

3. Selection of process variables: This stage is dedi-
cated to consider the factors or the inputs to the pro-
cess that may influence the performance of a process
or system. It is crucial for the experimental proce-
dure since if the important factors are left out of the
experiment, then the response of the experiment will
not be accurate and useful for any later improvement
action. (Antony 2014)

4. Performing the experiment: In this stage, the
planned experiments are carried out and conducted.
When running the experiment, it is vital to monitor
the process carefully to ensure that everything is be-
ing done correctly according to the sequence of ex-
periments.

5. Interpreting experimental results and conclu-
sions: After the experiment is completed, the data
gathered are interpreted. The experimental results
carry out the practical conclusions of the experiments
and recommendation for the next actions.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA66 64

3 Grunnåi Power Plant
In the year 2006, a hydropower station was completed in
the Seljord municipality, Telemark county, in the south-
east of Norway. At this time, there was only one turbine
installed, turbine 1 (T1), with the capacity of 15.1MW
and an annual production of 55GWh. In 2019, to reduce
the loss of energy production due to unused flood waters
(over-spill), an extra turbine, turbine 2 (T2), with the ca-
pacity of 10.2MW was installed and increased the annual
production to 66GWh. The two turbines are five-nozzle
Pelton turbines that are regulated by the water level of the
intake reservoir and associated inflow. Table 1 shows the
general information of these turbines.

Table 1. The turbines nominal operation values, Grunnåi Power
Plant.

Turbine 1 (T1) Pelton type

Property Value Unit

Number of Nozzles 5 -
Nominal Head 385 m
Nominal flow rate 4.42 m3/s
Nominal Power 15 MW
Turbine Efficiency 90 %

Turbine 2 (T2) Pelton type

Number of Nozzles 5 -
Nominal Head 389 m
Nominal flow rate 3.08 m3/s
Nominal Power 10.76 MW
Turbine Efficiency 91 %

3.1 Geometry Data
The watercourse of hydropower station primarily runs
through Seljord municipality and its outlet is from the east
side of the valley at Vallaråi river in Flatdal. The water
reservoir is Slåkåvatn lake on the Lifjell mountain. The
reservoir is located 387 meters above the power plant and
the rated discharged is at 7.5m3/s. A rough sketch of the
structure of Grunnåi power plant is depicted in Figure 1.

The water from reservoir is conveyed to the power plant
by the waterway system containing different geometry
parts (lengths, slope, etc.) consisting of two blasted tun-
nels, “1” and “2” that then connected with a steel pipe
conduit “3”. This conduit is branched into two separate
paths “4+5” and “6+7” into two respective turbines, “T1”
and “T2”. Water discharged from two turbines through
the respective outlet pipe “8” and “9” and flows to the
downstream, Vallaråi river through outlet system contain-
ing outlet tunnel “10” connected with culvert “11”. The
flow rate of water transfer through these units are com-
monly influenced by roughness parameter, however, this
parameter is neglected in this paper. The general informa-
tion of the waterway system’s elements can be seen in Ta-
ble 2.

Table 2. The waterway geometry

Element Index Length[m] Diameter [m]

Tunnel_1 1 203 5.8
Tunnel_2 2 1455 5.8
Conduit 3 30 1.2
IntakeT1_1 4 20 1.2
Intake T1_2 5 1.5 0.8
Intake T2_1 6 25 1.2
Intake T2_2 7 1.5 0.6
Outlet T1 8 1.5 0.8
Outlet T2 9 1.5 0.6
Tunnel_3 10 460 3
Culvert 11 58 2

3.2 Measurement Data
The measurement data of the Grunnåi hydropower plant
has been retrieved using various monitoring systems and
are taken from a several sensors installed at the power
plant. There are hundreds of measured quantities from
monitoring systems such as temperature, water pressure,
etc. It is noted that not all measured quantities are relevant
for the creation of simulation model. Relevant quantities,
which provide the information for simulation model ex-
periments, are water pressure, flow rate, generated power
of turbines and nozzles opening values. According to
these quantity names, the measurement name of available
sensors in the power plant are extracted. Table 3 shows the
available signals that were used for the simulation model.
It consists of two data sets, dataset 1 and dataset 2, which
have been recorded at different points in time at different
operation conditions of the hydropower plant. This means
they have to be handled individually and have no cross-
correlations but at the same time are close enough in time
to not be affected by any structural changes due to ageing
or maintenance done to the system. The measurement po-
sitions based on the element number of Figure 1 are shown
in Table 2.

Table 3. Measured quantities

Index Name Unit Dataset

7 Water flow rate m3/s 17 Water pressure bar
T1 Generated power MW 2T1 5 Nozzles opening value %

For better understanding of the provided measurement
data that will be used in simulation model, two datasets
are shown in Figure 2 and Figure 3.

Note, due to the tolerances of the sensors used in the
system being negligibly small compared to deviations
caused by model inaccuracies, the measured values from
Table 3 are considered as accurate and valid values and
can serve as reference values against the results from sim-

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6764

Slåkåvatn
lake

T2

1

2

3

6 7

T14 5

9

8
Vallaråi river

10 11

Intake 387m

217.15m

4.2m

-1m0m

Figure 1. Overview of the structure of the Grunnåi Power Plant

Figure 2. Measurement values of the dataset 1

Figure 3. Measurement values of the dataset 2

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA68 64

ulation model.

4 Hydropower Modelling
In this section, a general description of the hydropower
library OpenHPL is given as well the model of the Grunnåi
power plant built based on this library is presented.

4.1 OpenHPL

OpenHPL is an open-source hydropower library that con-
sists of hydropower unit models and is modelled using
Modelica (Modelica Association 2021) and is available
at (OpenSimHub 2022). This library is used to model
hydropower systems of different complexity and connect
them with models from other libraries, e.g., with models
of the power system or other power generating sources.
In this library, different waterway components of the hy-
dropower system are described by both mass and mo-
mentum balance, and could include compressible/incom-
pressible water. The mathematical models and methods
used for the components in this library can be illustrated
specifically in (Vytvytskyi 2019). An overview of the
structure of the hydropower library, OpenHPL is shown
in Figure 4. For this simulation model of the Grunnåi hy-
dropower plant the version 1.5.0 of OpenHPL has been
used.

Figure 4. Screenshot of the structure of OpenHPL

4.2 Simple Model

According to general information of Grunnåi power plant
given in Table 1, as well as the rough sketch of the struc-
ture as shown in Figure 1, a simple model of the hy-
dropower plant was creating using the parameters settings
from the Grunnåi power system. Figure 5 shows the sim-
ple model constructed for the simulation analysis.

5 Applying DoE for Simple Model
Verification

This section describes the application of DoE to verify the
simple model built based on the basic principles of DoE
and the sequence of experiments is given.

5.1 Basic Principle
To verify the simple model, it is necessary to divide the
simple model into parts and verify, optimise each part.
This is where the blocking principle is applied. Accord-
ing to the structure of the hydropower plant (see Figure 1)
and the available measurement data in Table 3, blocking
divides the simple model into two main parts, the inlet
system and the turbine system according to the two data
sets. The inlet system consists of the elements from reser-
voir to water inlet pipe into the turbines (element “1” to
“7” in Table 2) and the turbine system includes two turbine
blocks with the main subject is “T1” according to the mea-
surement data in Table 3 that is only available for “T1”.
In the situation that there are several data sets, the prin-
ciple of repetition and randomisation will be applied to
iteratively divided parts according to the blocking princi-
ple under different operating scenarios of the hydropower
plant. This is done in order to gain the experimental er-
ror estimation as well as confirm the final conclusion of
experiments.

5.2 Sequence of Experiments
The verification experiments of the simple model have a
sequence and cause-and-effect relationship. This means
that the results of the previous part of model will directly
affect the next part of the model. Therefore, setting up
the experimental sequence plays an important role in the
verification process of the entire simulation model. The
inlet system will be simulated first to ensure the accuracy
of flow rate into two turbines according to the relationship
between flow rate and the generated power of the turbine.
The parameters of the components in this part model are
set according to the geometry data in Table 2, so these val-
ues are considered constant and cannot be adjusted. How-
ever, there is one parameter that deserves attention, which
is the branching part of the water inlet (element “4” to “7”)
shown in the simple model as the parallel connection be-
tween the inlet branch of “T1” and “T2”. The branching
part will be experimented on using different connection
components of the OpenHPL in order to find the most op-
timal component that represents the branching. After veri-
fying the inlet system, the next step is to verify the turbine
model. Since the turbine parameters are set up according
to the provided general information in Table 3, the fac-
tors, five nozzles opening values that have main influence
on the turbine model are investigated. At the beginning a
Trial Run of the simple model is used where the average
of the five nozzles vane opening values serves as an input
signal to turbine model. This method needs to be veri-
fied again after having an effective inlet system. In case

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 6964

IntakeT2_1

IntakeT1_1 Fitting2

Fitting3

IntakeT1_2

IntakeT2_2

Tunnel_2

Conduit

Tunnel_1

Fitting1

reservoir

OutletT1

OutletT2

Tunnel_3

Downstream1

C
ulvert

fitting

data
Turbine_1

TurbineGVO

Turbine_2

TurbineGVO

T2_Nozzles_value

k=0.01

T1_Nozzles_vane
c,s,v

Figure 5. Simple model of hydropower plant modelled in Dymola using OpenHPL

that this method is not effective, a mathematical model
between the generated power and the input signal, main
vane opening value using Equation 1 will be constructed
and the mathematical model will be verified by use of the
simple model.

6 Experiments
The series of experiments on the simple model are imple-
mented in order to verify and optimise the design. The
sequence of experiments on the simple model is shown
in Figure 6.

Trial Run First, a simulation trial was run to verify the
accuracy of the built hydropower plant model by compar-
ing the simulation results with the reference values in Ta-
ble 3. This simulation trial is called Trial Run for which
dataset 2 was used. The input of the simulation model is
the average opening value of five nozzles of T1 and the ref-
erence value of simulation results is the generated power
of T1. Figure 7 shows the simulation results of the model
comparing with the measurement values. T2 was deacti-
vated for this Trial Run.

According to Figure 7, there is a difference between
the simulation and measurement values which proves the
inaccuracy of the simple model of the hydropower plant.
This simple model needs to be verified and optimised
which will now be shown following the DoE philosophy.

6.1 Experiment 1
Objectives recognition The objective of experiment is
to determine the optimal design of branching part in the
inlet system.

Description There are three different branching designs
using components in OpenHPL library for the simulation
model.

Design 1: Using basic connection same as the Trial Run.

This type of connection represents for water flow and
contains the information about the pressure in the
connector and mass flow rate that flows through the
connector.

Design 2: Using “Fitting” component.

The “Fitting” component is modelled based on the
functions defining the pressure drop due to different
constrictions in the pipes. There are specify types
of “Fitting” including: Square, Tapered, Rounded,
Sharp , and Thick. These types require the diameter
of the first and second pipes at the input and output
of “Fitting”, which are used to calculate the pressure
drop in the various fitting.

Design 3: Using “BendPipe” component.

The “BendPipe” component means the bend in pipes.
This bend causes a pressure drop in the water flow
caused by the loss coefficient parameter which can be
obtained from manufacture’s information or guessed
from the experimenters.

The information of the methodology and relevant equa-
tions modelling these components used in three designs is
available in (Vytvytskyi 2019).

Selection of response The response of interest for the
experiment is the water pressure at the inlet of T2.

Selection of process variables There are two variables
in this experiment:

• The value of flow rate at inlet of T2 in dataset 1

• Three designs

Performing the experiment The experiment of De-
sign 3 is implemented as Figure 8 and another designs,
Design 1 and Design 2 are implemented similarly. The

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA70 64

Experiment 1 Experiment 2

Experiment 3

Figure 6. Sequence of experiments for simple model

Figure 7. Comparison of the model simulation results and measurement values against change in averages of nozzle opening values

blocks named “T1” and “T2” are used to represent tur-
bines without using turbine block models in the experi-
ment since these models have not been verified. These
blocks are used to input the measured flow values from the
block “Data”. In Design 2, the parameter of component
“Fitting” representing for the branching point is set up ac-
cording to the diameter of “Conduit” and “IntakeT1_1”
that have the same diameter. The type of Square is used
for this component. In Design 3, the parameter of com-
ponent “BendPipe” is setup according to the diameter of
“Conduit” and “IntakeT1_1”. The authors in this paper
recommended the loss coefficient parameter as 10 accord-
ing to the lack of information from the manufacture.

Interpreting experimental results and conclusions
The experimental results are collected and plotted in Fig-
ure 9.

According to Figure 9, the water pressure at inlet T2

varies due to the change of flow rate and it can be eas-
ily seen that the Design 3 shows the simulation results are
nearly same as the measurement values as reference values
in this experiment. Therefore, Design 3 with “bendPipe”
component is considered the most optimal for branching
part representation and also the model design of inlet sys-
tem. The Design 3 will be used for the following experi-
ments.

6.2 Experiment 2
Objectives recognition The objective of experiment is
to verify the method of using average of five nozzles open-
ing value as the input signal of the T1 model.

Selection of response The response of interest for the
experiment is the generated power of T1.

Selection of process variables The process variables in
this experiment are five nozzles opening values of T1 in

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 7164

data

Data
c,s,v

firstOrder

PT1

T=1 s

T2

firstOrder1

PT1

T=1 s

IntakeT2

IntakeT1 Fitting2

Fitting3

IntakeT1_1

IntakeT2_1

Tunnel_2

Conduit

Tunnel_1

Fitting1

reservoir

T1

be
nd
Pi
pe

Figure 8. Experiment 1, simulation model

Figure 9. Experiment 1, comparison of the results of three model designs and measurement values against change in flow rate

dataset 2.

Performing the experiment The experiment is imple-
mented same as Figure 5 with the inlet system as Design 3
in experiment 1 is used.

Interpreting experimental results and conclusions
The experimental results are collected and plotted in Fig-
ure 10.

According to the results showing Figure 10, it illustrates
the method of using average of five nozzles opening value
as the input signal of the T1 model does not yield the de-
sired improvement between the simulation results and the
reference value for generated power of T1 when compared
with the simulation results of the Trial Run. Therefore, the
method of using average of 5 nozzles opening value is not
suitable for the input values of the turbine model.

6.3 Experiment 3
Objectives recognition The following are the objec-
tives of the experiment:

• to develop a mathematical model which relates gen-
erated power of turbine and the input signal value of
turbine block, the main vane opening value

• to verify the mathematical model built on the simple
model

Selection of response The response of interest for the
experiment is the generated power of T1.

Selection of process variables The variables of this ex-
periment are following

• The main vane opening value

• The generated power of T1

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA72 64

Figure 10. Experiment 2, comparison of the results of simulation model and measurement values against change in average of
nozzles opening values

Performing the experiment The model to implement
this experiment is same as that of Experiment 2. The im-
plementation of building the equation showing the rela-
tionship between the input value of the turbine model, the
main vane opening value, and the generated power of T1
can be performed in three steps:

Step 1: Run the simulation with the main vane opening
value from 0% to 100% and obtain the generated
power of T1 values.

Step 2: Export the data from simulation under CSV
(Comma-seperated values) format and import this
file into Python (Welcome to Python.org 2022) en-
vironment via pandas (pandas - Python Data Analy-
sis Library 2022) to analysis the data through Python
commands.

Step 3: Apply sklearn.linear_model.LinearRegression
package (sklearn.linear_model.LinearRegression
2022) to create the mathematical model under the
format of Equation 1.

According to these steps, the mathematical model (Equa-
tion 2) showing the relationship between generated power
and main vane opening value is constructed. The gen-
erated power of T1 in dataset 2 is used to calculate the
opening value of main vane. Accordingly, this mathemat-
ical model is built in Dymola/Modelica as the component
named “Uv_T1” and applied in the simple model as Fig-
ure 11.

Interpreting experimental results and conclusions
Mathematical model:

y =−0.003+5.57 ·10−8x (2)

Where:

y Main vane opening value [%]

x Generated power of turbine 1 [MW]

According to the results showing Figure 12, it can be
easily seen that the experimental and measurement val-
ues of generated power of T1 are similar. Therefore, the
mathematical equation of generated power and main vane
opening value is accurate.

7 Conclusions
The paper presents a simple hydropower plant model set
up on Dymola/Modelica based on OpenHPL which is a
specialised library to model a real hydropower plant. In
the process of setting up a simulation model according to
the elements in the library, the design model needs to be
verified and optimised to suit the actual structure of a hy-
dropower plant. This makes it difficult to choose the right
design elements to optimise for the model. DoE is an
distinct method in order to simplify the optimal solution
for simulation model design based on experiments for the
model. The principles and experimental steps of DoE are
outlined and applied to a typical hydropower plant simu-
lation model. With the available measurement data each
portion of the model was simulated in turn to verify and
optimise the design as well as eliminate noise factors. The
result of the series of experiments and the completed sim-
ulation model will be used for research and further study
cases.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 7364

data

IntakeT2_1

IntakeT1_1 Fitting2

Fitting3

IntakeT1_2

IntakeT2_2

Tunnel_2

Conduit

Tunnel_1

Fitting1

reservoir

be
nd
Pi
pe

OutletT1

OutletT2

Tunnel_3

Downstream1

C
ulvert

fitting

Turbine_1

TurbineGVO

Turbine_2

TurbineGVO

T2_Nozzles_value

k=0.01

Uv_T1

k=1e6

gainDataset1
c,s,v

Figure 11. Experiment 3, simulation model

Figure 12. Experiment 3, comparison of the results of simulation model and measurement values against change in calculated
main vane opening value

In practical situations of many complex systems with
complicated chain of parts, these systems are commonly
simulated by different simulation tools or software under
vast amount data of operational data. However, the ver-
ification and optimisation of these simulation models al-
ways play an important role in studying characteristic of
systems. This paper contributed to a simple solution to
verify and optimise various type of simulation models in
the future.

Acknowledgements
This paper is the result of a Master’s Thesis of Le Nam
Hai Pham, with the title “Application of Design of Exper-
iments for the Verification of a Hydropower Plant”.

References
Antony, Jiju (2014). Design of Experiments for Engineers and

Scientists. 2nd edition. Elsevier Insights. London: Elsevier.
208 pp. ISBN: 978-0-08-099417-8. URL: https://doi.org/10.
1016/C2012-0-03558-2.

Brownlee, Jason (2016-03-24). Linear Regression for Ma-
chine Learning. Machine Learning Mastery. URL: https : / /
machinelearningmastery.com/linear-regression-for-machine-
learning/ (visited on 2022-04-12).

eMathZone (2014-11-02). Basic Principles of Experimental De-
signs | eMathZone. URL: https : / / www . emathzone . com /
tutorials /basic-statistics /basic-principles-of-experimental-
designs.html (visited on 2022-04-12).

Emily Divis et al. (2020-08-31). Randomization: A Core Prin-
ciple of DOE. STAT COE-Report-03-2020. STAT Center of
Excellence. URL: https : / /www.afit . edu / stat / statcoe_files /
1001AFIT2020ENS09115%201001divi%202-2.pdf.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA74 64

Energy, Ministry of Petroleum and (2016-05). Renewable energy
production in Norway. en-GB. Redaksjonellartikkel. Pub-
lisher: regjeringen.no. URL: https : / / www. regjeringen . no /
en / topics / energy / renewable - energy / renewable - energy -
production-in-norway/id2343462/ (visited on 2022-08-08).

International Energy Agency (2022). Hydropower Analysis.
IEA. URL: https://www.iea.org/reports/hydropower (visited
on 2022-04-12).

Jankovic, Aleksandar, Gaurav Chaudhary, and Francesco Goia
(2021-11). “Designing the Design of Experiments (DOE) An
Investigation on the Influence of Different Factorial Designs
on the Characterization of Complex Systems”. In: Energy and
Buildings 250, p. 111298. ISSN: 03787788. DOI: 10.1016/j.
enbuild.2021.111298.

Kleijnen, Jack PC (1995). “Verification and validation of simu-
lation models”. In: European journal of operational research
82.1, pp. 145–162.

Modelica Association (2021-02). Modelica a Unified Object-
Oriented Language for Systems Modeling. Language Speci-
fication Version 3.5. Linköping: Modelica Association. URL:
https://specification.modelica.org.

MoreSteam (2022). Design of Experiments (DOE) Tutorial.
URL: https : / / www. moresteam . com / toolbox / design - of -
experiments.cfm (visited on 2022-04-12).

OpenSimHub (2022-04-01). OpenHPL. OpenSimHub. URL:
https : / / github . com / OpenSimHub / OpenHPL (visited on
2022-04-12).

pandas - Python Data Analysis Library (2022). URL: https : / /
pandas.pydata.org/ (visited on 2022-05-05).

Sargent, Robert G (2008). “Verification and validation of simula-
tion models”. In: 2008 Winter Simulation Conference. IEEE,
pp. 157–169.

sklearn.linear_model.LinearRegression (2022). en. URL: https://
scikit-learn/stable/modules/generated/sklearn.linear_model.
LinearRegression.html (visited on 2022-08-13).

Vytvytskyi, Liubomyr (2019). “Dynamics and model analysis of
hydropower systems”. In: Doctoral dissertations at the Uni-
versity of South-Eastern Norway; 37.

Welcome to Python.org (2022). en. URL: https://www.python.
org/ (visited on 2022-07-28).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 7575

Using Multi-Physics Simulation to Estimate Energy Flexibility for
Local Demand Response Strategies in a Microgrid

Iker Landa del Barrio1,* Julen Cestero1 Marco Quartulli1 Igor G. Olaizola1 Naiara Aginako2

Juan José Ugartemendia3

1Department of Data Intelligence for Energy and Industrial Processes, Vicomtech, Donostia-San Sebastián, Gipuzkoa,
Spain

2Department of Computer Science and Artificial Intelligence, Faculty of Informatics, University of the Basque
Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain

3Department of Systems Engineering and Control, Faculty of Engineering of Gipuzkoa, University of the Basque
Country (UPV/EHU), Faculty of Informatics, Donostia-San Sebastián, Gipuzkoa, Spain

*Corresponding author, email: ilanda@vicomtech.org

Abstract
This work discusses the development of a multi-physics
simulated model, in the frame of the decarbonization and
energy efficiency objectives of the European Commission.
Its central feature is the interconnection, through a micro-
grid, of a distributed PV installation and of several elec-
tric dispatchable loads, thus powering a Collective Self-
Consumption network. The simulator presented within
this document aims to serve as a technological enabler for
the design and testing of On-Site DR strategies, which ac-
tuate directly on the connection status of the loads, be-
fore their deployment on the target, real-world systems.
The simulator supports the design and validation of such
strategies by generating realistic simulated data of certain
loads that present monitoring difficulties, taking into ac-
count online, real external weather conditions. All the el-
ements described and modeled in the current work belong
to a real-world installation, which is a university campus
—ESTIA, Bidart, France— composed by several build-
ings with DER.
Keywords: Demand Response (DR), Distributed Energy
Resources (DER), data generation, energy demand disag-
gregation, microgrids, multi-physics simulator

1 Introduction
The non-dispatchable nature of renewable sources usually
leads to remarkable differences between generation and
demand profiles in microgrids and general power grids.
These differences must be solved somehow, as a uninter-
ruptible balance between generation and demand must be
ensured at all times, mainly by the EMS ruling these grids.
Historically, the most common solution to this issue is to
use storage systems in order to shift the time of consump-
tion of the energy generated in the grid, giving the system
a limited, yet dispatchable, energy source (Jurasz et al.,
2020), (Angenendt et al., 2019), (Marańda, 2019).

The renewable generation cannot be largely modified,
since these power generators are mostly dependant of

weather conditions, which present a stochastic behaviour.
The use of short-term energy buffering in storage systems
is studied by Marańda et al. (Marańda, 2019), for its ap-
plication into different scenarios. The figure 1 depicts the
typical generation and demand profiles —PP(t) and PL(t)
respectively— of residential PV installations. In the case
depicted in (b) chart, the storage is considered to cause the
buffering of the energy surplus for later use. Following the
notation proposed by Marańda et al., E−

B is the amount of
energy absorbed by the storage, which is consumed by the
system when needed. Contrarily, the supply of previously
stored energy into the system is referred as E+

B .

[a]

[b]

Figure 1. Typical generation and demand profiles of residential
applications with (b) and without (a) energy storage ((Marańda,
2019))

It is previewed that the deployment of smart systems
and the Internet of Things (IoT) will largely contribute
to the success of DR programs, since this technology is
previewed to allow the remote control of electrical loads
(Pop et al., 2018). Duman et al. (Duman et al.) and
Romanchenko et al. (Romanchenko et al., 2021) ana-
lyze the impact of DR actions achieved through deviations

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA76 75

of the set-point of the so-called smart thermostats. Li et
al. present an optimal management through DR actions
of multi-stakeholder systems in low-carbon communities,
considering the carbon emission restrictions through the
carbon tax (Li and Yu, 2020).

However, all the mentioned techniques are designed to
influence the demand on a macro-scale, or aggregating
several end-users. Micro-scale is not the most common
aim of the existing DR programs. To overcome the en-
gagement issues of residential DR, some EMSs are de-
signed to shape the performance of the loads, with pre-
vious agreement of the user, actuating directly over them
to follow more precisely the actions given by the man-
agement strategies. These strategies usually generate a
schedule for each day and for each load of the system,
synchronizing them to reach certain energy and money
saving objectives (Vahedipour-Dahraie et al., 2020). The
EMS used for these cases computes certain parameters of
the loads like ToU (Time of Use), power, etc. Also some
user defined parameters, in order to respect the comfort
of the users and evaluate the available energy resources to
manage the demand levels, scheduling the loads’ activa-
tion (Mohsenian-Rad et al.).

Nolan et al. point the main barriers and challenges for
the deployment of DR programs in their study, giving a
notorious importance to the modeling of the physical char-
acteristics of such strategies (Nolan and O’Malley). An-
other main barrier in this study is the lack of data regard-
ing the disaggregated consumption of some dispatchable
loads. This is mainly due to the fact that the energy con-
sumption is usually measured at the installations point of
interconnection (POI) with the general grid, while each
loads consumption is usually left unmonitored. This is a
crucial information for EMS algorithms that need to eval-
uate at any time the amount of power available to whether
increase or decrease the demand levels in order to produce
the required DR actions. This is explored by Azari et al.
focusing onto the data uncertainty of several DR programs
(Azari et al.).Through the use of the simulator presented
within this document, we aim to produce the missing data
heuristically, thus overcoming the lack of data mentioned
before, which is considered a barrier to deploy some DR
programs successfully.

In summary, the state of the art in the available litera-
ture mainly refers to macro-scale DR strategies evaluated
on off-line, fixed weather conditions. A clear gap in this
state of the art refers therefore to generic simulation envi-
ronments, taking into account online weather conditions,
aimed at the benchmarking and optimization of generic
algorithms for DR, focusing in particular on micro-scale,
direct load management. The present contribution has
the ambition to address this gap in the literature, by
quantitatively validating the performance of the approach
presented here, demonstrating the value of micro-scale,
online-weather, simulation-based benchmarking and tun-
ing environments for direct load management strategies in
a specific real-world case. Furthermore, since the ther-

mal devices are external conditions dependant, the present
simulation environment allows to evaluate dynamically
the energy flexibility that can be achieved through devi-
ations of the temperature set-point.

2 Description of the Scenario
This study analyses the case of a certain university campus
and its electric system interconnecting energy generators
and loads. The École d’ingénieurs ESTIA is located in a
technology campus called Technopole Izarbel (see figure
2), located on the outskirts of Bidart, near Biarritz and
Bayonne, in South-West France.

Figure 2. Technopole Izarbel technology campus.

Considering the structure of a microgrid, we can con-
ceive the campus electric system as a microgrid, since it
has its own generation and consumption systems, both
connected by a distribution network. There are several
buildings (called ESTIA1, 2 and 3) that need to be sup-
plied with electric power. These three buildings are fore-
seen to have their own generation too; so, at some point,
the power generated by their generators could be shared
between each other, when the EMS of any of the build-
ings measures a generation surplus, forming a CSC net-
work in the campus. Following the economic constraint
mentioned before, the energy is preferentially used by an-
other building of the CSC network instead of injecting it
to the general grid. However, we must note that the energy
transactions between buildings is also taxed in the French
system, since these transactions use the general grid’s dis-
tribution network to share the energy between buildings.
Thus, the energy should be used preferentially by the
building where the energy has been generated. However,
these taxes belong to a special category —conceived for
CSC networks— with reduced taxes, avoiding to constrain
the profitability of these CSC networks by its users.

2.1 Energy production
The described campus production relies on a local renew-
able energy source, as mentioned before, which is a PV
installation. This installation is composed, at the moment
of this study, by 32 PV modules with a maximum rated
power of 175 W per module. We could not be provided
with further information regarding the characteristics of
the certain model of the mentioned modules, inasmuch as
this model is not available in the market anymore. Thus,
we have used a commercially available PV model that is
due to be installed in the future on the campus and whose

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 7775

technical characteristics are provided by the manufacturer.
This model is TARKA 120 VSMS 300 which presents a
maximum power — on NOCT conditions — of 244.9 W.

2.2 Energy demand
ESTIA does not have a very different energy demand pro-
file from an office building, which is composed of typi-
cal electrical devices like space heating, lighting etc. The
buildings’ installation is not equipped with smart meters
for each load type, just a general meter at the grid POI and
another one dedicated to PV generation. Therefore, it is
impossible to find, by measuring methods, which fraction
of the total energy demand is requested from each load
group (lighting, air conditioning, etc.).

Figure 3. ESTIA’s mean power demand profiles with shaded
standard deviations’ range.

It must be noted that the space heating and cooling of
this campus are powered by electric air-source heat pumps
and not by a natural gas-based system. Thus, as men-
tioned, both heating and cooling systems rely on electric
energy to produce the required heat transfer rates to main-
tain the indoor air between certain comfort ranges.

The datasets used in this project were obtained from
ESTIA1 building’s general smart meter, regarding the
general demand of the building during two separated pe-
riods, with a step time of 1 hour. More specifically, the
winter dataset comprises data from January and February
2020, while the summer dataset regards July, August and
September 2020. As seen in figure 3, we have computed
the average value and standard deviation of each hour,
making the distinction between summer and winter peri-
ods. Also, we must note that due to the limited available
data we will only focus on the modeling of ESTIA1 build-
ing.

2.2.1 Dispatchable loads

From a DR perspective, we must identify the loads that
could be disconnected from the supply at certain mo-
ments, in order to shape the behavior of the building’s gen-
eral demand without disrupting the users’ comfort. The
so-called dispatchable loads are those that, when required,
can totally or partially reduce or increase their energy de-
mand.

In the case of ESTIA1, two loads have been identified
as the candidates to perform the DR actions, due to its
large power demand and controllability. These loads are:

HVAC, water heating system and an electric car battery
(BT) charger.

Load Type Power [kW] ToU [h]
HVAC 15 Variable

Electric Car BT Charger 11 3
Water Heating System 1.2 Variable

Table 1. Dispatchable loads’ power and ToU.

The ToU of the BT charger is variable between differ-
ent car models, depending on their BT type and capacity.
Also, the charging process of the BTs does not usually
have a constant power profile, but again, a constant pro-
file has been used for simplification matters. Instead, the
BTs are usually charged with a constant current profile,
followed by a constant voltage charge once the BT volt-
age has reached the set voltage. So, we have assumed an
indicative ToU of 3 h and a constant charging power of 11
kW, this one provided by ESTIA.

As we can see in table 1, the ToU of the HVAC sys-
tem is denoted as variable. This is because the behaviour
of these systems depends on the thermal losses of the
building, which also depend on the external temperature,
a stochastic variable. The control of the heating systems is
typically a thermostatic ON/OFF control system with hys-
teresis thresholding, whose actuation will also vary along
with the thermal losses of each day. Furthermore, their
thermal contribution varies along with external tempera-
ture too. Besides, the HVAC system relies on an air-source
heat pump to whether heat or cool the space. Due to this
heat recovery from the exterior, its electric consumption is
external air temperature dependant, with a maximum con-
sumption at 15 kW.

3 Modeling of the energy systems
In the present project, we have developed a simulated
model of the energy system described in the previous
section. The model has been generated using Open-
Modelica, an open source simulated environment, mainly
powered by the Modelica modeling language, also using
the libraries Buildings (Wetter, 2009), PhotoVoltaics (Br-
kic et al., 2019), and OpenModelica native PVSystems
(OpenModelica, 2021). The model, once generated, is
subjected to different external conditions (solar irradia-
tion, external air temperature and wind speed), in order
to design and test the DR strategies.

3.1 PV generation
The PV generation is estimated by its own model sepa-
rated from the main model, which includes the major part
of the energy system of the campus, with the aim of light-
ening the execution of the main model. This simulated
model regarding the PV installation is shown in figure 4.
In this model, we are simulating the production of a single
module connected to the 400 V side microgrid of the cam-
pus via an ideal DC/DC converter, as seen in the diagram.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA78 75

The PV module block computes two inputs to calculate
the electrical power produced by them, which are solar
irradiance and cell temperature. Solar irradiance is pro-
vided by local weather station, while cell temperature is
determined computing both external air temperature and
wind speed, also provided by local weather station. The
cell temperature calculation follows the model presented
by Duffie and Beckman in (John A. Duffie, 2013), which
is the most accurate model of the analysis made by Yang
et al. in (Yang et al., 2019) and shown in the equation 1:

Tc = Tair +
G

GNOCT
· 9.5

5.7+3.8 ·Vwind
·

TcNOCT

TaNOCT

·
(

1− ηc

τα

) (1)

where Tc is cell temperature [◦C], G is irradiance
[Wm2], GNOCT is irradiance at NOCT conditions —
Nominal Operating Cell Temperature— [Wm2], Vwind is
wind speed [ms], TcNOCT and TaNOCT are cell and ambient
temperatures respectively at NOCT conditions [ºC], ηc is
the conversion efficiency of the PV module and τα is the
product of transmittance-absorbance. The value of these
parameters, for the PV module used in the simulator, is
shown in table 3 of the Appendix.

Figure 4. Block diagram of the PV generation model

Once Tc is determined, the PV module block is fed with
this data —in Kelvin— and the irradiance from the me-
teoData dataset. The irradiance is limited to a defined
range —[0, 1500]— previous to the connection with the
PV module, in order to avoid measurement errors, which,
in the case of negative values, could cause an error in
the electric section. Then, the PV module block injects
an electric current into the circuit depending not only on
the mentioned inputs but on the voltage on its terminals
too. Thus, we are using a mpTracker, along with a power
sensor, aiming to find the Maximum Power Point (MPP)
at any time, which changes along with the weather con-
ditions. The MPP is a certain voltage value for each
weather state, therefore the controller aims to track this
value through the whole voltage range. Even though there
are many ways to produce this tracking, the tracker used
in this model is based on the widely used Perturb and Ob-
serve technique (Putri et al., 2015).

3.2 Microgrid structure
The electric section is the one in charge of simulating the
main loads of the system and, additionally, the energy sup-
ply of these loads. This energy supply comes from two
different and compatible sources. On the one hand, the mi-
crogrid has a distributed energy source with the PV mod-
ules and, on the other hand, the system’s energy supply
also relies on a POI with the general electric grid. We as-
sume that the energy can flow in both directions of this
POI, whether demanding energy from the grid or injecting
the surplus of the PV generation, when necessary. Both
sources and the whole electric section are displayed in de-
tail on the figure 5.

Figure 5. Block diagram of the electric section of the model

Due to computational matters PV production is simu-
lated in a separated model, as explained in previous sec-
tion. Therefore, we use the results obtained in the mi-
crogrid side of the PV installation model into the general
model of the installation. Since we are using the same
voltage —400 V— in the mentioned microgrid side of the
PV model and the microgrid of the general model, we can
just use a current source fed with the obtained data. This is
achieved through a .txt file that is generated using Python
and the combiTimeTable Modelica block, which is able to
read such file.

The actual electric system uses 50 Hz alternated current
(AC), and the power converters required for an AC system
normally work at a rate of 22 kHZ, or higher. Also, the
iteration frequency of the simulation is recommended to
be set 10 times bigger than the highest frequency of the
system, which would suppose to work with a time step
of TSIM = 4.54 ·10−6 s. This fact results in an unpractical
high computational cost when simulating the system in the
order of days, weeks or months, as desired for this study.

Since the analysis of the dynamics of the system is not
the aim of this study, the simulated microgrid has been set
as a direct current (DC) circuit, allowing to set a time step
as high as 15 s. Thus, the results obtained by the simulator
regard the steady state of the system, which is fully valid
at the context of this study.

We have selected a voltage of 400 V, being this value
the typical RMS voltage value of the European three-
phase grid connection, and assuming that ESTIA is con-
nected to the general grid using this connection type.
Based on the fixed voltage of the microgrid, each load
has been modeled using a fixed resistor (equivalent to the
nominal power consumption of the loads) connected to the

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 7975

DC circuit and it is activated or deactivated using an open-
ing or closing switch, depending on the case. The value of
each equivalent resistor has been obtained combining the
Ohm’s Law and the electric power calculation, getting as
result equation 2:

R =
V
I
=

V 2

P
(2)

where V is constant voltage [V], R is resistance [Ω], I
is constant current [A], and P is electric power [W].

We are representing the consumption of all the loads
taken into account in this study, which are: the dispatch-
able loads shown in table 1 —with two HVAC systems
due to its use in two different spaces—, and a fixed resistor
representing resting fixed consumption, whose calculation
is defined next.

As it might be seen in figure 3, the demand average
curve never crosses a certain lower threshold. This can be
clearly seen at nights, where the demand is closer to this
threshold. This lower threshold in the demand can be due
to certain parasitic loads that are not switched off during
nights or weekends, when the building is empty. We in-
cluded a fixed resistor to simulate this effect, equivalent
to this fixed consumption, computing the average value of
the time where the building is unused —from 19 to 6 on
weekdays and the 24 hours of weekends and holidays—.
We use the same expression as for the rest of the loads to
calculate the equivalent resistor (equation 2).

3.3 Physical environment of the loads
As mentioned previously, we have considered three load
types. Between them, the two heaters consume electric
energy to convert it into thermal energy, with the differ-
ence that the HVAC relies on a heat recovery system to
leverage the thermal energy contained in the external air.
Contrarily, the BT charger consumes electric energy from
the circuit to subsequently inject it into the car’s BT, af-
ter converting and adapting the electric supply to certain
conditions. We have considered the charger as a constant
power consumption that can be switched on and off when
needed, so, it can be modeled with a fixed resistor con-
trolled by a switch to model the dispatchable consump-
tion.

In order to model the control strategy of the heating sys-
tems, we have used the so-called hysteresis thresholding.
This control technique switches the controlled thermal de-
vices on and off, aiming to keep the indoor temperature
inside a defined range that can be set according to the
user’s preferences. This type of control avoids a continu-
ous intermittent switching on and off by setting a temper-
ature range sufficiently wide that allows the temperature
to increase or decrease before switching the system again.
Thus, the temperature of the plant will cycle between the
hysteresis upper and lower limits, ideally never surpass-
ing them. This, in addition to avoiding a continuous and

relatively fast switching, saves energy while it ensures the
users comfort requirements.

3.3.1 HVAC System’s environment

The HVAC system actuation depend on the external
weather conditions, both in terms of thermal contribution
and electric consumption. Therefore, we included the in-
fluence of the external air into the model. For the internal
section, we can find room1 and room2 block simulating
the internal air closed volume of two separated spaces of
the building, along with a heatCapacitor for each of them,
simulating the thermal capacitance of any object in con-
tact with the internal air. Each room block has been set
with a rough approximation of the volume of the spaces.
This approximation has been made using satellite images
to measure the side lengths of the building (65x32 m). Be-
sides, assuming a 3 m floor height, we got a volume of
6 560 m3 for each room.

Figure 6. HVAC system’s environment

There are three thermal sources associated to each
room. The upper heat source —ACROOMx— represents
the main source, which is the HVAC contribution of each
room, independent between them. The thermal contri-
bution is interpolated through the data presented in the
appendix tables 4 and 5, obtained from (Priarone et al.,
2020), which represent the performance of a certain air-
source heat pump. Thus, for each external temperature
we get a different thermal contribution, along with a elec-
tric consumption that is represented in the electric circuit
of the model, related to the Coefficient Of Performance
(COP) of the HVAC system. The second thermal contri-
bution is related to the irradiance coming from the sun,
which is scaled for each room, aiming to simulate different
orientations of the rooms. The third contribution comes
from the thermal losses with the exterior. Here we com-
pute the external temperature data in K, connecting it with
the thermal circuit through a thermalConductor block that
represents the thermal insulator of the building’s walls.
The value of the convection constant G has been assumed
taking a fixed amount of heat power losses (1000 W) at a
certain temperature difference with the exterior (3 K).

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA80 75

4 Environment Programming Inter-
face

The tool presented within this document aims to serve as
a intermediate step for any DR strategy previous to its de-
ployment into the actual installations. These strategies
are more likely to be developed in a programming lan-
guage different from Modelica, such as Python or simi-
lar. Therefore, we identified the need for a programming
infrastructure interconnecting the simulator with the men-
tioned strategies, which in the context of this project is
referred as the Environment Programming Interface, illus-
trated in the figure 7.

Figure 7. General flowchart of the Environment Programming
Interface

As seen in the flowchart of the interface, the start-
ing point is the online weather data obtained from local
weather station, which could be historical or forecasted
data, depending on the use of the simulator. The download
of this data is made by the script Weather Data Down-
loader, which stores it into a text file to be read by the
simulator through a combiTimeTable block. Once this data
is stored into the text file, the script Simulation Manager
controls the execution of the simulation models through
the API conceived for such use called OMPython (Gane-
son et al., 2012). Through this API we are able to send the
parameters of the simulation to OpenModelica, execute
the simulation, and store the results into a user defined
CSV file. This file is subsequently read by the Simulation
Manager, which extracts the estimated PV current to store
it into a text file. Finally, the DR strategies contained in
the EMS can be tested controlling the dispatchable loads
contained in the MainModel.

5 Results and Validation
The simulator presented within this document aim to repli-
cate the performance of the energy system analyzed in pre-
vious sections, in order to produce the missing data heuris-
tically. Since we were provided with data regarding this
installation, we can proceed to evaluate the correctness of
this modeling, interpreting the results of the simulations
while comparing them with real data of the energy instal-
lation.

5.1 PV production
In the case of the PV production we are conscious about
the differences between the estimation through simulation
and the reality of the installation, since we are neglecting
the losses due to: non-optimal orientation of the modules
on the one hand, and electric inefficiencies on the other
hand. Thus, a comparison with the real measured data is
crucial to adapt our model more precisely to reality.

The data we are using to validate this model comprises
PV production from the period between the 6th April and
24th May 2021. Having this dataset, we are executing a
simulation of the PV model using weather data relative to
the same period, to subsequently save the production data
into a CSV file.

The principal aim of this process is to tune a direct re-
lation between data obtained through simulation and real
measured data. This is needed to complete the PV simula-
tor since, as mentioned before, the simulator estimates the
maximum theoretical production for given weather con-
ditions, neglecting certain power losses. Thus, in order
to produce a direct relation, the methodology applied was
to tune a polynomial curve that relates the production ob-
tained through simulation and the real data.

Since the simulations are close to be continuous pro-
cesses, the data obtained from them are close to be con-
tinuous too. Thus, each line of the figure 8 represents the
trajectory of the PV production power through a whole
day. However, as it can be observed in the graph, the
related data present high levels of noise. As is evident
from figure 8a, sudden changes occur in the production,
since there are many lines with horizontal and vertical
sectors. This is due to changes in one variable that are
not reflected in the other one, which produce the sudden
changes in the trajectories. These changes in the produc-
tion data, whether measured or simulated, must be due to
differences in weather conditions too. The only weather
variable able to present such high changes is the irradia-
tion, which is highly affected by clouds. Furthermore, the
used weather data does not belong to the exact location of
the modules —it is measured by a station less than 10 km
away—, thus, the clouds would not cover the sunlight the
same way in both locations, causing the differences we
are observing here. Finally, we tried to fit a polynomial
curve to this noisy dataset, getting as result the orange
curve of the figure 8a. This approximation can be visu-
ally discarded, since it does not follow the pattern of the

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 8175

major part of the trajectories.

Figure 8. Correlation between estimated and measured PV pro-
duction. a: using the whole dataset unfiltered, b: selecting two
days with optimal production profiles

Considering the clouds a highly chaotic system, instead
of taking its influence into account to tune the polynomial
curve, we selected several optimal days where the produc-
tion curves are not distorted by the clouds. These opti-
mal production curves are shown in the figure 8b, where
we can see that they follow the pattern of the unfiltered
dataset mentioned before. Another fact to mention is that
every optimal day used in this graph presented the same
two distortion points —located around 3000 and 5000 W
respectively in the horizontal axis—, where there is a sud-
den change on each of them too. Nevertheless, due to its
repetition on different days’ patterns, we concluded that
they are the result of other objects’ or buildings’ shadows
into the PV modules or the irradiance sensors. Splitting
the dataset into morning (first half of each day) and after-
noon, and using a 4th degree polynomial fitting, we get the
curves presented in the figure 8b, which follow precisely
the mentioned pattern. These curves form a function de-
fined in two parts, which are related to morning and after-
noon periods and presented in the next expression:

f (x,h) = AP +BP(CP +DP · x)+EP(CP +DP · x)2

+FP(CP +DP · x)3 +GP(CP +DP · x)4 (3)

where x is the estimated theoretical maximum produc-
tion data, h is hour, and the constant parameters (AP,GP)
are defined in table 2.

It must be noted that the obtained function is tuned for
the period with available data, which is April and May
2021. For a more precise function we should use a dataset
comprising the production of the whole year, since the
sunlight pattern changes along with the period of the year.
However, the period used to tune this function is one of
the most productive periods of the year in this certain cli-
mate zone, due to high irradiation and cool temperatures.

Therefore, it is highly probable that any estimated value
at any other time of the year belongs to the range of this
function.

5.2 Dispatchable loads demand
One of the main objectives of the simulator was to repro-
duce the performance of certain electric loads. In this
section we aim to validate this simulated performance
through a comparison with real data. Anyway, as men-
tioned in previous sections, we cannot be provided with
actual data of the modeled loads. Instead, we are compar-
ing the data obtained through simulation with the general
demand data. Having in mind that the HVAC systems usu-
ally require the major fraction of the energy consumed in
buildings —around 67 % of the total energy demand of
buildings in France (Enerdata, 2021)—, we can assume
that its particular consumption is highly correlated with
the general demand measurements.

Figure 9. Estimated HVAC demand vs measured general de-
mand comparison

In this case, we are executing a simulation of the
general model of the installation, putting the focus onto
HVAC demand. In this simulation we are using weather
data of the same days as the general demand data of the
actual installation, which is previewed to present a sim-
ilar profile to the simulated data. Figure 9 displays this
comparison, showing the data relative to 10 certain days
between those with available data. These days belong to
the period where the consumption is the highest, which is
the winter period, as seen in figure 3. Furthermore, this pe-
riod comprises several weekdays and a whole weekend, in
order to simulate different scenarios. Also, we are adding
a threshold to the HVAC consumption data, which is the
average value of the consumption when the building is un-
used, as explained in section 3.2. As shown in figure 9, the
general demand profile is highly influenced by the particu-
lar demand of the HVAC, as expected. We have computed
the Pearson correlation coefficient between these two vari-
ables, giving as result ρSim,Real = 0.852, which represents
a very strong correlation.

6 Future work
The simulation environment presented within this docu-
ment aims to replicate the behavior of several loads of a
campus. As mentioned, these loads are external conditions
dependant as well as several constructive parameters such

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA82 75

P (Period) A B C D E F G
Morning 2249.243 2818.728 -1.00297 0.000289 -926.235 -640.06 858.615

Afternoon 2332.426 2557.087 -1.00294 0.000288 -341.671 -353.593 258.558

Table 2. Parameters of the equation 3

as the thermal envelope resistance, and the building ther-
mal capacitance. These parameters have been estimated
for this implementation of the simulator. However, future
work will deal with this issue, estimating these param-
eters through several on-site experiments which will in-
volve Design of Experiments procedures along with anal-
ysis of the resulting data. This calibration process will
be based on recent studies on this issue (Wüllhorst et al.,
2022).

The results of the present study will be embedded in a
OpenADR structure, estimating dynamically the energy
flexibility offer for the local consumption controller, or
Virtual End Note (VEN) using OpenADR terminology,
with the constraint of respecting users comfort in such
flexibility offer. The implementation of this structure is
an ongoing study which is linked to the present work.

7 Acknowledgements
The authors render thanks to ESTIA and Enargia for pro-
viding the data used in this work regarding electric power
demand and PV generation respectively.

The present work is part of EKATE, a project co-
financed by the European Regional Development Fund
(ERDF) through its Interreg Program of Spain-France-
Andorra (POCTEFA 2014-2020). More information is
available at https://www.ekate.eu/.

References
Georg Angenendt, Sebastian Zurmühlen, Fabian Rücker, Hen-

drik Axelsen, and Dirk Uwe Sauer. Optimization and op-
eration of integrated homes with photovoltaic battery energy
storage systems and power-to-heat coupling. Energy Conver-
sion and Management: X, 1(February):100005, 2019. ISSN
25901745. doi:10.1016/j.ecmx.2019.100005. URL https:
//doi.org/10.1016/j.ecmx.2019.100005.

Delaram Azari, Shahab Shariat Torbaghan, Hans Cappon,
Karel J. Keesman, Huub Rijnaarts, and Madeleine Gibescu.
Sustainable Energy, Grids and Networks. ISSN 23524677.
doi:10.1016/j.segan.2019.100262.

Jovan Brkic, Muaz Ceran, Mohamed Elmoghazy, Ramazan
Kavlak, Anton Haumer, and Christian Kral. Open Source
PhotoVoltaics Library for Systemic Investigations. Proceed-
ings of the 13th International Modelica Conference, Re-
gensburg, Germany, March 4–6, 2019, 157:41–50, 2019.
doi:10.3384/ecp1915741.

A. Can Duman, Hamza Salih Erden, Ömer Gönül, and Önder
Güler. Sustainable Cities and Society. ISSN 22106707.
doi:10.1016/j.scs.2020.102639.

Enerdata. France energy efficiency & trends
policies, 2021. URL https://www.
odyssee-mure.eu/publications/
efficiency-trends-policies-profiles/
france.html.

Anand Kalaiarasi Ganeson, Peter Fritzon, Olena Rogovchenko,
Adeel Asghar, Martin Sjölund, and Andreas Pfeiffer. An
openmodelica python interface and its use in pysimulator.
Proceedings of the 9th International MODELICA Confer-
ence, September 3-5, 2012, Munich, Germany, 76:537–548,
11 2012. doi:10.3384/ecp12076537.

William A. Beckman John A. Duffie. System Ther-
mal Calculations, chapter 10, pages 422–446. John
Wiley & Sons, Ltd, 2013. ISBN 9781118671603.
doi:https://doi.org/10.1002/9781118671603.ch10. URL
https://onlinelibrary.wiley.com/doi/abs/
10.1002/9781118671603.ch10.

J. Jurasz, F. A. Canales, A. Kies, M. Guezgouz, and
A. Beluco. A review on the complementarity of re-
newable energy sources: Concept, metrics, applica-
tion and future research directions. Solar Energy,
195(October 2019):703–724, 2020. ISSN 0038092X.
doi:10.1016/j.solener.2019.11.087. URL https://doi.
org/10.1016/j.solener.2019.11.087.

Longxi Li and Shiwei Yu. Optimal management of multi-
stakeholder distributed energy systems in low-carbon com-
munities considering demand response resources and carbon
tax. Sustainable Cities and Society, 61(April):102230,
2020. ISSN 22106707. doi:10.1016/j.scs.2020.102230.
URL https://doi.org/10.1016/j.scs.2020.
102230.

Witold Marańda. Analysis of self-consumption of energy from
grid-connected photovoltaic system for various load sce-
narios with short-term buffering. SN Applied Sciences, 1
(5):1–10, 2019. ISSN 2523-3963. doi:10.1007/s42452-
019-0432-5. URL https://doi.org/10.1007/
s42452-019-0432-5.

Amir Hamed Mohsenian-Rad, Vincent W.S. S Wong, Juri
Jatskevich, Robert Schober, and Alberto Leon-Garcia.
IEEE Transactions on Smart Grid. ISSN 19493053.
doi:10.1109/TSG.2010.2089069.

Sheila Nolan and Mark O’Malley. ISSN 03062619.

OpenModelica. OpenModelica PVSystems, 2021.
URL https://build.openmodelica.org/
Documentation/PVSystems.html.

Claudia Pop, Tudor Cioara, Marcel Antal, Ionut Anghel, Ioan
Salomie, and Massimo Bertoncini. Blockchain based decen-
tralized management of demand response programs in smart

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 8375

energy grids. Sensors (Switzerland), 18(1), 2018. ISSN
14248220. doi:10.3390/s18010162.

Antonella Priarone, Federico Silenzi, and Marco Fossa. Mod-
elling heat pumps with variable EER and COP in energy-
plus: A case study applied to ground source and heat recovery
heat pump systems. Energies, 13(4), 2020. ISSN 19961073.
doi:10.3390/en13040794.

Ratna Ika Putri, Sapto Wibowo, and Muhamad Rifa’i. Maximum
power point tracking for photovoltaic using incremental con-
ductance method. Energy Procedia, 68:22–30, 2015. ISSN
18766102. doi:10.1016/j.egypro.2015.03.228.

Dmytro Romanchenko, Emil Nyholm, Mikael Odenberger,
and Filip Johnsson. Impacts of demand response from
buildings and centralized thermal energy storage on dis-
trict heating systems. Sustainable Cities and Soci-
ety, 64(July 2020):102510, 2021. ISSN 22106707.
doi:10.1016/j.scs.2020.102510. URL https://doi.
org/10.1016/j.scs.2020.102510.

Mostafa Vahedipour-Dahraie, Homa Rashidizadeh-Kermani,
Amjad Anvari-Moghaddam, and Josep M. Guerrero. Stochas-
tic risk-constrained scheduling of renewable-powered au-
tonomous microgrids with demand response actions: Re-
liability and economic implications. IEEE Transactions
on Industry Applications, 56(2):1882–1895, 2020. ISSN
19399367. doi:10.1109/TIA.2019.2959549.

Michael Wetter. A modelica-based model library for building
energy and control systems. IBPSA 2009 - International
Building Performance Simulation Association 2009, (July):
652–659, 2009.

Fabian Wüllhorst, Thomas Storek, Philipp Mehrfeld, and Dirk
Müller. AixCaliBuHA: Automated calibration of building
and HVAC systems. Journal of Open Source Software, 7(72):
3861, 2022. ISSN 2475-9066. doi:10.21105/joss.03861.

Renata Lautert Yang, Gerson Máximo Tiepolo, Édwin Augusto
Tonolo, Jair Urbanetz, and Muriele Bester de Souza. Photo-
voltaic cell temperature estimation for a grid-connect photo-
voltaic systems in Curitiba. Brazilian Archives of Biology and
Technology, 62(specialissue):1–9, 2019. ISSN 16784324.
doi:10.1590/1678-4324-SMART-2019190016.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA84 75

8 Appendix

Parameter Value Unit
GNOCT 800 Wm2

TcNOCT 45 ◦C
TaNOCT 20 ◦C

ηc 0.4 -
τα 0.9 -

Table 3. TARKA 120 VSMS PV module’s characteristics.

External Air Temperature [oC] Cooling Capacity [W] Electric Consumption [W]
40 41 900 16 115
35 38 700 13 345
32 34 000 10 000
30 29 100 6929
28 23 600 4917
25 8100 2132

Table 4. Zephir CPAN-XHE3 HVAC system’s performance data
in cooling mode.

External Air Temperature [oC] Heating Capacity [W] Electric Consumption [W]
-5 49 700 11 044
0 49 500 12 375
2 46 200 11 268
7 37 100 8065
12 28 400 5462

Table 5. Zephir CPAN-XHE3 HVAC system’s performance data
in heating mode.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 8585

Power System Real-Time Simulation using Modelica and the FMI

Marcelo de Castro1 Giuseppe Laera1 Fernando Fachini1 Sergio A. Dorado-Rojas1 L. Vanfretti1

Shehab Ahmed2 Chetan Mishra3 Kevin D. Jones3 R. Matthew Gardner3

1ECSE Department, Rensselaer Polytechnic Institute, USA, {decasm3, laerag, fachif, dorads,
vanfrl}@rpi.edu

2King Abdullah University of Science and Technology, Saudi Arabia, shehab.ahmed@kaust.edu.sa
3Dominion Energy, USA, {chetan.mishra,kevin.d.jones,matthew.gardner}@dominionenergy.com

Abstract

Real-time digital simulation of power systems is
incredibly important for the testing of appropriate control
and protection strategies in the power system industry.
However, the case in which one single model can be
used in offline simulations and then for testing in real-
time studies is rare, if existing at all, due to the lack
of adequate standard development in the power industry
or the adoption of successful standards elsewhere. A
direct consequence of this lack of portability is the large
amount of time and resources spent in re-implementation
and validation of models for real-time simulation of power
grids. The present study proposes the usage of Modelica
and the FMI standard in order to address this issue. To
test the proposed approach, power system models are built
offline using the OpenIPSL library and are exported as
FMUs. Real-time simulations of two typical power system
models are performed using dSPACE SCALEXIO™,
proving that the proposed framework using Modelica and
the FMI can greatly contribute to the enhancement of
today’s current practice in the power industry by providing
portability and tractability between offline and real-time
power system models.

Keywords: Power Systems, Real-Time Digital Simulation,
Modelica, Functional Mockup Interface, FMI

1 Introduction

Modern power systems depend heavily on the ability
of engineers to anticipate outcomes that can harm the
grid’s safe operation (Kundur 2007; Chow and Sanchez-
Gasca 2020). Hence, it is obvious that Modeling and
Simulation (M&S) plays a crucial role in power system
studies. Consequently, engineers have developed several
strategies through the decades in order to be able to better
represent the electric grid in all its intrinsic complexity.
Real-time simulation is, of course, one of those strategies
and it is used as a last step before deploying one piece
of equipment in real-world conditions. In order to
understand the context that motivates this present study,
it is first necessary to understand the background on
simulation of power systems.

1.1 Background
Before digital simulation became possible, hardware-
based test beds in laboratories emulating equivalent
models of power apparatus were used since the late
1920s for representing the dynamic behavior of the bulk
power system in a smaller scale (Evans and Bergvall
1924). It was not until the 1950s, though, that larger
portions of the grid started being represented by analog
circuits, composed by amp-ops, capacitors, resistors and
inductors (Baldini and Fugill 1952). These transient
network analyzers were so important for the simulation of
power systems that even today their causality-orientation
principle used for modeling is the basis for most
conventional model development in the power industry.
Although the analog simulators required a myriad of
different solutions to properly mimic a real system, they
allowed to actively test the prototypes of actual controllers
using real measurements (Isaacs 2017).

With the development of modern computers, digital
simulation was born and it rapidly became a very attractive
approach for the analysis of power systems (Brown and
Tinney 1957; Stott 1979). After many years of important
advances in simulation technology, different parties could
program Dommel’s (1969) method for electromagnetic
transient (EMT) solutions into a DSP (Throckmorton and
Wozniak 1994), starting what is known today as real-time
digital simulation (Isaacs 2017). If compared to their
analog counterparts, these digital network analyzers were
cheaper to assemble, had greater flexibility in terms of
operation, allowed for tests to be prepared and conducted
more rapidly, and enabled better reproducibility of
experiments (Watson and Arrillaga 2003). Due to
these notable features, real-time simulators became very
common in the assessment of power systems’ dynamic
operation, control and protection testing.

Simulation under real-time, however, has several
limitations with respect to the solution method applied
to the system of equations. Simulation of a model in
real-time is done with fixed time step solvers due to
easier implementation when compared to variable time
step, especially considering the strict requirements related
to the tasks executed in each time-step. In the interval
of one time step, the simulator needs to read inputs,
if available, perform the numeric calculations and make
outputs available for measurement, as it is depicted in

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA86 85

Figure 1. When this is not achieved under one time
step, there is an overrun. As one may note, the time
step shown in Figure 1 might not be of importance
for human interaction. However, the purpose of real-
time simulation is to be able to prototype real-world
hardware-based controllers and protection devices and to
test their dynamic performance within a power system
model (Watson and Arrillaga 2003).

Figure 1. Tasks performed by real-time simulator within
the range of a time step.

1.2 Motivation and Objectives
After years of development, real-time digital simulators
have become a broadly adopted approach in the testing
and prototyping of solutions for power systems over the
last decade (Faruque et al. 2015). This is mainly due
to the increase in their capabilities for power network
representation and the possibility to conduct real-time
hardware-in-the-loop simulations. With exception of
solutions that adopt MATLAB/SIMULINK™ tools, such
as eMEGAsim™ from Opal-RT (OPAL-RT Technology
Inc. 2022), the traditional approach requires different
proprietary M&S software tools to be used for offline
M&S, control design, and real-time simulation. Due
to that, engineers have to spend a great amount of
time, effort, and resources being allocated in the re-
implementation and verification of models, having great
impacts on project’s costs and the reliability of simulation
results. Therefore, this clear lack of portability and
tractability can be a tremendous bottleneck that should be
urgently solved.

This paper, then, addresses this problem by proposing
the usage of standardized dynamical models using
the Modelica language and exploiting the Functional
Mockup Interface (FMI) standard (Modelica Association
Project 2021) to deploy these models into different
platforms. Offline power system models can be developed
using the Modelica language (Modelica Association
2022) and the Open-Instance Power System Library
(OpenIPSL) (Baudette et al. 2018), an open-source library
of power system models for stability studies using the
“phasor” representation. The OpenIPSL has a set of
models that are present in traditional proprietary software
tools used in the study of power systems, such as PSS/E™.
Moreover, as most Modelica tools implement the FMI
standard, the language becomes a strong candidate along
with Modelica-compliant software being the M&S tools in
which real-time models are configured. Furthermore, the
dSPACE SCALEXIO™ (dSPACE GmbH 2022) real-time
simulator usually employed in aviation and automobile

industries, has adopted the FMI standard, enabling it to
natively execute models exported as Functional Mockup
Units (FMUs).

1.3 Contributions
The contributions of this paper are twofold.
• The introduction and the assessment of a proposed

framework using Modelica language and the FMI
standard as means to address the portability and
tractability challenges that are common in power
system studies involving real-time simulation;

• The assessment of power system models assembled
with the OpenIPSL library, which were made
originally developed for offline simulation, in
a real-time execution environment, with minimal
modifications.

1.4 Paper Organization
The remainder of this paper is organized as follows:
Section 2 presents the methodology for offline to real-
time simulation proposed in this paper; Section 3
presents the example power systems used in this study;
Section 4 describes the laboratory setup for the real-time
simulations; Section 5 shows the measured results for the
different simulations; Section 6 provides the concluding
remarks of this paper.

2 Model Configuration Framework
The framework adopted in this paper to perform power
system modeling, offline and real-time simulations, can be
summarized into three steps. They are depicted in Figure
2 as a workflow, starting with the offline Modelica model
and resulting in the real-time simulation on a dSPACE
SCALEXIO™ real-time simulator.

2.1 Modelica Model Configuration
The first step, as shown in Figure 2, concerns the offline
power system network model. It is assembled in Modelica
and, in this study, the Dymola™ 2019 software is used
to make modifications on the model. The network
model is built using the OpenIPSL (Baudette et al.
2018), a library that has been under development during
the last decade (Bogodorova et al. 2013) and that has
shown potential for the study of power systems by the
means of offline simulations for dynamic performance
assessment(Baudette et al. 2018; Winkler 2017). For real-
time simulation, the original Modelica model needs to be
slightly modified to have outputs added, to specify the
quantities to be measured during simulation. In addition,
simulation parameters, such as solver tolerance and total
simulated time, also need to be specified. These tasks
can be easily done by using Modelica Standard Library’s
Blocks.Interfaces.RealOutput and by the addition
of experiment annotations, respectively.

After performing these minor modifications in the
original models, the FMU export procedure can be

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 8785

Figure 2. Three-step workflow adopted for simulation of FMUs in a real-time processing unit.

performed. The export should be configured in such way
that a FMI v.2.0 Co-Simulation FMU with CVODE solver
is created, with 64-bit binaries, including the model’s
source code. Although CVODE solvers are variable-
order variable-step solvers, a fixed time-step variable-
order CVODE solver is exported within the FMU. It is
also necessary to highlight that one should check the
compatibility between the versions of Dymola™ and
dSPACE™’s software ConfigurationDesk® (the latter is
the target in which the FMU will be loaded).

2.2 Application Configuration
After the export procedure, the FMU is loaded
into dSPACE™’s software for real-time application
configuration, ConfigurationDesk®. There, hardware
resources such as the SCALEXIO™ and LabBox™ can
be assigned to the project and configured. The former
is the real-time processing unit and is responsible for
the calculations that are executed during the real-time
simulation. The latter is the unit responsible making
outputs and inputs available. More information on these
two pieces of hardware is presented in Section 4.

It is important to note that, once the FMU is loaded
into ConfigurationDesk®, the outputs added on the first
step are recognized and can be configured to be interfaced
(via functions) to the real hardware outputs in the
LabBox™ hardware, via the DS6101® board. The signals
connected to these ports are converted into non-negative
voltages of same magnitude and, therefore, special caution
needs to be considered in output preparation. In fact, the
DS6101® board supports outputs within the range of 0
to 10 V , justifying why some outputs of interest might
need to be pre-configured to allow for measurements to
be performed during the experiment.

2.3 Real-Time Simulation
After all the simulation configurations are set up and the
outputs are properly configured, a “real-time application”
is built. This procedure is executed automatically by
ConfigurationDesk®. The real-time application can
then be loaded into SCALEXIO™ and the simulation
can be controlled by using another software tool made

available by dSPACE: ControlDesk®. In this software
tool, the FMU can be set up for simulation and the
real-time processing unit will execute the necessary
calculations. Although the quantities are physically
measured in this paper using both USB-based and
conventional oscilloscopes, the results from the real-time
simulations can also be verified in ControlDesk®. More
information about it can be found in Section 4.

3 Test Cases
In order to assess the framework, two typical test power
system models are developed in Modelica using the
OpenIPSL library and are configured for export using
FMI, as described in Section 2. A brief description of
these two system models is presented next.

3.1 Single-Machine Infinite-Bus
The Single-Machine Infinite-Bus (SMIB) is a very basic
representation of a power network, with five buses, one
machines and one infinite bus. The diagram representation
of this power grid is presented on Figure 3. The
infinite bus is connected at bus GEN2 while the generator
connected at bus GEN1 is composed by a round rotor
synchronous machine (GENROE), a fast static excitation
system model (ESST1A) and a stabilizer (PSS2B). During
the simulation, the system undergoes a three-phase-to-
ground fault on bus FAULT. In addition, note that these
models are also present in PSS/E™, a traditional software
tool used in offline power system transient stability
studies.

As mentioned in Section 2, the model needs minor
additions, such as the placement of outputs to gather
measurements during the real-time experiment. Four
outputs are placed in the model and their relationship with
model variables are determined via equations, as shown
in Listing 1. Note that, because the output board does
not allow for non-negative voltages to be measured, the
frequency deviation, in Hz, is offset by 2.

In addition, although the SMIB system is quite
simple, it can be helpful considerably helpful in basic
experiments (Kundur 2007) and can be used in controller
design (De Marco, Martins, and Rullo 2021; De Marco,

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA88 85

Figure 3. Implementation of the SMIB system in
Modelica using the OpenIPSL.

Rullo, and Martins 2021).

Listing 1. Equations added to SMIB model for
representing outputs of interest.
equation

dfreq = 2 + gENROE.SPEED*SysData.fn
"Frequency deviation with offset";
rotor_angle = gENROE.ANGLE
"Rotor angle measurement";
voltage = gENROE.ETERM
"Generator’s terminal voltage magnitude";
power = gENROE.PELEC
"Generator’s active power output";

Listing 2. Equations added to IEEE 9-bus model for
representing outputs of interest.
equation

statcom_out = sTATCOM.Q + 0.5
"STATCOM’s reactive output with offset";
gen_Q = gen1.gen.Q + 0.5
"Gen 1 reactive output with offset";
freq_gen1 = gen1.gen.w*SysData.fn-59
"Gen 1 frequency deviation with offset";
freq_gen3 = gen3.gen.w*SysData.fn-59
"Gen 3 frequency deviation with offset";

3.2 IEEE 9-Bus 3-Machine
The IEEE 9-bus 3-machine system is the second network
used in this study. The one-line diagram of this test
system, built using OpenIPSL, is presented in Figure 4.
The machines are connected at buses B1, B2 and B3 and
all of them are composed of a machine and an excitation
system models verified against those of PSAT (Milano
2005). Moreover, a Static Compensator (STATCOM) is
connected at bus B8 and a Fault element, representing a
three-phase-to-ground event is connected at bus B9.

Once again it is necessary to slightly modify the
original network in order to introduce the outputs to be

measured during the real-time experiment. The outputs
are associated with the model’s variables via the equations
in Listing 2. Because the reactive power output of the
STATCOM model and of machine 1 have negative values,
at some time instants in the simulation, their values are
offset by 0.5 per unit to conduct the experiment. The
frequency deviation, in Hz, for generators 1 and 3 is also
offset and centered at 1.

4 Simulator Setup
After the power system models are exported as FMUs,
they are loaded into ConfigurationDesk® and are
configured as described in Section 2. The real-time
applications are then built and loaded into the assigned
SCALEXIO™ real-time processing unit. Hardware
specifications of the processing unit together with
simulation parameters are summarized on Table 1. The
processing unit is based on CPU architecture and from the
4 cores available, only one is used in all tests performed in
this paper, indicating that larger power system models can
be simulated if they are broken into different FMUs and
assigned to different cores. Furthermore, the simulation
time step used in all simulations performed in this paper
is 1 ms, a common value for power system studies related
to electromechanical transient stability. In addition, the
maximum number of overruns is set to 150. After that, the
real-time simulation stops.

Table 1. Hardware and simulation specifications.

Parameter Description

Processor Intel® Xeon® E3-1275 v3
Number of cores (used) 4 (1)

Clock Frequency 2.8 GHz
RAM size 8 Gb
Flash size 512 Mb

Allocated task stack size 1024 Kb
Task time step 1 ms

Overrun Count Max. 150

The outputs are configured in such way that
measurements are made directly in the pins of the
input/output (I/O) boards. The FMU’s outputs are
assigned to analog outputs and are measured using USB
and conventional oscilloscopes, as displayed in Figure 5.
Note that the behavior of determined variables is also
available for display on ControlDesk®. The results
displayed in Section 5 are obtained using the USB
oscilloscope due to the convenience it offers to import
results.

5 Real-Time Simulation Results
In this section, the results for the simulation of both
systems is presented together with some discussion on the
results and on the performance of the real-time processing

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 8985

Figure 4. Implementation of the IEEE 9-bus 3-machine system in Modelica using the OpenIPSL.

Figure 5. Experiment set-up and comparison among
real-time simulation result and observed measurements
coming from two different devices.

unit.

5.1 Single-Machine Infinite-Bus
The results for the real-time simulation of the SMIB
system are shown in Figure 6. The generator’s terminal
voltage is depicted in channel 1, in red, of Figure 6a
while the generator’s deviation from nominal frequency
of 50 Hz is displayed in channel 2, in blue. Note that
the latter is centered ≈ 2 V, as designated with Listing 1.
In Figure 6b, channel 1, in red, represents the generator’s
electrical power output, in per unit, while channel 2, in
blue represents the generator’s rotor angle, in radians. All
result windows present 20 seconds of measured real-time
results captured at a sampling rate of 400 Hz. Also note
that the solid lines on all channels represent the average
value, while the shaded area around it is the measured
noise. Furthermore, it is worth highlighting that the curves

have different axes, as displayed in the left part of Figures
6a and 6b, and that they are measured in volts.

The averaged values behave as expected, and it is
possible to clearly observe that the event occurs at
approximately 2.5 s in Figure 6a and at 2.8 s in Figure
6b. This discrepancy between the event instant is due to a
display time shift, since the measurement was done using
two channels simultaneously. In addition, the simulation
and measurement acquisition are not synchronized, which
is why none of the curves present the result of the fault
event at exactly at 2.0 s.

5.2 IEEE 9-Bus 3-Machine
The IEEE 9-bus 3-machine model is simulated in real-
time in order to perform the tests using a slightly larger
system. The measured results are depicted on Figure
7. The reactive power outputs of the STATCOM and
generator 1 are represented, in per unit, by channels 1 and
2, respectively, in Figure 7a. Note that they are displayed
with the same offset of 0.5 V and that the curves have
different displacement in the y-axis, as shown in the left
part of the plot. Note that, as the event occurs, both
power system components peak in their reactive power
generation.

The frequency deviation from the nominal value of
60 Hz, in generators 1 and 3, is displayed in Figure
7b. Channel 1, in red, depicts the quantity related
to generator 1, while channel 2, in blue, pictures the
quantity associated with generator 3. Note that both
channels are, now, centered at the same value and they
both have an offset of 1 V. The frequency deviations
have opposing phase, suggesting that these two generators
are not coherent. Moreover, observe that the event
appears to occur at 3.05 s in Figure 7a and at 3.2 s in
Figure 7b. The reason for this discrepancy is the same

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA90 85

(a) Channel 1 represents the generator’s output voltage, in per unit. Channel 2 represents the generator’s deviation
from nominal frequency, in hertz, and centered at 2 V .

(b) Channel 1 represents the generator’s electrical power output, in per unit. Channel 2 represents the generator’s rotor
angle, in radians.

Figure 6. SMIB system real-time simulation results measured with an USB oscilloscope.

(a) Channel 1 represents the reactive power output from the STATCOM, in per unit and centered at 0.5 V . Channel 2
represents reactive power output from generator 1, also in per unit and centered at 0.5 V .

(b) Channels 1 and 2 represent the deviation from nominal frequency, in hertz, on generator 1 and 3, respectively. Both
values are centered at 1 V .

Figure 7. IEEE 9-bus 3-machine system real-time simulation results measured with an USB oscilloscope.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9185

lack of synchronization between the measurement data
acquisition and the real-time simulator, and the fact that
both quantities are measured concurrently per experiment.

5.3 Discussion
Notable features observed in each simulation experiment
are displayed in Table 2. Note that, although the IEEE
9-bus 3-machine model is ≈ 29% larger than the SMIB
in terms of the number of Differential and Algebraic
Equations (DAEs), it has approximately ×6 times more
overruns during real-time execution. The IEEE 9-bus also
has a task turnaround time 3.22 times higher, indicating
that as the model increases in complexity, the time
required for the simulator to execute each time step
increases substantially. It is important to note that only
one CPU from the processing unit was used in this study,
meaning that for larger system models than the IEEE 9-
bus, the model needs be separated into different FMUs for
process parallelization, reducing the overruns. However,
this is not assessed in this work.

Table 2. Comparison between studied systems and their
performance in real-time simulation.

Studied System SMIB IEEE 9-bus

DAEs 369 476
Initialization Overruns 2 3
Simulation Overruns 16 106

Task Turnaround Time (µs) ≈ 83 ≈ 268

In order to understand the reasons why these overruns
are observed, it is possible to perform profiling of
execution time using Dymola™, before generating the
FMU. By setting some simulation flags, it is possible
to enable the plotting of the execution time needed for
each time step throughout simulation. Figure 8 depicts
the execution time needed for Dymola™ to compute each
time step during simulation marked as green ×, while the
simulator time step is highlighted in a dashed red line.
Note that the number of execution times that are larger
than the time step adopted for the simulator is similar
to the value found in rows representing Initialization and
Simulation Overruns, on Table 2. Furthermore, it is
possible to observe that a large number of overruns result
from the event that occurs at 2 s and 2.15 s, which
correspond to a three-phase fault being applied and its
clearing, respectively. It can also be found that a state
associated with one lead-lag block from the excitation
system dominates the error and, therefore, should be the
responsible for the majority of overruns. This is because
the excitation system will act to provide synchronizing
torque so to help the generator keep in synchronism
when the fault is applied, and thus, the equations of the
excitation system will be governing the dynamic response
of the system.

It is also possible to conduct a similar analysis for the

Figure 8. Comparison between execution time in
Dymola™ and the simulator time step for the SMIB test
system.

IEEE 9-bus 3-machine system and the execution time for
Dymola™ , as shown in Figure 9 in green ×. Once again
the simulator time step is highlighted in a dashed red
line and it reveals when the overruns related on Table 2
that occur during simulation. Once again, the majority
of the overruns occur during the fault being applied and
its clearing. In this case, three states dominate the
error; two related to first order blocks in the excitation
systems of generators 1 and 2 and one related to a lead-
lag control block used in the STATCOM. Similarly to
the previous case, this is expected as both generators aid
in stabilizing the system while the STATCOM aims to
control its terminal voltage, thus engaging the equations
that govern the dynamics of these three components.

Figure 9. Comparison between execution time in
Dymola™ and the simulator time-step in for IEEE 9-bus
3-machine test system.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA92 85

6 Conclusion
This paper presented a framework that allows power
system simulation studies to be performed using a power
network model, built using Modelica and OpenIPSL, that
is exported using the FMI standard for execution in a real-
time simulator. The framework uses dSPACE hardware
and software tools, since it natively runs FMUs, allowing
for the exported Modelica-based power system models
to be readily loaded, with minimal modifications. The
results from the real-time simulation can be measured and
verified by the usage of I/O boards that are connected to
the processing unit.

Power system models built using Modelica, via the
OpenIPSL, are usually used for offline simulation.
However, in this study, their potential for real-time
simulation and their real-time execution performance
were assessed and determined to be satisfactory, i.e.
with limited overruns. More importantly, the process
of “going from off-line to real-time” involved very little
additional effort. Therefore, by adopting this framework,
the authors were able to demonstrate that the same model
might be used in both offline and real-time simulation,
eliminating the time and effort allocated for model re-
implementation and verification, resulting from enhanced
power system model portability and tractability. This
work hopes to serve for both the Modelica and power
engineering communities, as a proof of concept of the
potential of the Modelica and FMI open access standards
for model portability and interoperability across different
simulation use cases, which are currently performed using
disparate and siloed tools and hardware.

As future works, the authors aim at assessing
the real-time simulation of larger power systems by
exploring process parallelization and the connection of
multiple FMUs. Furthermore, the authors aim to
perform control-hardware-in-the-loop experiments using
this framework, allowing for fast prototyping of power
system controllers while providing maximum model
portability and traceability.

Acknowledgements
This material is based upon work supported in whole
or in part by Dominion Energy, by the Center of
Excellence for NEOM Research at the King Abdullah
University of Science and Technology under grant OSR-
2019-CoE-NEOM-4178.12, and by the U.S. Department
of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Advanced Manufacturing
Office, Award Number DE-EE0009139. The views
expressed herein do not necessarily represent the views
of the U.S. Department of Energy or the United States
Government.

References
Baldini, EA and AP Fugill (1952). “A power system

analogue and network computer [includes discussion]”.

In: Transactions of the American Institute of Electrical
Engineers. Part III: Power Apparatus and Systems 71.1,
pp. 291–297.

Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance
power system library—update 1.5 to “iTesla power systems
library (iPSL): A modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Bogodorova, T. et al. (2013). “A Modelica power system library
for phasor time-domain simulation”. In: IEEE PES ISGT
Europe 2013.

Brown, Rodney J and William F Tinney (1957). “Digital
solutions for large power networks”. In: Transactions of the
American Institute of Electrical Engineers. Part III: Power
Apparatus and Systems 76.3, pp. 347–351.

Chow, Joe H and Juan J Sanchez-Gasca (2020). Power system
modeling, computation, and control. John Wiley & Sons.

De Marco, Fernando, Nelson Martins, and Pablo Rullo
(2021). “Using a SMIB Model to Analyse and Damp the
Electromechanical Modes in Multigenerator Plants”. In: 2021
IEEE URUCON. IEEE, pp. 252–257.

De Marco, Fernando, Pablo Rullo, and Nelson Martins (2021).
“Synthetic Power System Models for PSS Tuning and
Performance Assessment”. In: 2021 IEEE Electrical Power
and Energy Conference (EPEC). IEEE, pp. 107–112.

Dommel, Hermann W (1969). “Digital computer solution
of electromagnetic transients in single-and multiphase
networks”. In: IEEE transactions on power apparatus and
systems 4, pp. 388–399.

dSPACE GmbH (2022-05). Home-dSPACE. https : / / www .
dspace.com/.

Evans, RD and RC Bergvall (1924). “Experimental analysis
of stability and power limitations”. In: Transactions of the
American Institute of Electrical Engineers 43, pp. 39–58.

Faruque, MD Omar et al. (2015). “Real-time simulation
technologies for power systems design, testing, and analysis”.
In: IEEE Power and Energy Technology Systems Journal 2.2,
pp. 63–73.

Isaacs, Andrew (2017). “Simulation technology: The evolution
of the power system network [history]”. In: IEEE Power and
Energy Magazine 15.4, pp. 88–102.

Kundur, Prabha (2007). Power System Stability and Control.
McGraw Hill, Inc.

Milano, Federico (2005). “An open source power system
analysis toolbox”. In: IEEE Transactions on Power systems
20.3, pp. 1199–1206.

Modelica Association (2022-05). Modelica Language. https: / /
modelica.org/modelicalanguage.html.

Modelica Association Project (2021-07). FMI Standard. https:
//fmi-standard.org/.

OPAL-RT Technology Inc. (2022-05). OPAL-RT website. http:
//opal-rt.com.

Stott, Brian (1979). “Power system dynamic response
calculations”. In: Proceedings of the IEEE 67.2, pp. 219–241.

Throckmorton, Paul Jeffrey and Louis Wozniak (1994). “A
generic DSP-based real-time simulator with application to
hydrogenerator speed controller development”. In: IEEE
Transactions on Energy Conversion 9.2, pp. 238–242.

Watson, Neville and Jos Arrillaga (2003). Power systems
electromagnetic transients simulation. Vol. 39. IET.

Winkler, Dietmar (2017). “Electrical Power System Modelling
in Modelica - Comparing Open-source Library Options”.
In: Proceedings of the 58th Conference on Simulation and
Modelling (SIMS 58), pp. 263–270.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9393

A Playground for the Modelica Language

Michael M. Tiller1

1modelica.university, michael.tiller@gmail.com

Abstract
This paper introduces a Modelica playground which al-
lows users to experiment with the Modelica language
without having to install any specific Modelica tools. This
web-based application also contains content and lessons
that provide users with a guided tour of the language and
the opportunity for advanced users to create domain spe-
cific content built on top of this same infrastructure. This
paper will explain the various open source technologies
employed in creating this application and discuss poten-
tial future work to further enhance the experience for the
user as well as the reach for Modelica itself.
Keywords: Modelica, education, interactive, animation,
playground, web

1 Introduction
1.1 Playgrounds
To help "onboard" users, many programming languages
include a web-based environment that allows users to see
working fragments of code in that language. What makes
such an environment a playground is that it allows these
code fragments to be edited and compiled as well. This
enables users to explore the language and understand at
least the basics of different syntactic constructs without
having to install any of the normal tooling associated with
the language.

These playgrounds are not only useful tools for users
to "try out" a language before committing to installing all
the tooling, they are also very useful as educational tools.
Such playgrounds often include examples of specific fea-
tures of the languages. In a sense, they are used to help
"sell" users on the design of the language or help explain
difficult concepts by giving the users running examples
(created by language experts) to help users understand
the particularly idiomatic ways of accomplishing various
tasks in that language.

The reality is that Modelica lags behind many other
language ecosystems. This is, in part, due to a lack of
resources. Modelica is, after all, something of a niche
language. Nevertheless, this application was developed in
part because applications like VPython (Bruce Sherwood
2022) are being used in a classroom context to teach stu-
dents about math and physics through the use of 3D vi-
sualization. But using VPython is quite tedious compared
to Modelica because users must implement all the numer-
ical methods themselves. By creating the Modelica Play-

ground, we hope to provide a better platform for students.

1.2 Goals
This project was developed with several goals in mind:

• Freely Available: As with all other content at
https://modelica.university, this con-
tent is made freely available. The goal here is to sup-
port, to the greatest extent possible, those interested
in learning the Modelica language. There are many
tools out there with greater commercial resources
than those in the Modelica community which is why
it is important that the unique value and capabilities
inherent in Modelica are demonstrated by material
that is as accessible as possible.

• Collaboration: When using the Modelica Play-
ground, users create models (and post-processing re-
ports). This can involve a significant amount of ef-
fort. As such, it should be possible for users to easily
save, share and publish their work.

• Visualization: For most programming language
playgrounds, it is sufficient to simply capture out-
put from the running program and display that. But
Modelica is a modeling language and the "output"
of Modelica code is (generally) time-varying simula-
tion results. So in order for the user to fully com-
prehend what their code "means" in a mathemati-
cal sense, it is essential that visualization tools are
available to bring those simulation results to life. Al-
though there are many ways to visualize data in a
web browser, we don’t want the user to be required
to become a frontend web developer with full knowl-
edge of Javascript, HTML and CSS in order to craft
their visualizations. For this reason, a no/low-code
approach was taken requiring minimal amounts of
imperative code to be written.

• Extensible: This application is about more than just
teaching people Modelica. It is to provide a means
to communicate ideas via Modelica code. This plat-
form has been designed explicitly to allow ordi-
nary users to create content that can be organized
into "lessons" such that these lessons can be shared
among users without the need to edit the source code
of the playground application itself.

• Privacy: Cookie consent popups have become ubiq-
uitous since the rollout of GDPR. While it is use-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA94 93

ful to track the popularity of the tools hosted at
modelica.university, there is no useful pur-
pose in tracking users as individuals. As such, there
is no cookie consent popup because there are no
cookies being dropped in the user’s browser. It sim-
ply isn’t necessary to track users in order to accom-
plish this application’s goals. Sorry Google.

2 Modelica Editor
The first aspect of the Modelica Playground that we
shall discuss is the Modelica editor. The Model-
ica editor, shown in Figure 1, is built on top of
Monaco (Microsoft 2022a), the code editor that pow-
ers Visual Studio Code (Microsoft 2022d), a widely
used open source integrated development environ-
ment. The Monaco platform provides a playground
of its own at: https://microsoft.github.io/
monaco-editor/playground.html.

Figure 1. Modelica code editor in Modelica Playground

Currently, the Modelica editor provides syntax high-
lighting as well as "error decoration" (both syntax errors
and compilation errors). The implementation details of
these features will be discussed shortly. Monaco itself is
quite a powerful platform and hopefully other features that
it provides will be incorporated in the future.

Before talking about syntax in more detail, it is impor-
tant to point out one way that the Modelica Playground
deviates from most Modelica tools. For most Model-
ica tools, the user compiles a model. The understanding
is that this model will be instantiated implicitly by the
compiler and that the model is, in some sense, the funda-
mental compilation unit.

As shown in Figure 1, the Modelica Playground doesn’t
take this approach because no root level restricted class is
required. The reason for this is that by allowing the user
to start with simple variables and equations, no previous
knowledge about restricted classes or object oriented pro-
gramming features are required. As a result, the typical
code fragments found in the Modelica Playground read
more like a program in an interpreted programming lan-
guage like Python or Javascript. The goal in making this

change is to lower the barrier of entry for new users and
provide them with an initial context that is more familiar
and intuitive.

2.1 Syntax Highlighting
Syntax highlighting is an essential requirement for any
kind programming language renderer whether it simply
be rendering source code on a page or implementation
of a text editor. The Monaco system provides something
called Monarch (Microsoft 2022b) for implementing syn-
tax highlighting as a series of simple rules. The goal, with
Monarch, is to avoid the need to implement a complete
language parser and instead reduce the process down to
one that can be accomplished with a collection of regular
expressions. This can certainly be done with Modelica,
but that isn’t how syntax highlighting is implemented in
the Modelica Playground.

Ultimately, syntax highlighting is simply about identi-
fying the semantic significance of regions of text in the
source code. While Monarch does this via regular expres-
sions, the Modelica playground actually uses a full blown
Modelica parser. Normally, this would probably be con-
sidered overkill. But there are two reasons this is reason-
able in this case. First, the Modelica Playground doesn’t
deal with large quantities of code so the extra computa-
tional effort required to do a complete parsing of the code
isn’t really that significant and doesn’t really impact re-
sponsiveness of the user interface. Second, the particular
parser we are using is actually purpose built for these kinds
of tasks.

The parser we are using was created using Tree-sitter
(Brunsfeld 2022). There are two aspects of Tree-sitter that
make it well suited for our purposes. The first is that it
was developed specifically as an incremental parser. What
that means is that it is designed to parse source code that
is constantly changing. The typical use case that an in-
cremental parser would concern itself with is syntax high-
lighting source code in a text editor. The goal is to quickly
re-parse the source code after text has been inserted or
deleted in a certain range. The parser itself is designed to
reuse as much of the effort from previous parsing passes
as possible. Although in a playground context where the
source code is small, this is of minimal benefit. But the
parser itself could be reused in other contexts with larger
files. The other aspect of Tree-sitter that makes it well
suited for our purposes is the fact that it compiles down to
WebAssembly (WebAssembly Community Group 2022).
It does this by first compiling a C language implementa-
tion of the parser and then using Emscripten (Empscripten
Contributors 2021) to compile that into Web Assembly.
The result is near native performance in the browser.

The resulting parser has been open-sourced as
Modelica-tree-sitter (Michael M. Tiller 2022b). Because
tree-sitter is developed and used by Github, its existence
will hopefully lead to a future where Modelica source code
is natively highlighted on Github (and perhaps other plat-
forms).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9593

2.2 Error Handling
Error handling comes in two varieties. The first is basic
syntax errors. These can be easily detected by the same
parser that is used to generate the syntax highlighting. Un-
fortunately, one of the current limitations in Tree-sitter is a
lack of good diagnostic messages from generated parsers.
As a result, the decoration of syntax errors in Model-
ica simply identifies the text where a syntax error occurs
but doesn’t provide much useful information beyond that.
There are several open issues related to this topic asso-
ciated with the Tree-sitter project and the authors appear
to recognize these limitations. Hopefully future versions
of Tree-sitter will address these limitations which could
translate into better syntax error diagnostics in Modelica
Playground.

The other type of error that Modelica Playground han-
dles are compilation errors. These errors are more seman-
tic in nature and are reported back from the OpenMod-
elica compiler (Open Modelica Consortium 2022) used
by Modelica Playground to compile the Modelica source
code. Fortunately, OpenModelica errors include informa-
tion about the text range for each error. And, unlike the
syntax errors, they include considerable information about
the nature of the error. All of this is leveraged by the
Monaco platform in providing text decorations over the
regions of text that, when hovered over (see Figure 2),
elaborate on the nature of the error contained there.

Figure 2. Semantic Error Highlighting

3 Simulation
Of course, editing Modelica code is just the beginning of
what is required in order to engage readers with the Mod-
elica language. The next logical component is to enable
simulation of those models. For many language play-
grounds, code is compiled and then run and the textual
output of the program is captured and relayed back to the
user. But in this case, we need to compile the code, run a
simulation and relay the simulation results back.

3.1 OpenModelica
Let’s start with the compiler itself. As previously men-
tioned, the Modelica Playground runs the OpenModelica
compiler to compile code. Architecturally, the Modelica
Playground application makes a request to an HTTP API
asking that the model be simulated. The model source
code is included in the request. This kind of an approach
admittedly does not scale for dealing with large code
bases. But because this is simply a "playground" (deal-

ing with small fragments of code), it is acceptable. The
backend is implemented using the Go language (which
features its own playground, (Google 2022)). The API
writes the source code to a temporary directory, running
the OpenModelica compiler and then bundling the sim-
ulation results up in the response. Rate limiting is im-
plemented using a worker pool in each server responding
to such requests. These servers are themselves deployed
as Kubernetes Deployment resources and, being state-
less, can be scaled up as needed. The default number of
replicas is two but a horizontal autoscaler could easily be
associated with such a deployment to handle high load sit-
uations.

3.2 Results
For the moment, simulation results are handled in a fairly
simplistic way. The compilation step requests output in
csv format and the API parses that output and identi-
fies which signals are constant at every time interval and
which ones are not. The results returned in the simula-
tion response segregate the signals accordingly. A bet-
ter approach would be to output results in a more "so-
phisticated" output format, like the dsres format, that
was more space efficient (e.g., leveraging things like alias
elimination). But again, the requirements for a playground
are not so demanding.

4 Report Editor
A basic proof of concept of the Modelica Playground pro-
viding a basic text editor and the ability to request sim-
ulation results for Modelica source was put together in a
day or two. But providing a high quality user experience
takes much more effort. Apart from the syntax highlight-
ing and error handling already discussed, adding function-
ality that provides attractive visuals and extensibility takes
a lot more effort. In this section, we’ll talk about how post
simulation reports are generated and all the various pos-
sibilities the Modelica Playground provides developers of
such reports.

5 Report Rendering
If the only purpose of the Modelica Playground were to al-
low users to compile Modelica code without needing to in-
stall tools, then generating simple tables and plots (which
is the default behavior when no post-processing report is
specified) would be sufficient. But this type of approach
limits the kind of narrative that can be associated with a
given model.

Since one of the goals of this project was to build a plat-
form for users to create content that told a story about var-
ious models (and to stitch them together with some degree
of structure), a richer capability was required. Further-
more, previous work has demonstrated that if the platform
itself requires the underlying source code for the appli-
cation to be modified in order to add additional content,
this will put considerable constraints on who can add new

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA96 93

content and how it can be added.
For all of these reasons, the Modelica Playground was

created with a post-processing report generation capabil-
ity whose goal was to bring a no/low code approach to
creating visual content. While MCP-0033 (Tidefelt and
Tronarp 2020) proposes standard annotations for plots, the
rendering functionality in the Modelica Playground goes
well beyond (and could complement) that capability by
opening up vastly more types of visualizations and inter-
activity. The following subsections will address the mov-
ing parts that make this possible.

As shown in Figure 3, the report tab in the Modelica
Playground (found on the left) contains the purely textual
source code for the post-processing report. On the right
the Modelica Playground shows the rendered report (when
simulation results are available).

5.1 Markdown
The heart of the report generation process is Markdown
(John MacFarlane 2021). Markdown is widely used across
the web as an easy to learn format for creating textual con-
tent. Various platforms have extended Markdown in dif-
ferent ways but Commonmark represents a fairly standard
core which works reliably across different platforms.

Markdown brings standard markup support for text,
paragraphs, images, font style, inline HTML, etc. This
is the foundation for generating the reports, but it is sim-
ply the beginning of the transformations that occur. We
have chosen the Remark (Remark 2021) and Rehype (Re-
hype 2022) tool chains because, as we shall see shortly,
they can be quite easily extended via plugins.

These two tools by themselves allow the report textual
description to be rendered on the fly in the right pane. This
ability to immediately preview a report is not only useful
for previewing how the text in the report will appear, it
also works with all the extensions discussed in the remain-
der of this section which means the (report) content creator
can preview mathematical equations, tables, plots and an-
imations all in the context of simulation results. Every
adjustment made to the report provides an instant preview.

5.2 Math
For rendering of mathematical equations, the Model-
ica Playground leverages the remark-math package
(remark-math 2022). This provides both a remark and
rehype plugin for parsing the mathematical markup in
the Markdown content and rendering these equations us-
ing KaTeX (KaTeX 2022), respectively.

5.3 Custom Components
Another possibility with the remark rendering engine
is to define custom components. As mentioned previ-
ously, Markdown allows HTML code to appears alongside
Markdown syntax. But what the remark engine allows
us to do is effectively "extend" HTML to introduce new
element types and then gives us a hook by which we can
render those custom elements.

Using this functionality, we define two additional spe-
cialized components. The first is the <constants> el-
ement. When rendered, the <constants> element will
be replaced by a table that renders all constant variables
found in the simulation results.

Another custom component provided by the renderer is
the <chart> element. By default, the <chart> element
will be rendered as a plot (using ECharts (Apache Soft-
ware Foundation 2022)) containing all time varying vari-
ables in the simulation results. However, the <chart>
element provides a signals attribute which, when sup-
plied with a comma separated list of signal names, will
display just the signals explicitly listed.

5.4 Templating
So far the rendering has been leveraging functionality that
exists in remark plugins. But one challenge content cre-
ators may face is creating reports that leverage reuseable
Markdown code fragments. Another challenge is the in-
jection of information from the simulation into the report.
The limitation of Markdown itself is that it doesn’t actu-
ally provide any kind of templating functionality. So while
it is excellent for describing content, it isn’t designed at all
for managing it.

This is where Nunjucks (Mozilla Software Foundation
2020) comes in. This is a templating engine written in
Javascript and heavily inspired by the (Python based) Jinja
(Pallets 2022) package. Nunjucks is a templating engine
that allows us to define macros, variables, expressions
and conditional constructs and in this way create reusable
"units" of markdown as well as inject contextual informa-
tion into the rendered report.

Note that the Modelica Playground is written in Type-
Script (another language with its own playground, (Mi-
crosoft 2022c)) and leverages the React (Facebook 2022)
framework. So one might wonder why is another system
for creating reusable units of markdown required?

Why not simply use React components? This was cer-
tainly considered. For example, the MDX (MDX Commu-
nity 2022) platform would have allowed us to mix React
components into our Markdown code. But any solution
that involves React involves code. Recall that one of the
goals here is to have a no/low-code solution. Those cre-
ating content for this application should be able to do it
easily without having to learn React or modify the source
code of the application.

Nunjucks’ learning curve was judged sufficiently easy
to consider it for this purpose. It doesn’t involve "linking"
at all with the underlying application code and can be of-
fered up and exposed to end users in a compartmentalized
way that insulates them from the underlying application’s
architecture and technology stack.

Note that the template processing of Nunjucks is ap-
plied before the markdown processing. In this sense, we
are using Nunjucks as a preprocessor.

In general terms, we are using Nunjucks to render a re-
port. The report might make reference to constant values.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9793

Figure 3. Report textual description vs. rendered report

In such cases, we can refer to those values in Nunjucks ex-
pressions by referencing the predefined constants ob-
ject, e.g., constants.x. Assuming x is an expression in
our simulation results, constants.x will be replaced,
during Nunjucks preprocessing, with the actual simulated
value for x.

But what happens if the result we want to reference is
time varying. Such results have different values at differ-
ent times. Our Nunjucks preprocessor defines a special
object referred to as now. So if y is a time varying vari-
able, we can refer to the "current value" of y as now.y.
Similarly, there is a built in function in Nunjucks called
at and we can use that to refer to the value of a time vary-
ing signal at a particular time e.g., at(1.2).x. Keep in
mind the now objects relies on a notion of what the current
time is. But how do we define "current value"?

The Modelica Playground application is equipped with
a play/pause button and a scrubber controller. The appli-
cation itself assumes, by default, that now represents the
start time of the simulation. But by pressing "play" or
dragging the scrubber control around, the value of now
is automatically updated to the time associated with the
current position of the scrubber. Any Nunjucks output
that depends on the now variable is then automatically re-
rendered.

This templating is particularly useful when dealing with
the potentially verbose constructs associated with the vi-
sualization languages described next.

5.5 2D Visualization
Markdown, like Modelica and HTML, is a declarative ap-
proach to rendering. It doesn’t involve imperative com-
mands for how to render. Instead, it focuses on a de-
scription of what to render and leaves it to the tooling
and the platform to perform the rendering task accord-

ing to the specifications. In order to promote a no/low-
code approach for 2D visualization, a similar approach
was required. Fortunately, browsers have built-in render-
ing capabilities for 2D (and 3D) visualizations. In fact,
the browsers include two such approaches. The first is the
Canvas API (HTML Canvas 2D Context 2011). The prob-
lem with the Canvas API is that it is not declarative. For-
tunately, the other option, Scalable Vector Graphics (Scal-
able Vector Graphics 2018), also known as SVG, is declar-
ative.

For our purposes, it is not sufficient to simply render
SVG. A normal Markdown processor can already do that.
What is required for the Modelica Playground is that the
SVG be rendered as a function of the simulation results.
In other words, where numerical literals would appear in
SVG to describe positions, rotations, scaling and transfor-
mations, we require the ability to replace those numeric
literals with simulation results. This is made possible
thanks to the Nunjucks preprocessor described in subsec-
tion 5.3.

Note that these numeric literals might arise from con-
stants in our simulation results. But more often than not,
they arise from time varying variables in our simulation
results. In the former case, we can use the constants
variable described earlier and in the latter case, we can
use the now variable. In this way, any SVG figure that
references the now variable is effectively transformed au-
tomatically into an animation.

5.6 3D Visualization
Just as with 2D animation, our requirement for 3D anima-
tion depends on the ability to provide a declarative rep-
resentation of the 3D scene we wish to render and then
describing it via our templating capabilities in order to
couple it to our simulation results for the purposes of vi-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA98 93

sualization and animation. However, unlike the 2D case,
browsers have no built-in analog to SVG for declarative
specifications of 3D scenes.

But this isn’t the end of the world. The first thing to note
is that browsers do have built-in, hardware accelerated,
3D rendering capabilities in the form of WebGL (WebGL
2022). Also fortunate for us is the existence of a frame-
work called X3D (X3D 2022) that does provide a declara-
tive scheme for describing 3D scenes. Even thought X3D
isn’t built-in to browsers, it can be loaded into any stan-
dard compliant browser so it is the next best thing to a
built-in capability.

So once again, we can leverage the Nunjucks render-
ing to inject numeric values into a declarative scene de-
scription. And once again, references to the now variable
automatically translate into animations of our now three
dimensional scene and thereby satisfying our requirement
for a no/low-code approach to visualization.

5.7 Vega
As mentioned previously, the custom <chart> compo-
nent relies on ECharts for rendering the chart. ECharts is
one of many different visualizations libraries available for
the browser. Another is called Vega (Vega: A Visualiza-
tion Grammar 2022). An important property of the Vega
approach is that it provides a rich visualization grammar.
Through this grammar, users are able to describe a wide
ranging set of data visualizations going well beyond sim-
ple plots as shown in Figure 4.

Just as with SVG and X3D, we have a declarative vo-
cabulary for describing a nearly infinite set of rich visual-
izations. To support this, an additional custom component
was added, the <vega> component. This component can
be used to delimit a JSON object that conforms to the ex-
pected structure of a Vega visualization. In such cases, the
custom component will be replaced, during rendering, by
the actual Vega visualization.

5.7.1 Safe HTML

Allowing users to define their own markup brings with it
some risks. A modern browser is actually quite a powerful
platform and it is the platform that is used for lots of other
important tasks besides visualizing Modelica models and
their results. As such, we need to ensure that the Modelica
Playground doesn’t expose users to any security risks.

Fortunately, the rendering toolchain for remark in-
cludes the rehype-sanitize package (reype-sanitize
2021). While it might seem tempting to blacklist spe-
cific HTML elements (e.g., the <script> element) in
order avoid introducing opportunities for security exploits,
it turns out that blacklisting is impractical. There are sim-
ply too many ways in a modern browser to give people un-
wanted access if you allow users to simply type in "code".

For this reason, rehype-sanitize employs a
whitelisting approach. What this means, in practice, is that
it is necessary to identify explicitly all legal elements and
attributes of those elements and rehype-sanitize

will remove any references to any non-whitelisted ele-
ments. This is a tedious process, but it is one that was
followed in producing the Modelica Playground. The re-
sult is that the Modelica Playground should be a very safe
"sandbox" in which to play around with Modelica code.

6 Content
The default mode for the Modelica Playground is to
present the user with a "blank slate" where they can type
in any Modelica code they wish and create any post pro-
cessing report. There is a table of contents that can be
accessed that provides a few simple examples as a means
of getting started, but the base application is deliberately
quite open ended.

However, there is a mechanism by which specific mod-
els and reports or even collections of models and reports
can be "published" using the Modelica Playground. In this
section, we’ll discuss how this is accomplished.

6.1 Links for Sharing
As a user, if you develop a particular model (and associ-
ated post processing report) that you would like to share
with other users, you can click on the "Copy Link to Clip-
board" button. Doing so copies a URL to the clipboard
(the same URL visible in the browser’s address bar, in
fact).

This URL can then be emailed to other users. The URL
will include query parameters that encode the text of the
model and report. As a result, anybody who follows the
generated link will be placed in the Modelica Playground
with the associated models and report already pre-loaded.
The results themselves are too bulky to bundle in with the
URL. But since they can be reconstituted simply by press-
ing the "Simulate" button, doing so means that the link
recipient will then see exactly the same visualizations that
the original author saw.

Such link sharing could even be the basis for collabora-
tion since participants could each modify the models they
receive and send them back to the original developer. Sim-
ilarly, professors could assign homework to students and
request the solutions be done in the Modelica Playground
and the students could then copy the link to their solutions
into an email and send them back to the professor.

6.2 Lesson Plans
In some cases, users may want to share more than just a
single model. Instead, they may wish to share a collec-
tion of models that, progressively, tell a story or explain
a topic. In the Modelica Playground application, a collec-
tion of models and their associated post processing reports
is referred to as a lesson plan.

Each lesson in a lesson plan can consist of five distinct
parts:

• metadata: This is used to specify a title for each
lesson as well as an ordering for each lesson.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 9993

Figure 4. Samples of various Vega visualizations

• a model: The assumption is that each lesson will
contain exactly one Modelica model.

• explanation (optional): The content of the explana-
tion should be written in Markdown and will be ren-
dered just above the model to provide some introduc-
tory context. Mathematical equations along with 2D
and 3D figures may be used as part of this explana-
tion but they may not reference simulation variables
(since nothing has been simulated at this point).

• a report (optional): This report should be provided
in the format described in Section 4. Unlike the ex-
planation, it may reference simulation results since
it is only rendered once simulation results are avail-
able.

• macros (optional): As mentioned previously, the
model text and report text are encoded in each URL.
This allows users to start from a lesson and poten-
tially modify it for their own purposes. The creator
of the lesson may have included predefined macros
to be used in the post processing report. Since these
are "static" (users aren’t allowed to edit these), they
are not contained in the URL. Instead, they are refer-
enced as part of a templating "preamble" associated
with the lesson itself.

Each lesson is composed of the various parts men-
tioned. These lessons are then bundled together into a les-
son plan. The Modelica Playground expects this complete
lesson plan to be bundled as a single JSON file that con-
forms to the Siren specification (Kevin Swiber 2017). But
knowledge of Siren or the expected structure of that bun-
dle are not required for content creators. Instead, they can
use the lessonplan tool (Michael M. Tiller 2022a) to
create such a file. Once created, the file does not need to
be published on the modelica.university domain.
Instead, it can be hosted anywhere and simply referenced
via the toc query string parameter.

6.3 Examples
For reference, the following are examples of using the les-
son plan functionality to create content. Hopefully, over
time, users will start to create more such content.

• Lesson Plan Sample: The previously mentioned
lessonplan tool used to bundle lessons in-

cludes, in its repository, an admittedly simple
sample lesson plan. The bundled version of
this lesson plan is hosted at https://raw.
githubusercontent.com/mtiller/
lessonplan/master/sample.json.

• Tour of Modelica: A more complete lesson plan is
one that is bundled with the Modelica Playground. It
can be found by clicking on the "Gallery of Lessons"
in the upper right corner of the application. The goal
of this lesson is to walk users through some of the
basic functionality of Modelica.

• Content Creation Tutorial: This lesson plan is also
available in the "Gallery of Lessons". Instead of
teaching users about Modelica, this lesson is ded-
icated to teaching users about the Modelica Play-
ground itself. It presents several examples that
demonstrate the features discussed in this paper re-
garding post processing reports with the hope that,
armed with this knowledge and combined with the
documentation associated with the lessonplan
bundler, users will create additional Modelica Play-
ground content.

7 Data Management
As mentioned previously, one of the goals of this project
was to avoid having to add cookie consent forms. This can
be avoided so long as we avoid GDPR related concerns.
Since this site is free and does not generate revenue in
any way, we have no interest in tracking individual users.
Doing so adds many more complications for absolutely
zero benefit.

This has implications for how data associated with the
application is managed and it is worth spending at least
some time discussing this.

7.1 Analytics
It is quite common for web applications to include
Javascript code that contacts some third party server to
record the activity of visitors. This by itself is not a GDPR
concern. It only becomes a GDPR concern when person-
ally identifying information (PII) is recorded.

While we are interested in how many people utilize
the site and what they utilize it for, we have no inter-
est in being able to associate that activity with identifi-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA100 93

able individuals. For this reason, we wanted to leverage a
tracker that did not record such information. Fortunately,
such analytics tools exist. The first on we tried was from
https://plausible.io. This worked quite well
and we would recommend it as an alternative to Google
and other add targeting motivated trackers. Ultimately,
we ended up using Cloudflare for our analytics. Like
plausible, Cloudflare avoids recording PII data. It
also has the benefit of being part of the Cloudflare plat-
form which also includes many features related to content
distribution, DDoS attack prevention and a whole host of
other features.

It is important to note that analytics tools that do not
track individual users do not benefit from the revenue as-
sociated with tracking users. As such, you should expect
to pay for such tools since they do not pay for themselves
by selling information about you to third parties.

7.2 History
The most recent addition to the Modelica Playground ap-
plication is the introduction of user history. Every time a
user runs a simulation, a record is made of that simula-
tion. When you return to the Modelica Playground, you
can access all your previous models, report templates and
results.

Now it might seem like this must be a GDPR concern.
But, in fact, it is quite easy to implement such function-
ality without violating the GDPR guidelines. The rea-
son for this is that the information is not stored server
side. Instead, the information is stored directly in the
users browser. All modern browsers provide something
called the IndexedDb API (World Wide Web Consortium
2021). This API allows applications to store data in a re-
lational database directly on the machine that the browser
was run from. Because the information never leaves the
users computer, it doesn’t violate the terms of the GDPR.

8 Future Work
Before wrapping up, it is worth some time to discuss po-
tential future work to improve the Modelica Playground
even further.

8.1 Improved Link Sharing
As already mentioned, the Modelica Playground allows
users to capture their current work in the form of a special
link. Such links can then be shared with other users via
email, text message, Slack, etc.. But these links can be a
bit problematic because they can be quite long. While this
isn’t generally an issue for the browsers (most browsers
can tolerate very long URLs), it can be a problem for these
various applications used to communicate the links be-
cause some applications impose their own limits on URL
length. For this reason, users may find a "link shortener"
useful.

Of course, there are many existing link shortening ser-
vices and users are welcome to use those. The Modelica
Playground links should work with any such service. But

it is slightly inconvenient to visit a third party web site in
order to create such a link (unless, of course, you have a
browser extension installed that helps with that). An inte-
grated link shortener could help with this.

The complication here is with respect to privacy. This
would result in storing more user information. Further-
more, this information would have to be stored server side
(unlike our current information which is all stored locally
in the browser). Nevertheless, such a system could be
made pretty easily GDPR compliant by simply being care-
ful to only store the content but no information about the
content creator. Most likely, the link shortener would sim-
ply store an association between a content hash and (only)
the content.

Note, the same cannot be said for most existing link
shortening services. By registering a link with them, you
are implicitly opting in to allowing tracking of users who
visit the shortened link.

8.2 Support MSL
Another welcome addition would be the ability to refer-
ence the Modelica Standard Library (MSL) from within
the code written in the Modelica Playground. Although
actually loading the MSL in the browser is probably well
beyond the scope of practical improvements, it could be
loaded server side prior to running the code. This would
slow down simulations because loading the MSL takes a
non-trivial amount of time. But it is quite possible that
references to the MSL could be identified client side and
the server could be told a priori whether or not loading the
MSL was necessary.

Allowing references to the MSL would then allow the
Modelica Playground to easily describe more complex
models leveraging components available from the Mod-
elica Standard Library. For the foreseeable future, such
models would only be represented in their pure text form
(i.e., no diagram rendering). But even that should be rea-
sonably intuitive for users.

8.3 Gist support
At the moment, all user work is stored in the browser. But
another option for storage would be to store content in a
Github Gist. In this case, the content would be available
beyond the user’s browser. While Gists can be marked
"secret", they are still accessible to anybody who has ac-
cess to the Gist id. So while this is possible, it wouldn’t
be implemented unless there was significant interest.

8.4 Simulation Caching
The current HTTP API receives the model content as part
of the payload. The server could easily cache the sim-
ulation results of previous simulations of that particular
model. For models presented in lessons (where the model
is frequently run, unmodified), such a cache could im-
prove the simulation time as perceived by the user (by
avoiding the simulation altogether).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 10193

9 Conclusion
Despite being over 20 years old, Modelica remains a com-
pelling technology. It is at least as relevant and useful now
as it ever was. The goal of the Modelica Playground is to
keep it relevant by making it as accessible or more acces-
sible than alternatives.

By leveraging a variety of open source tools, the Model-
ica Playground provides a platform not only for exploring
the Modelica Language online but also for creating com-
pelling content showcasing Modelica along side interac-
tive 2D and 3D visualizations.

Acknowledgements
This project would have been impossible without the
availability of open source tools like the ones mentioned in
this paper. This application is truly built on the shoulders
of giants.

I’d also like to thank my daughter, Alisha Tiller. Her
freshman year at Purdue has helped rekindle my passion
for math and physics and I created this tool in large part
so that students like her would have a Modelica based al-
ternative to tools like VPython.

References
Apache Software Foundation (2022). ECharts. Version 5.3.2.

URL: https: / /echarts .apache.org/en/index.html (visited on
2022-03-31).

Bruce Sherwood (2022). VPython. Version 7. URL: https : / /
vpython.org/ (visited on 2022-04-24).

Brunsfeld, Max (2022). Tree-sitter. URL: https : / / tree - sitter .
github.io/tree-sitter/ (visited on 2022-03-03).

Empscripten Contributors (2021). Emscripten. Version 3.1.9.
URL: https://emscripten.org/ (visited on 2021-11-22).

Facebook (2022). React. Version 18.1.0. URL: https://reactjs.org/
(visited on 2022-04-26).

Google (2022). Go Playground. Version 1.18. URL: https://go.
dev/play/ (visited on 2022-04-15).

HTML Canvas 2D Context (2011). URL: https : / /dev.w3 .org /
html5/2dcontext-LC/ (visited on 2011-05-24).

John MacFarlane (2021). Commonmark. Version 0.30. URL:
https://commonmark.org/ (visited on 2021-06-19).

KaTeX (2022). Version 0.5.13. URL: https://katex.org/ (visited
on 2022-04-13).

Kevin Swiber (2017). Siren. Version 0.6.2. URL: https://github.
com/kevinswiber/siren (visited on 2017-04-27).

MDX Community (2022). MDX Playground. Version 2.1.1.
URL: https : / /mdxjs . com/playground/ (visited on 2022-03-
31).

Michael M. Tiller (2022a). Lessonplan. URL: https://github.com/
mtiller/lessonplan (visited on 2022-04-30).

Michael M. Tiller (2022b). Modelica-tree-sitter. URL: https : / /
github.com/mtiller/modelica-tree-sitter (visited on 2022-04-
30).

Microsoft (2022a). Monaco. URL: https://microsoft.github.io/
monaco-editor/ (visited on 2022-04-24).

Microsoft (2022b). Monarch. Version 0.33.0. URL: https : / /
microsoft .github. io /monaco- editor / index .html (visited on
2022-02-03).

Microsoft (2022c). TypeScript Playground. Version 4.6.4. URL:
https://www.typescriptlang.org/play (visited on 2022-04-28).

Microsoft (2022d). Visual Studio Code. URL: https : / / code .
visualstudio.com/ (visited on 2022-04-24).

Mozilla Software Foundation (2020). Nunjucks. Version 3.2.2.
URL: https://mozilla.github.io/nunjucks/ (visited on 2020-07-
20).

Open Modelica Consortium (2022). Open Modelica Compiler.
Version 1.19.0-dev.beta1. URL: https : / / openmodelica . org/
(visited on 2022-04-20).

Pallets (2022). Jinja. Version 3.1.x. URL: https : / / jinja .
palletsprojects.com/en/3.1.x/ (visited on 2022-04-28).

Rehype (2022). Version 12.0.1. URL: https : / / github . com /
rehypejs/rehype (visited on 2022-01-29).

Remark (2021). Version 14.0.2. URL: https : / / remark . js . org/
(visited on 2021-11-18).

remark-math (2022). Version 5.1.1. URL: https : / /github.com/
remarkjs/remark-math (visited on 2022-04-24).

reype-sanitize (2021). Version 5.0.1. URL: https://github.com/
rehypejs/rehype-sanitize (visited on 2021-12-08).

Scalable Vector Graphics (2018). URL: https://www.w3.org/TR/
SVG2/ (visited on 2018-10-04).

Tidefelt, H. and O. Tronarp (2020). Modelica Change Proposal
MCP-0033 Annotations for Predefined Plots. Tech. rep. Mod-
elica Association.

Vega: A Visualization Grammar (2022). Version 5.22.1. URL:
https://vega.github.io/vega/ (visited on 2022-03-25).

WebAssembly Community Group (2022). WebAssembly Speci-
fication. Version 2.0. URL: https : / /webassembly.github. io /
spec/core/ (visited on 2022-04-27).

WebGL (2022). URL: https://www.khronos.org/webgl/ (visited
on 2022-04-24).

World Wide Web Consortium (2021). Version 3.0. URL: https:
//www.w3.org/TR/IndexedDB/ (visited on 2021-10-06).

X3D (2022). URL: https : / / www. web3d . org / x3d / what - x3d
(visited on 2022-04-24).

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA102 102

Towards an Open Platform for Democratized Model-Based
Design and Engineering of Cyber-Physical Systems

Mohamad Omar Nachawati1 Gianmaria Bullegas1 Andrey Vasilyev1 Joe Gregory1 Adrian Pop2

Maged Elaasar3 Adeel Asghar4

1Perpetual Labs Ltd., UK, {omar, gian, andrey}@perpetuallabs.io
2Linköping University, Sweden, adrian.pop@liu.se

3NASA Jet Propulsion Laboratory, USA, maged.e.elaasar@jpl.nasa.gov
4Open Source Modelica Consortium, Sweden, adeel.asghar@liu.se

Abstract
This paper reports on the development of GitWorks, an
open platform for democratizated Model-Based Design
of cyber-physical systems (CPS). The GitWorks platform
is currently under development by Perpetual Labs Ltd in
collaboration with the Open Source Modelica Consortium
(OSMC)1 and the OpenCAESAR project2. In this paper,
we present our vision for the platform, its system archi-
tecture and a prototype implementation. We also present
a case study that demonstrates the use of the proposed
platform for enabling the seamless integration of Model-
ica models into a broader range of systems engineering
processes for complex product development. In the long-
term, the platform also aims to enable the integration of
Modelica tools with advanced systems engineering pro-
cesses that rely on other domain specific languages (e.g.
SysML v2, BPMN, etc.).
Keywords: MBD, MBSE, Modeling, Simulation, Interop-
erability, Cyber-Physical Systems, Semantic Twin, Real-
time Collaboration

1 Introduction
The Modelica language (Elmqvist, Mattsson, and Ot-
ter 1998; Fritzson and Engelson 1998) has a growing
user community that produces a large and constantly-
increasing code base of models. However, there is a
lack of tools to address a number of advanced model-
management use cases, such as semantic search, analy-
sis, cross-referencing, checking, component selection au-
tomation, for a large body of models (Johansson, Pop,
and Fritzson 2005). Despite recent developments (Sirin
et al. 2015; Isasi, Noguerón, and Wijnands 2015; Hus-
sain et al. 2022), tool support for the integration of Mod-
elica models into advanced Model-Based Systems Engi-
neering (MBSE) practices remains limited (Larsen et al.
2016). This hinders the reuse of models within the Mod-
elica community, and particularly in an industrial context,
can greatly limit the potential for adoption of Modelica

1https://openmodelica.org/home/consortium
2https://www.opencaesar.io/

tools within integrated Model-Based Design (MBD) and
product development processes.

There are multiple engineering processes that precede
modeling and simulation within a complex product de-
velopment lifecycle. The information generated by these
processes defines the structure, configuration, and input
parameter data used by the executable system models. For
example:

1. The definition of operational scenarios and associ-
ated system requirements. These define the critical
behaviors that the system must achieve, the circum-
stances under which they must be achieved, and other
non-functional properties of the product.

2. The definition of the high-level architecture of the
system. This includes the system’s hierarchical di-
vision into different subsystems, their components,
parameter values, and interconnections. Alternative
design solutions can be evaluated against the criteria
defined in (1) via simulation.

Many tools and formalisms can be used in these phases to
capture the system information as part of an MBSE frame-
work, such as UML, SysML, AADL, FMDesign, BDPM,
and OPM (J. Ma et al. 2022; Basnet et al. 2022). Integra-
tion of system simulation and analysis with such MBSE
models is difficult to achieve, particularly during the early
phases of the system lifecycle, because domain-specific
models often lack a common notation (Madni and Siev-
ers 2018). Collecting, aggregating and exchanging infor-
mation at the system level is complex and often error-
prone, which hampers system-wide visibility in a multi-
disciplinary concurrent design setting (McDermott et al.
2020). This limits the ability to analyze system-level re-
quirements (such as performance and dependability) in the
early design phases, causing the postponement of design
decisions to later phases. This, in turn, reduces possible
opportunities to study alternative solutions and validation
of fitness for purpose. It also increases costs, in terms of
time and skill, of design refinements if irreversible consec-
utive design decisions are made in the early stages of the
development (Stirgwolt, Mazzuchi, and Sarkani 2022).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 103102

The limitations of current MBSE frameworks and their
poor integration with system simulation environments,
such as Modelica-based tools, contribute to an increased
barrier-to-entry for the adoption of MBD. These issues
are especially acute for Small and Medium Enterprises
(SMEs) that typically do not have the resources to link
Commercial-Off-The-Shelf (COTS) tools into integrated
tool chains and lack the in-house expertise to develop cus-
tom models from scratch.

GitWorks aims to democratize access to MBD for
SMEs, independent developers and academia. GitWorks
has been designed as a turn-key solution for model man-
agement and integration provided with the convenience of
a Software as a Service (SaaS) product. It includes the
GitWorks Commons which provides a searchable reposi-
tory of models, tools and services with a try-before-you-
buy business model. It also includes a Web application for
integrated data and knowledge management, as well as a
web-based collaborative Modelica editor.

This paper describes the early design and implementa-
tion of GitWorks. Specifically, the contributions of this pa-
per are three-fold: First, we propose a system architecture
for the platform to support model-based design and engi-
neering of cyber-physical systems. Second, we develop a
prototype implementation of the GitWorks platform that is
focused on enabling the seamless integration of Modelica
models into a broader range of MBSE activities. Third, we
conduct a preliminary case study to demonstrate the use of
the proposed platform for the federated design and engi-
neering of an aircraft passenger air conditioner (PACK)
system.

The rest of this paper is organized as follows. Section 2
provides an overview of our vision for the GitWorks plat-
form, describing its design goals, conceptual system archi-
tecture, and user interfaces. Section 3 describes the proto-
type implementation of GitWorks and tooling for enabling
the use of Modelica in the larger MBSE process. Section 4
presents a preliminary case study to demonstrate the use of
the GitWorks for the federated design and engineering of
a PACK system. Finally, Section 5 concludes the paper
and provides some brief remarks on directions for future
work.

2 GitWorks Platform Overview
This section provides an overview of the GitWorks plat-
form, describing its design principles and conceptual sys-
tem architecture. GitWorks aims to overcome several of
the limitations of current systems engineering practices
(Elaasar et al. 2019) by introducing three key concepts and
their related functionalities:

DEMOps: DevOps for Digital Engineering and Man-
ufacturing. Poor configuration management (CM) prac-
tices exacerbate trust issues in current MBSE practices.
DEMOps introduces the notion of a Git-like history of
changes made across inter-related model fragments. En-
ables traceability of information provenance and design

decisions. This refers to the ability to trace from an au-
thority to its design decisions and constraints, and from
the latter to their rationales. Without this capability, a sys-
tem description becomes a disorganized collection of in-
formation artifacts. Enables repeatability. This refers to
the ability to encapsulate the analysis of the system de-
scription, including its dependencies, such that it becomes
repeatable. This is important to maintain confidence in the
analysis over time and use it to assert desirable properties.
Enables durability. This refers to the ability to version
control the information that describes or analyzes a system
in such a way that versions become immutable. Without
this, it is impossible to perform audits and repeat analyses.
Enables efficiency. This refers to the ability to automate
processes using CI/CD practices that would otherwise be
manual and tedious (Elaasar et al. 2019). Without this,
such processes become expensive and error-prone. In Git-
Works, these functionalities are fulfilled by the Projects
environment described in Section 2.1.

Semantic Twin. System information is captured using
a precise language that is rooted in mathematics and for-
mal logic. System descriptions are specified using com-
mon vocabularies consisting of concepts and their proper-
ties and relationships all expressed in a formal language.
This enables digital continuity, which refers to the inter-
operability of system information contained in different
information artifacts that are produced by different par-
ties during different phases of the product lifecycle. It
also enables the augmentation or, in some cases, the re-
placement of typically human-led processes (such as re-
porting, model transformation, and validation & verifica-
tion of system information) through the use of powerful
automations such as logical reasoning, machine learning,
data mining, etc. In GitWorks, these functionalities are
fulfilled by the OML language and the versioned triple
store and associated reasoner (see Section 2.1).

Digital Prototype. In the context of DEMOps, Digi-
tal Prototype refers to the usage of digital environments
to facilitate the co-simulation of engineering models, con-
nection with HardWare-In-the-Loop (HWIL) frameworks
and real-time system data to support Virtual system Inte-
gration, Validation and Verification from the early stages
of the product lifecycle. In GitWorks, these functionalities
are fulfilled by the Modelica Studio environment (see Sec-
tion 3). In its current version, Modelica Studio only sup-
ports editing and simulation of Modelica-based models.
In the future, we aim to introduce advanced functionali-
ties and analyses, such as co-simulation of FMUs, HWIL,
model surrogatization, optimization, uncertainty quantifi-
cation, etc. The Digital Prototype must be supported by a
scalable, cloud-based computational infrastructure to en-
able the more computationally-demanding workflows, and
must also be integrated with the CI/CD pipeline to enable
automation. In GitWorks, this is achieved via the inte-
gration of a standard CI/CD pipeline with a scalable HPC
environment (see Section 2.1).

It should be noted that the concepts of the Digital Proto-

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA104 102

GitWorks Application Environments

GitWorks
Commons

GitWorks
Projects

GitWorks
Community

GitWorks
Spaces &

Modelica Studio

GitWorks
Adapters & Plugins

GraphQL GraphQL GraphQL + Git
 + WebSocket

 GraphQL + Git
+ OSLC

GitWorks Server

GitLab Server
+ Runners

REST + GitGraph Store Protocol

Versioned Graph Server
(Storage, Querying,

Inferencing)

GraphQL + REST

UQLE/Slurm & Kubernetes
ClustersREST + Git

Spaces Services

Real-time
Collaboration

Container
Orchestration

Websockify
Proxying ...

Core Services

Repository
Management

Dashboard
Visualization
Management

Ontology
Management

Graph/Query
Management

CI/CD Task &
Dependency
Management

User
Management

& Security
 Monitor

 Deploy

Commons Services

Artifact
Management

Semantic
Discovery &
Integration

Federated
Co-Simulation

Accounting &
Monetization

 Publish

 Install

GitWorks

GraphQL

Figure 1. Conceptual software architecture of the GitWorks Platform3

type and the Semantic Twin are tightly linked and that the
integration of the two enables the realization of new and
powerful workflows. The Digital Prototype acts as a back-
bone to organize and facilitate access to system-related in-
formation scattered through the different engineering arti-
facts. An example application of this idea is provided in
the PACK case study in Section 4. The system architecture
information contained in a SysML model is used to auto-
matically generate the high-level structure of the Modelica
model. Also, queries against the GitWorks Commons, en-
abled by the OML language representation of Modelica,
can be used to find suitable, port-compatible components
to complete the model.

2.1 Conceptual System Architecture
The high-level software architecture of the GitWorks plat-
form is shown in Figure 1. From the perspective its users,
GitWorks provides multiple application environments for
interacting with the platform, to include the GitWorks
Commons for the publishing and reuse of digital engi-
neering artifacts, the GitWorks Projects environment for
Semantic Twin-powered DevOps for digital engineering,
analysis, reporting and management of the digital thread.
In addition to these environments, through Git, OSLC and
REST-based APIs, GitWorks is also designed to integrate
with third-party adapters and plugins for authoring and re-
porting.

3All trademarks, logos and brand names are the property of their
respective owners.

Supporting these application environments, GitWorks
Server is designed as a middleware of essential services,
as well as a nexus for accessing data across organizations
and third-party tools and systems. The GitWorks Server
is implemented as a Spring Boot application and depends
on a GitLab server to provide Git repository hosting and
CI/CD capabilities. GitLab4 is an open-source DevOps
platform based on the popular Git version control system.
GitLab provides a REST API for programmatic access
and manipulation of resources, such as repositories, ar-
tifacts and users. This API is used to implement much of
the Git-centric capabilities provided by GitWorks through
GitLab4J5.

Unlike traditional version control systems, such as
CVS, where changes are managed at the file level, Git
manages changes at the repository level so that for any
particular commit one can recover the precise state of en-
tire repository at that point. To facilitate the management
of artifacts developed and owned by different stakehold-
ers, repositories can be organized into groups that capture
the hierarchical relationships between systems and their
components or the relationships among the different enti-
ties participating in a supply chain.

Leveraging Git’s repository level change management
mechanism, from the artifacts contained in a GitWorks
project repository, GitWorks constructs a versioned Se-
mantic Twin that captures the interdependencies and trace-

4https://www.gitlab.com
5https://github.com/gitlab4j/gitlab4j-api

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 105102

Figure 2. The GitWorks Commons UI for Modelica and other digital engineering artifacts

ability links that relate heterogeneous artifacts through the
product lifecycle. The Semantic Twin forms a federated
knowledge graph that is stored as RDF triples in a custom
versioned triple store, which is developed by Perpetual
Labs and is based on Jena (Carroll et al. 2004) TDB2. By
creating trace links between heterogeneous elements, such
as requirements, simulation models, simulation results,
and test results, GitWorks provides traceability of design
changes and branches at the system level and throughout
the product lifecycle, while also allowing each stakeholder
the necessary flexibility in managing their own datasets
and internal development cycles.

GitWorks provides multiple adapters for automatically
enriching the Semantic Twin from a project repository.
While the focus of this paper is on the Modelica adapter
(see Section 3.3), Perpetual Labs is actively working on
adapters for other representations, including SysML and
CAD. These adapters read artifact files from the Git repos-
itory, for example a Modelica library, and extract a seman-
tic representation in the Ontology Modeling Language
(OML).

OML serves as the core ontological language for the
GitWorks platform and was originally developed by the
Jet Propulsion Laboratory as part of the CAESAR project
(Wagner et al. 2020). One of the goals of CAESAR has
been to provide a set of OML vocabularies that capture
some of the common concepts and relations used in sys-
tems engineering (Bayer et al. 2021). OML provides a
foundation with well-defined semantics that can be used

to model different types of engineering artifacts in a se-
mantically consistent and interoperable fashion. OML ex-
tends OWL 2 DL (Web Ontology Language 2 - Descrip-
tion Logic) in such a way that retains the benefits of OWL
2 DL while addressing some of its limitations (Wagner et
al. 2020).

GitWorks Commons. The GitWorks Commons en-
ables the seamless reuse of design and engineering ar-
tifacts across tool, domain and organization boundaries.
Within the GitWorks platform, an artifact is considered
as the basic unit of reuse, where its coarsity depends on
the tool and domain vocabulary. As shown in Figure 2,
a single Modelica file, for example, may contain multiple
models, each of which would be considered an artifact in
the Commons. When the artifacts from a project reposi-
tory are ready for release, these artifacts along with their
dependencies are bundled together as package and then
uploaded to the Commons as a versioned artifact. The
GitWorks leverages GitLab Package Registries to support
multiple package managers, including Maven and npm.
The Commons also supports semantic discovery and inte-
gration of artifacts through a SPARQL endpoint that can
be used to query the metadata extracted from artifacts via
specific adapters (see Section 3.3).

The GitWorks Commons also provides vendors with
multiple publication and deployment possibilities. Ven-
dors can choose whether to allow users to download
sources and/or binaries, or only provide cloud-based ac-
cess. For example, a Modelica model can be published

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA106 102

as: (1) source code (i.e. a model library), (2) com-
piled FMU (Model-Exchange or Co-Simulation), and/or
(3) as a REST service that can be used in a federated co-
simulation. We are investigating different monetization
strategies for the GitWorks similar to those proposed for
the Digital Manufacturing Commons (DMC) (Beckmann
et al. 2016), including (1) payment for each download
or execution, (2) payment based on computational usage,
and (3) freemium software as a service. To support fed-
erated collaboration for enhanced data security and intel-
lectual property protection, we are also actively working
on the integration of co-simulation engines, specifically
Maestro2 by the INTO-CPS project(Larsen et al. 2016).

GitWorks Projects. The Projects environment is a Se-
mantic Twin-powered Web application for integrated data
and knowledge management, and exploration and visual-
ization of the digital thread across multiple disciplines,
organizations and product lifecycle stages. It enables
the exploration, querying, and modification of OML-
based knowledge base using a Web-based GUI, similar
to WebProtégé (Tudorache, Vendetti, and Noy 2008) for
OWL2, and provides customizable OML vocabularies for
different cyber-physical system lifecycle activities, such
as requirements analysis, system modeling, verification
and maintenance. At its core, a project corresponds to
a Git repository of OML vocabularies and descriptions,
which can be cloned and edited using an OML IDE, such
as Rosetta6 or Luxor7.

The GitWorks platform leverages GitLab to provide
DevOps capabilities for project repositories, to include
Git-based version control, issue management, and CI/CD.
To enable Semantic Twin-powered authoring and report-
ing, every project repository on GitWorks is backed by
both a Git repository and a corresponding RDF triple
store. The versioned RDF triple store serves as a cache to
accelerate semantic queries against the repository and can
be reconstructed directly from the files in the Git repos-
itory. A project can import artifacts from the GitWorks
Commons as dependencies, forming a federated knowl-
edge graph that enables all the stakeholders of a complex
engineering system to make specific system information
and data available to other project participants indepen-
dently of the specific tools that they are using (i.e. a Se-
mantic Twin).

An HPC CI environment based on GitLab Runner and
the Slurm Workload Manager8 is under active develop-
ment, and enables computational expensive analyses such
as simulation-based requirements verification, uncertainty
quantification and optimization to be seamlessly inte-
grated into the DEMOps pipeline. We have already tested
different analysis toolkits using our HPC CI environment,
to include UncertainPy (Tennøe, Halnes, and Einevoll
2018) and Dakota (Adams et al. 2020). We are working

6https://github.com/opencaesar/oml-rosetta/
7https://github.com/opencaesar/oml-luxor
8https://slurm.schedmd.com/documentation.html

to provide seamless support for surrogate-assisted meth-
ods to accelerate computationally expensive analyses us-
ing methods such as pre-trained surrogate models for ac-
celerated simulation, as done by JuliaSim (Rackauckas et
al. 2021), and dynamically generated surrogates, as done
by GreyOpt (Nachawati and Brodsky 2021), for enhanced
optimization.

GitWorks Community. Finally, the Community envi-
ronment enables users and organizations on the platform
to connect with one another in a kind of social network for
Digital Engineering. Each user is provided with a profile
page that contains a public bio with an activity stream and
links to associated published artifacts, project workspaces,
and organizations.

3 Modelica Tooling for the GitWorks
This section describes the prototype implementation of
the GitWorks tooling for enabling the use of Modelica in
the larger MBSE process. Specifically, we report on the
progress of our development of: (1) Modelica Studio, a
Semantic Twin-powered Modelica text and diagram edi-
tor for VSCode for Web, (2) OMFrontend.js9, a reusable
and open-source AGPLv3-licensed library for the pars-
ing and analysis of Modelica source code, which serves
as the foundation of Modelica Studio, and (3) the Mod-
elicaOML adapter, also based on OMFrontend.js, for au-
tomatically enriching the Semantic Twin from Modelica
artifact repositories.

3.1 Modelica Studio
We have developed Modelica Studio as a VSCode for Web
extension that serves as a Semantic Twin-powered author-
ing environment for Modelica. Modelica Studio, shown
in Figure 3, is designed to support three levels of collab-
oration: (1) federated, in-the-large collaboration enabled
by the GitWorks Commons, (2) Git-based collaboration,
using branches and pull requests, and (3) real-time collab-
oration, using the VSCode LiveShare extension10.

While several attempts have been made towards the de-
velopment of a Web-based Modelica editor, significant
limitations preclude their use as a collaborative Modelica
development environment for the GitWorks:

Modelon Impact (Elmqvist, Malmheden, and An-
dreasson 2019) is a closed-source, cloud-based platform
that provides a Modelica diagram and code editor that
runs in a Web browser. While it runs in the browser, the
implementation appears to require an independent server-
side session for each editor instance, where the Optimica
Compiler Toolkit (OCT) is used to construct and maintain
a semantic model that mirrors what is opened in the edi-
tor. This approach simplifies the logic on the client-side,
however, the critical dependency on continuous server-
side processing for each editor instance can quickly add up

9https://github.com/OpenModelica/OMFrontend.
js

10https://visualstudio.microsoft.com/services/
live-share/

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 107102

Figure 3. Modelica Studio, a Semantic Twin-powered Modelica editor extension for VSCode for Web

to extensive computational resource requirements, espe-
cially for open DevOps and collaborative platforms, such
as GitHub. Although the Modelon community provides
an open-source JavaScript client11, it is tightly-coupled to
the Modelon Impact platform.

WebMWorks (Wan et al. 2013) is also a closed-source,
cloud-based platform that provides a Web-based Model-
ica diagram and code editor. WebMWorks follows a simi-
lar implementation approach to Modelon Impact, but uses
the OpenModelica Compiler (OMC) (Fritzson, Pop, et
al. 2020) instead of OCT to maintain the server-side, se-
mantic model that mirrors what is opened in the editor.
TongYuan, the developers of WebMWorks, do not appear
to currently offer access to WebMWorks.

WebGME-DSS (Kecskes et al. 2019) is an open-
source, cloud-based modeling environment that provides
a Web-based Modelica diagram-only editor. The imple-
mentation is based on GME, where a translator is used
to convert the interface of a Modelica model into an in-
stance of a GME-based meta-model representing a sub-
set of the Modelica language. Although WebGME-DSS
is open-source (MIT-licensed), WebGME-DSS only sup-
ports a small subset of the Modelica language and does
not appear to be actively maintained.

OMWeb (Torabzadeh-Tari et al. 2011) is an open-
source platform for editing and simulating Modelica mod-
els in a Web browser. Although OMWeb provides the abil-
ity to edit Modelica code and visualize simulation results,

11https://github.com/modelon-community/
impact-client-js

it does not provide a Web-based Modelica diagram edi-
tor. Furthermore, OMWeb appears to be in maintenance
mode.

The diagram editor of Modelica Studio provides a user
experience similar to that of OMEdit (Fritzson, Pop, et
al. 2020), supporting the composition of new Modelica
models by dragging and dropping Modelica model com-
ponents onto the canvas. Changes made in the diagram ed-
itor are immediately propagated to the text editor, and vice
versa. Noteably, the component palette in Modelica Stu-
dio is also designed to integrate with the GitWorks Com-
mons to provide seamless dependency management. Also,
unlike the other previously mentioned Web-based Model-
ica editors, Modelica Studio is largely serverless and the
rendering and editing of Modelica models is done on the
client without requiring a heavy-weight remote process to
maintain a corresponding semantic representation of the
contents of the editor. This design decision was made to
significantly improve the scalability of the platform and
to help realize the goal of making the GitWorks an open
platform for digital engineering.

As shown in Figure 4, Modelica Studio largely depends
on the OMFrontend.js (see Section 3.2) for the implemen-
tation of the Modelica Language Server to provide text
and diagram editing support for VSCode for Web. Mod-
elica Studio is designed to integrate with the OMWebSer-
vice12 REST API for the simulation of Modelica models
in the browser. OMWebService is developed largely as a

12https://github.com/OpenModelica/OMWebService

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA108 102

wrapper around the OMC and OMSimulator for simulat-
ing Modelica models, Functional Mock-up Units (FMU),
and System Structure and Parameterization (SSP) models.
In response to a request to run a simulation on a model,
OMFrontend.js sends the flattened simulation model to
OMWebService. The results of the simulation are then
returned as a CSV file, which can then be plotted in Mod-
elica Studio or a third-party application. OMWebService
is developed in Python and uses the OMPython interface
to communicate with the OMC.

3.2 OMFrontend.js
To facilitate the development of Modelica Studio and
other Modelica language tools, we have developed the
OMFrontend.js library that provides an API for analyz-
ing and manipulating Modelica text documents in both
Node.js and Web browser environments. This library han-
dles Modelica parsing, instantiation, flattening, expression
evaluation as well as diagram and SVG icon rendering. It
simplifies the implementation of language service features
in Modelica Studio (see Section 3.1), such as diagnostics,
hovers, links, completion, folding, and formatting. We
also use OMFrontend.js to implement the ModelicaOML
adapter (see Section 3.3) for enriching the Semantic Twin
automatically from Modelica source code.
OMFrontend.js provides a context object that manages the
collection of opened documents and Modelica libraries
and serves as the mechanism for handling references to
Modelica classes defined in different files. The context
object seamlessly resolves Modelica files stored on the lo-
cal file system, virtual Web browser file system, and via
HTTP, depending on whether it is running in a Node.js or
Web browser environment.

While the OpenModelica compiler uses a parser that is
generated from an ANTLR3 grammar, to support browser-
based editing we found the need to develop a new parser
for OMFrontend.js. The new Modelica parser is built
using the tree-sitter13 parser generator. The tree-sitter-
modelica14 project contains the Modelica grammar for
the tree-sitter parser generator. OMFrontend.js then con-
structs an abstract syntax tree from the tree-sitter concrete
syntax tree. This abstract syntax tree is akin to the class
tree described in the Modelica Language Specification
(MLS). Unlike the tree-sitter concrete syntax tree which
is incrementally reparsed, the abstract syntax tree needs to
be reconstructed every time the underlying text changes.
To reduce latency, this is done in a lazy fashion inspired
by the red/green trees15.

3.3 ModelicaOML Adapter
The purpose of the ModelicaOML adapter is to handle the
conversion of Modelica source code and OML conform-

13https://tree-sitter.github.io/tree-sitter/
14https://github.com/OpenModelica/

tree-sitter-modelica
15https://ericlippert.com/2012/06/08/

red-green-trees/

ing to the ModelicaOML vocabulary presented in Fig-
ure 5. This enables the automatic enrichment of the Se-
mantic Twin directly from the Modelica artifact reposi-
tories based on the representation provided by OMFron-
tend.js.

The ModelicaOML vocabulary16 defines concepts such
as Class, Block, Model, Package, Function, Record,
Type to model the Modelica class restrictions and
Component to model the components. The compo-
nent and class prefixes are also modeled as scalar enu-
merations: Prefix and ClassPrefix. There are
also relations that bind these concepts together such as
hasType, hasPrefix, hasClassPrefix, contains,
extendsClass, etc.

4 PACK Case Study
This case study aims to demonstrate how the GitWorks
platform enables collaborative and federated design and
development throughout the systems engineering process.

The system under development is a simplified PACK
unit, which is itself a subsystem of the Environmental
Control System of a passenger aircraft. One of the primary
goals of the PACK is to regulate the temperature, pressure
and humidity of the cabin air (Jennions et al. 2020).

4.1 Federated Development of the PACK Sys-
tem

The PACK project comprises seven tasks with a focus on
the systems engineering process: Define project; Define
system requirements; Define system architecture; Define
subsystem behavior; Perform analysis; Verify system re-
quirements; Generate Reports. These tasks are to be per-
formed by specialists with various roles: Project Manager,
System Architect, Lead Systems Engineer and a team of
Design Engineers.

The tasks are performed using either third-party or
GitWorks-hosted tools (e.g. Modelica Studio), and each
task yields one or more artifacts with a particular filetype
(e.g. a SysML or a Modelica model). The GitWorks plat-
form supports this use case in the manner summarized in
Figure 6. This diagram describes how OML adapters are
employed to consolidate the knowledge contained in dif-
ferent modeling artifacts by creating a unified, RDF-based
Semantic Twin.

In this case, the Project Manager creates an OML Git
repository (corresponding to the project) using the Git-
Works Workbench environment. The knowledge regard-
ing the participating organizations, teams and people is
captured by importing the relevant OML vocabularies and
populating an OML description file. In the Workbench
environment, the Project Manager defines the relevant
project tasks and assigns responsibility to members of the
project. A small section of the resulting OML description
is presented in Listing 1, in which five roles have been
defined and tasks assigned.

16https://github.com/OpenModelica/ModelicaOML

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 109102

OMFrontend.js

document editsModelica
Language Server

onDidOpenTextDocument
onDidChangeTextDocument
onDidCloseTextDocument

onRequest (diagram view, edit)

Dependency
Management

Concrete Syntax Tree
(SyntaxNode)

Incremental Parser
(tree-sitter-modelica)

Abstract Syntax Tree
(ModelicaSyntaxNode)

Lazy Abstract Syntax
Tree Builder

Symbol
Information

Diagnostics &
Symbol Information

Additional text documents to parse
(for external symbols)

Resolve
external
symbols

Lazy Symbol
InstantiationModelica

Context

JSON Graph &
SVG Icons

Icon &
Diagram
Renderer

Local File System

GitWorks
Marketplace

Zipped Libraries

Modelica Studio
(VSCode for Web)

Figure 4. Modelica Studio and OMFrontend.js flow diagram

Record

Class
hasClassPrefix : ClassPrefix

Component
hasPrefix : Prefix
hasInitialValue : rdfs:Literal
hasValue : rdfs:Literal

Package Function Block ModelConnector

Type
hasQuantity : xsd:string
hasUnit : xsd:string
hasDisplayUnit : xsd:string
hasStartDecimal : xsd:decimal
hasFixed : xsd:boolean

Namespace

Named
hasName : xsd:string [0..1]
hasComment : xsd:string

ClassPrefix
"partial"
"input"
"output"
"encapsulated"

Prefix
"input"
"output"
"parameter"
"constant"
"replaceable"
"flow"
"stream"
"inner"
"outer"
"innerouter"
"final"

hasType

contains

extendsClass

Figure 5. The Modelica Ontology (ModelicaOML Vocabulary)

Listing 1. OML representation of project role definitions
ci ProjectManager : project:Role [

project:hasAssignment DefineProject]
ci SystemEngineer : project:Role [

project:hasAssignment DefinePACKRequirements]
ci SystemArchitect : project:Role [

project:hasAssignment DefinePACKArchitecture]
ci DesignEngineer1 : project:Role [

project:hasAssignment
DefineSubsystemBehavior]

ci DesignEngineer2 : project:Role [
project:hasAssignment PerformAnalysis
project:hasAssignment VerifyPACKRequirements
project:hasAssignment GenerateReports]

Once the Project Manager creates the first commit, the
CI/CD pipeline runs the build scripts which interprets the
OML code into RDF triples and ingests them into the
triple store, effectively integrating the information into the
Semantic Twin. The Project Manager can then save the re-
sulting project structure as a template and publish it as an
OML artifact in the GitWorks Commons for future reuse
and sharing. Once the project repository has been created,
the other participants can review the tasks that have been
assigned to them, and begin contributing to the project.

The lead Systems Engineer defines the overall systems

requirements using a SysML tool. The three requirements
for this system are defined as follows:

1. The mass of the PACK shall be no greater than
100kg.

2. The PACK shall produce Conditioned Air with a
temperature to ±1°K of 293 °K.

3. The PACK shall produce Conditioned Air with a
pressure to ±3kPa of 101 kPa.

The Systems Architect then defines the PACK architec-
ture, also using a SysML tool. For the purposes of this
case study, a simplified architecture for the PACK, com-
prising only the primary heat exchanger and the compres-
sor, is developed. Figure 7 represents this composition of
the PACK and the air flows into, out of, and within the sys-
tem. It is also assumed that the three system requirements
apply to the ‘Cruise’ scenario, during which the tempera-
ture and pressure of the input air flows are assumed to be
fixed and known.
By specifying the SysML repositories as dependencies
within the overall project, the SysML artifacts created
by the actors (in this case, requirements and architec-
ture) are translated into OML and populate the Seman-
tic Twin in accordance with the corresponding OML vo-
cabularies. This translation is performed by the dedicated
SysMLOML adapter within the GitWorks platform. An
example of the resulting OML description (translated from
SysML) is presented in Listing 2. In this listing, only a
portion of the PACK architecture definition is presented -
the flows between the interfaces are also captured by the
OML description but are not shown.

Listing 2. OML representation of PACK architecture
ci PACK : mission:Component [

base:contains HeatExchanger
base:contains Compressor
PL_Mech:hasMass PACKMass]

ci HeatExchanger : mission:Component [
mission:presents p1
mission:presents p2

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA110 102

Define Project
in the Project

Workspace

Define System
Requirements

Define System
Architecture

Define
Subsystem
Behaviour

Perform
Analysis

Automatic
Requirements

Verification
Reporting

SysMLOML
Adapter

ModelicaOML
Adapter

GitWorks
Modelica

Studio
LiveShare

PACK Modelica
Triple Store

RDF

PACK Project
Workspace

RDF

PACK SysML
Triple Store

RDF

PACK Modelica
Repository

PACK SysML
Repository

GitWorks
Commons

Papyrus SysML
Editor

Projects
Environment

Analysis Tool

File
RDF

OMWebService Simulation Results

ModelicaOML
Adapter

Publishing
Importing
templates

Git push

Git push

Git push

Figure 6. Data flow within the GitWorks platform for the PACK case study.

Figure 7. SysML representation of the PACK architecture (hx:
Heat Exchanger; comp: Compressor)

mission:presents p3
mission:presents p4
PL_Mech:hasMass HXMass]

ci Compressor : mission:Component [
mission:presents p5
mission:presents p6
PL_Mech:hasMass CompMass]

ci PACKMass : PL_Mech:ComponentMass
ci HXMass : PL_Mech:ComponentMass
ci CompMass : PL_Mech:ComponentMass

This simple example illustrates how the Semantic Twin
can be constructed either directly via the GitWorks Work-
bench environment (e.g. definition of roles and tasks),
or via translation from another artifact (e.g. translation
of requirements and architecture from SysML to OML).
The Semantic Twin can then be used to efficiently query
information about the project and the system (including
time-travel queries to investigate evolution of system de-

(a) (b)

Figure 8. Stages of PACK Modelica model (a) Partial model,
(b) Completed model

sign) or to automatically generate new modeling artifacts
as demonstrated in the next section.

4.2 Semantic Twin-Powered Authoring
Direct integration of the centralized RDF databases into
GitWorks authoring tools allows the users to translate the
architectural and requirements knowledge originally ex-
pressed as SysML artifacts into corresponding Modelica
partial models through the ModelicaOML adapter on the
fly. As such, Figure 8a depicts a partial model generated
from the OML representation of the PACK architecture.

The generated partial model can be used as a starting
point for the Design Engineers to define the behavior of
the PACK’s components: the heat exchanger and the com-
pressor. Depending on the desired model fidelity, there
are multiple ways of implementing the behavior. For ex-
ample, the total heat transfer rate of the heat exchanger
can be obtained from:

Q = EeCa(Tbleed −Tram) (1)

where Ee is the effectiveness of the heat exchanger, Camin
is the heat capacity of the air stream and Tbleed and Tram are

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 111102

the temperatures of bleed and ram air respectively (Poudel
2019). The pressure drop in the heat exchanger can be
calculated via the following equation:

∆P =
f Ltubeρv2

2Dh
(2)

where f is the friction factor, Ltube is the total length of the
heat exchanger, ρ is the air density as a function of temper-
ature, v is the mean stream velocity and Dh is the hydraulic
diameter (Poudel 2019). Traditionally, Equation 1 and
Equation 2 can be implemented manually by engineers
in Modelica language. This can be a time-consuming,
error-prone and costly process. Alternatively, the engi-
neers can sift through many third-party Modelica reposito-
ries available online in the hope of finding the component
model they need (Hussain et al. 2022). Existing Modelica
tools such as OpenModelica and Dymola (Dempsey 2006)
can assist with this task by performing a basic keyword
search. However, this comes with a significant limitation
of only searching within classes currently loaded into the
workspace. Furthermore, such a search is incapable of
analyzing the inherent structural and semantic knowledge
embedded in the models.

In order to alleviate such modeling bottlenecks and
boost model exchange, the GitWorks Commons offers
users a convenient interface to query an RDF database
of published models and libraries to find required com-
ponents and blocks. This approach is based on a physics-
based simulation ontology currently being developed in
OML, and employs the SPARQL query language to of-
fer a set of advanced search techniques such as aggre-
gation, extensible value testing, subqueries, and nega-
tion (Hussain et al. 2022; Kollia, Glimm, and Horrocks
2011). For example, a SPARQL query can be designed
to find another Modelica component with two compati-
ble connector ports. The connector compatibility is es-
tablished by ensuring that the connector variables have
the same name, prefixes and type. Listing 3 shows an
excerpt of such a query which outputs all compatible
Modelica models containing two connector ports carrying
the thermofluidic variables m_flow, p, h_outflow,
Xi_outflow, C_outflow. We are searching for a
model that has two connectors that contain these vari-
ables and the names, types and prefixes of the variables
match. For example, Modelica.Fluid (Casella, Otter, et al.
2006) and ThermoPower (Casella and Leva 2005) libraries
use distinct but compatible connectors which can only be
identified manually or through a SPARQL query. As a re-
sult, the users are presented with compatible components
from all libraries that use the same connector definition.
The result of running the query in Listing 3 is given in
Listing 4, and shows the three compressor models from
the PL_Lib library that are matching. One can note that
most Modelica tools support choicesAllMatching an-
notation which can help populate the dialogs with a list
of matching models - this feature is limited to loaded li-
braries only and extending it would require tool changes.

Having the Modelica models expressed as individuals us-
ing an OML-based vocabulary and searching these using
SPARQL queries against the GitWorks Commons popu-
lated with all the available libraries on the GitWorks plat-
form is a paradigm-changing feature.

The GitWorks Commons displays a list of models and
libraries obtained as a result of the search query and en-
ables the user to inspect the documentation and the code.
As highlighted in (Hussain et al. 2022), it is rare that a
component model can be reused without any modifica-
tions. Therefore, if a suitable component is found, the
engineer can import the selected model into the Modelica
Studio workspace and invite the rest of the team to use
the real-time collaborative functionality of the VSCode
Liveshare extension to modify, complete and check the
full model definition synchronously. The resulting model
definition is shown in Figure 8b. Optionally, component
models can also be seamlessly published in the GitWorks
Commons with dependencies tracked through Modelica’s
uses annotation.

Development of Modelica models, therefore, is greatly
aided by the proposed Semantic Twin technology through
automatic generation of model architecture and facilitat-
ing model reuse and exchange within the community.

4.3 Simulation-based Requirements Verifica-
tion and Reporting

Automating the requirement verification allows engineers
to accelerate the iterative systems engineering process. In
order to enable this capability, the requirements formally
captured by the Semantic Twin in Section 4.1 can be ex-
pressed alongside a behavioral model developed in Mod-
elica.

Several Modelica libraries for simulation-based
requirements verification exist, such as Model-
ica_Requirements, ReqSysPro discussed in (Bouskela
et al. 2022), and vVDR outlined in (Mengist, Buffoni,
and Pop 2021). In this case study, the requirements
and scenario are captured in a vVDR-style verification
scenario model through the ModelicaOML adapter. The
resulting model is shown in Figure 9. The model contains
the design block containing the PACK system defined
in the previous section. It receives the inputs defined
in the scenario block and outputs the calculated values
of system mass and conditioned air temperature and
pressure. These values are then used as inputs in the three
requirements blocks to calculate the verification status of
the corresponding requirements.

The simulations are performed using the OMWebSer-
vice (defined in Section 3.1), and the results can be com-
mitted to the relevant Git repository at the same time to
preserve the traceability of the results. At the same time,
the ModelicaOML adapter is invoked to pass the verifica-
tion status of requirements to the Semantic Twin. Table 1
shows the verification status of each of the requirements
defined in Section 4.1.

As a result, all the systems engineering knowledge

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA112 102

Figure 9. PACK system design model as a part of a verification
scenario model.

Table 1. Requirements verification status

Target Calculated Status

Req. 1 100 kg 97 kg Verified
Req. 2 293 ± 1 K 293.15 K Verified
Req. 3 101 ± 3 kPA 101.4 kPa Verified

generated throughout the project is unified and stored in
the RDF-based Semantic Twin. This enables automated
and intelligent reporting of necessary decision-making in-
formation via querying and reasoning across the whole
dataset. For example, the Lead Systems Engineer may
wish to take a closer look into the project management
and requirement verification aspects of the project by con-
structing a SPARQL query corresponding to the following
natural language expression:

• Return all system-level requirements (with their pro-
posed verification test cases) that have not been ver-
ified and the person responsible for performing the
verification test case.

As another example, the Project Manager may wish to find
out more about the model development and trace its meta-
data information:

• Return the artifact that defines a heat exchanger com-
ponent which ’presents’ a particular interface and the
original author of that artifact.

Such queries can be expressed using SPARQL within the
Workbench environment, and the outputs can be displayed
as tables or graphs. This allows the users to gain insight
that would normally be difficult to attain through other
means.

The PACK case study presented in this section has
demonstrated how the GitWorks platform can be used
to effectively integrate Modelica modeling and simula-
tion environments into the systems engineering process
to achieve simulation-based system verification from the
early stages of the product lifecycle. Artifacts can be auto-
matically generated from other model types (e.g. SysML
to Modelica) via the OML adapters. Modelica models can
be further defined by searching the GitWorks Commons

for relevant and compatible components. Modelica sim-
ulation results can be automatically translated into RDF
to automatically verify requirements. The resulting inte-
grated Semantic Twin can then be queried. In this way,
Modelica models become an invaluable link in the sys-
tems engineering chain by providing added value across
multiple domains, all while maximizing automation and
reducing the effort required.

5 Conclusions and Future Work
We have presented our vision for the GitWorks platform
to enable the democratized model-based design and en-
gineering of cyber-physical systems. We have proposed
a system architecture for GitWorks and have developed
a prototype implementation focused around enabling the
use of Modelica in the larger MBSE process. We have
conducted a preliminary case study that has demonstrated
the use of GitWorks for the federated design and engineer-
ing of a passenger air conditioner system.

Plans for future work include further development of
OML vocabularies and OML adaptors to increase the
number of different modeling paradigms and COTS tools
supported by the platform, increase the maturity of the
user interface for the web applications, and demonstrate
the application to other use cases including satellite sys-
tems and composite structures design and fabrication.

Acknowledgments
The work presented here is supported by the Engineer-
ing and Physical Sciences Research Council (UK) un-
der the InnovateUK project 97404 and partially supported
by the HUBCAP Innovation Action funded by the Eu-
ropean Commission’s Horizon 2020 Programme under
Grant Agreement 872698.

References
Adams, Brian et al. (2020). Dakota, A Multilevel Parallel

Object-Oriented Framework for Design Optimization, Pa-
rameter Estimation, Uncertainty Quantification, and Sen-
sitivity Analysis: Version 6.13 User’s Manual. Tech. rep.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States).

Basnet, Sunil et al. (2022). “A decision-making framework for
selecting an MBSE language–A case study to ship pilotage”.
In: Expert Systems with Applications, p. 116451.

Bayer, Todd et al. (2021). “Europa Clipper: MBSE Proving
Ground”. In: 2021 IEEE Aerospace Conference. IEEE.

Beckmann, B et al. (2016). “Developing the digital manufac-
turing commons: a national initiative for US manufacturing
innovation”. In: Procedia Manufacturing 5, pp. 182–194.

Bouskela, Daniel et al. (2022-03). “Formal requirements mod-
eling for cyber-physical systems engineering: an integrated
solution based on FORM-L and Modelica”. en. In: Require-
ments Engineering 27.1, pp. 1–30. ISSN: 0947-3602, 1432-
010X. DOI: 10 . 1007 / s00766 - 021 - 00359 - z. URL: https :
//link.springer.com/10.1007/s00766-021-00359-z (visited on
2022-05-22).

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 113102

Carroll, Jeremy J. et al. (2004). “Jena: Implementing the Seman-
tic Web Recommendations”. In: Proceedings of the 13th In-
ternational World Wide Web Conference on Alternate Track
Papers & Posters. WWW Alt. ’04. New York, NY, USA:
Association for Computing Machinery, pp. 74–83. ISBN:
1581139128. DOI: 10.1145/1013367.1013381. URL: https:
//doi.org/10.1145/1013367.1013381.

Casella, Francesco and Alberto Leva (2005). “Object-oriented
modelling & simulation of power plants with modelica”. In:
Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, pp. 7597–7602.

Casella, Francesco, Martin Otter, et al. (2006). “The Modelica
Fluid and Media library for modeling of incompressible and
compressible thermo-fluid pipe networks”. In: Proceedings of
the 5th international modelica conference, pp. 631–640.

Dempsey, Mike (2006). “Dymola for multi-engineering mod-
elling and simulation”. In: 2006 IEEE Vehicle Power and
Propulsion Conference. IEEE, pp. 1–6.

Elaasar, Maged et al. (2019). “The case for integrated model
centric engineering”. In: Proceedings of the 10th model-
based enterprise summit (MBE 2019). National Institute of
Standards and Technology, Gaithersburg, MD, pp. 9–16.

Elmqvist, Hilding, Martin Malmheden, and Johan Andreasson
(2019). “A Web Architecture for Modeling and Simulation”.
In: Proceedings of the 2nd Japanese Modelica Conference,
Tokyo, Japan, May 17-18, 2018. 148. Linköping University
Electronic Press, pp. 255–260.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin Otter (1998).
“Modelica: The new object-oriented modeling language”. In:
12th European Simulation Multiconference, Manchester, UK.
Vol. 5.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: European Conference on Object-Oriented Pro-
gramming. Springer, pp. 67–90.

Fritzson, Peter, Adrian Pop, et al. (2020). “The OpenModelica
integrated environment for modeling, simulation, and model-
based development”. In: Modeling, Identification and Control
41.4, pp. 241–295.

Hussain, Mohammad et al. (2022). “Approaches for Simulation
Model Reuse in Systems Design—A Review”. In: SAE Tech-
nical Paper 2022-01-0355. DOI: 10.4271/2022-01-0355.

Isasi, Yago, Ramón Noguerón, and Quirien Wijnands (2015).
“Simulation Model Reference Library: A new tool to promote
simulation models reusability”. In: Workshop on Simulation
for European Space Programmes (SESP). Vol. 24, p. 26.

Jennions, Ian et al. (2020). “Simulation of an aircraft environ-
mental control system”. In: Applied Thermal Engineering
172, p. 114925.

Johansson, Olof, Adrian Pop, and Peter Fritzson (2005). “Mod-
elicaDB - A Tool for Searching, Analysing, Crossreferenc-
ing and Checking of Modelica Libraries”. In: Proceedings fo
the 4th International Modelica Conference, March 7-8, Ham-
burg University of Technology, Hamburg-Harburg, Germany,
Volume 2 : Linköping University, The Institute of Technol-
ogy, pp. 445–454. URL: http : / /www.modelica .org /events /
Conference2005.

Kecskes, Tamas et al. (2019). “Modelica on the Web”. In: Pro-
ceedings of The American Modelica Conference 2018, Octo-
ber 9-10, Somberg Conference Center, Cambridge MA, USA.
154. Linköping University Electronic Press, pp. 220–226.

Kollia, Ilianna, Birte Glimm, and Ian Horrocks (2011).
“SPARQL query answering over OWL ontologies”. In: Ex-
tended Semantic Web Conference. Springer, pp. 382–396.

Larsen, Peter Gorm et al. (2016). “Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-
CPS project”. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data).
IEEE, pp. 1–6.

Ma, Junda et al. (2022-03). “Systematic Literature Review of
MBSE Tool-Chains”. en. In: Applied Sciences 12.7, p. 3431.
ISSN: 2076-3417. DOI: 10.3390/app12073431. URL: https :
//www.mdpi.com/2076-3417/12/7/3431 (visited on 2022-05-
23).

Madni, Azad and Michael Sievers (2018). “Model-based sys-
tems engineering: Motivation, current status, and research op-
portunities”. In: Systems Engineering 21.3, pp. 172–190.

McDermott, Thomas et al. (2020). “Benchmarking the Benefits
and Current Maturity of Model-Based Systems Engineering
across the Enterprise: Results of the MBSE Maturity Survey”.
In: Technical Report SERC-2020-SR-001. Systems Engineer-
ing Research Center.

Mengist, Alachew, Lena Buffoni, and Adrian Pop (2021). “An
Integrated Framework for Traceability and Impact Analysis
in Requirements Verification of Cyber–Physical Systems”.
In: Electronics 10.8, p. 983.

Nachawati, Mohamad Omar and Alexander Brodsky (2021).
“Mixed-Integer Constrained Grey-Box Optimization based
on Dynamic Surrogate Models and Approximated Inter-
val Analysis”. In: Proceedings of the 10th International
Conference on Operations Research and Enterprise Sys-
tems, ICORES 2021, Online Streaming, February 4-6, 2021.
SCITEPRESS, pp. 99–112.

Poudel, Sabin (2019). Modelling of a Generic Aircraft Environ-
mental Control System in Modelica.

Rackauckas, Chris et al. (2021). “Composing Modeling and
Simulation with Machine Learning in Julia”. In: Modelica
Conferences, pp. 97–107.

Sirin, Göknur et al. (2015). “A model identity card to sup-
port simulation model development process in a collabora-
tive multidisciplinary design environment”. In: IEEE Systems
Journal 9.4, pp. 1151–1162.

Stirgwolt, Benjamin W, Thomas A Mazzuchi, and Shahram
Sarkani (2022). “A model-based systems engineering ap-
proach for developing modular system architectures”. In:
Journal of Engineering Design 33.2, pp. 95–119.

Tennøe, Simen, Geir Halnes, and Gaute T Einevoll (2018). “Un-
certainpy: a Python toolbox for uncertainty quantification and
sensitivity analysis in computational neuroscience”. In: Fron-
tiers in neuroinformatics, p. 49.

Torabzadeh-Tari, Mohsen et al. (2011). “Omweb–virtual web-
based remote laboratory for modelica in engineering
courses”. In: Proceedings 8th Modelica Conference, Dresden,
Germany. Vol. 3. Citeseer.

Tudorache, Tania, Jennifer Vendetti, and Natalya Fridman Noy
(2008). “Web-Protege: A Lightweight OWL Ontology Editor
for the Web.” In: OWLED. Vol. 432, p. 2009.

Wagner, David et al. (2020). “CAESAR Model-Based Approach
to Harness Design”. In: 2020 IEEE Aerospace Conference.
IEEE, pp. 1–13.

Wan, Li et al. (2013). “A modelica-based modeling, simulation
and knowledge sharing web platform”. In: 20th ISPE Inter-
national Conference on Concurrent Engineering. IOS Press,
pp. 517–525.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA114 102

A Example SPARQL Query

Listing 3. SPARQL query to find a compatible compressor
model
PREFIX m: <http://openmodelica . org/

openmodelica/model ica#>
PREFIX msl: <http://examples/

Model icaStandardLibrary#>

SELECT DISTINCT ?m ?comp1 ?comp2

WHERE {
?m a m:Model .
?m m:contains ?comp1 .
?m m:contains ?comp2 .

?comp1 a m:Component ;
m:hasType ?con1 .

?comp2 a m:Component ;
m:hasType ?con2 .

?con1 a m:Connector . # FlangeA
?con1 m:contains [

a m:Component ;
m:hasName "m_flow" ;
m:hasType msl:ThermoPower.Gas.Flange.Medium.

MassFlowRate
] .
?con1 m:contains [

a m:Component ;
m:hasName "p" ;
m:hasType msl:ThermoPower.Gas.Flange.Medium.

AbsolutePressure
] .
?con1 m:contains [

a m:Component ;
m:hasName "h_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

SpecificEnthalpy
] .
?con1 m:contains [

a m:Component ;
m:hasName "Xi_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

MassFraction
] .
?con1 m:contains [

a m:Component ;
m:hasName "C_outflow" ;
m:hasPrefix "stream"
m:hasType msl:ThermoPower.Gas.Flange.Medium.

ExtraProperty
] .
?con2 a m:Connector . # FlangeB

...
}

Listing 4. The result of running the SPARQL query above
{ "head": {

"vars": ["m" , "comp1" , "comp2"] } ,
"results": {

"bindings": [
{

"m": { "type": "uri" , "value": "http://
examples/PL_Lib#PL_Lib.Interfaces.
CompressorBase"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Interfaces.CompressorBase.inlet"},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Interfaces.CompressorBase.outlet"}},

{
"m": { "type": "uri" , "value": "http://

examples/PL_Lib#PL_Lib.Components.
Compressor_noMaps"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps.inlet"
},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps.outlet"
}},

{
"m": { "type": "uri" , "value": "http://

examples/PL_Lib#PL_Lib.Components.
Compressor_noMaps_mass"},

"comp1": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps_mass.
inlet"},

"comp2": { "type": "uri" , "value": "
http://examples/PL_Lib#PL_Lib.
Components.Compressor_noMaps_mass.
outlet"}},

]
}

}

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 115115

Enhancing SSP creation using sspgen

Lars Ivar Hatledal1 Eirik Fagerhaug1

1Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Norway
{laht}@ntnu.no

Abstract
The System Structure and Parameterization (SSP) stan-
dard is a tool independent standard to define complete
systems consisting of one or more components, includ-
ing its parameterization, that can be transferred between
simulation tools. Thus the SSP standard is a natural ex-
tension to the Functional Mock-up Interface (FMI) stan-
dard, allowing systems of components, rather than just in-
dividual components, to be simulated in a growing num-
ber of supported tools. This paper introduces sspgen, a
textual Domain Specific Language (DSL) for generating
SSP archives. The aim of the DSL is to greatly simplify
the creation of SSP compatible simulation systems. ssp-
gen is written in the Kotlin programming language, which
provide syntax highlighting and static code analysis in se-
lected tools, full access to Java compatible libraries, and
more importantly a scripting context so that sspgen defi-
nitions can be easily shared and executed on demand. As
the DSL is based on a generic programming language, it
enables complex expressions to be evaluated for the pur-
pose of e.g., pre-simulation and initialization of variables.
The DSL also performs validation and through integration
with the Open Simulation Standard - Interface Specifica-
tion (OSP-IS) even allows more complex connections to
be formed than the single scalar connections that the SSP
standard defines, while still retaining compliance. Fur-
thermore, the DSL handles automatic packaging of its ref-
erenced content into a ready-to-use SSP archive. As a
whole, the introduced package makes it easier to create,
modify and share SSP systems.
Keywords: Co-simulation, Domain Specific Language,
Functional Mock-up Interface, System Structure and Pa-
rameterization

1 Introduction
The System Structure and Parameterization (SSP) stan-
dard (Köhler et al. 2016) released in 2019, is a tool-
independent format for the description, packaging and
exchange of system structures and their parameteriza-
tion. The SSP is comprised of a set of XML-based for-
mats to describe a network of component models with
their signal flow and parametrization, as well as a ZIP-
based packaging format for efficient distribution of entire
systems, including any referenced models and other re-
sources. The SSP contributes to maximizing re-usability
of models and parameters across tools and use cases. An

Table 1. Tools supporting SSP import and simulation (v1.0).

Name Vendor License
SYNECT Model
Management dSPACE commercial

OMSimulator OpenModelica free
Model.CONECT AVL commercial
FMI Bench PMFS commercial

easySSP eXXelent
solutions

free +
commercial

Simcenter System
Architect Siemens commercial

Simcenter Studio Siemens commercial
Dymola Dassault Systèmes commercial
libcosim OSP free
Vico NTNU free
Ecos NTNU free

SSP (file extension .ssp) is a zip archive containing one
or more XML documents, at least one named System-
Structure.ssd, declaring the structure of the simulation.
The archive also contains any referenced components, like
Functional Mock-up Units (FMUs) and other resources.
Thanks to the SSP, and provided that the SSP does not
contain non-optional implementation specific annotations,
a simulation system can be defined once and later simu-
lated in multiple tools. Currently, the SSP is supported
by a number of free and commercial tools. See Table 1
for an overview of tools that support SSP import and sub-
sequent execution. In (Lars I Hatledal et al. 2021), the
authors made use of SSP to describe a simulation sys-
tem that were simulated in a number of compatible open-
source importers. More specifically Vico, OMSimulator,
libcosim, FMPy, and FMI Go!. The latter two required a
slight modification to the SSP description file as they did
not support the final publicly released version of the stan-
dard (1.0). Thus, they are not present in the provided table
of supported tools. In this example, the SSP proved its
usefulness by allowing the same definition of a system to
be tested and benchmarked in several tools.

As previously mentioned, the SSP is a collection of
XML file(s) declaring the content, connections and pa-
rameterization of a simulation as well as any resources,
like models, required to run the simulation. Given a set of
components, e.g., FMUs, the simulation structure can be
formalized in an XML file and zipped together with any

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA116 115

resources required. This can be done using nothing else
than an text editor and built-in OS capabilities for zip-
ping a folder. However, this approach is tedious, time-
consuming and error prone. The resulting SSP archive
may include formal and/or logical errors that will not sur-
face until it is loaded into a simulation tool. Depending
on the tool used, the source of any errors reported may be
non-obvious. Furthermore, XML is a static text-format,
which means that parameters must be provided exactly.
I.e., a number like PI/2 must be pre-computed and man-
ually typed as e.g., 1.57079632679, which is tedious and
may lead to accuracy issues depending on the number of
decimal points included. Another issue arises with sys-
tems that contain similar components, which expects sim-
ilar or identical connectors and parameterization options.
Declaring such a system in XML leads to excessive copy-
pasting and performing changes is error prone as the same
logical variable needs to be kept track of during modifica-
tion throughout the document. Another concern is bit-rot,
which occurs when some file is left unused and unmain-
tained, possibly due to poor understanding of the con-
tent. Manually generated SSP archives are prime subjects
of bit-rot as maintaining them requires substantial knowl-
edge, which typically dwindles over time and might dis-
appear once the archive is transferred to some other recip-
ient.

A domain-specific language (DSL) provide a notation
tailored toward some application-domain, and is based on
the relevant concepts and features of that domain (Van
Deursen and Klint 2002). This paper introduces sspgen,
a DSL that aims to ease the creation of SSP archives by
providing an accessible and easy to use language construct
that is more powerful than manually editing XML or us-
ing graphical tools. The solution benefits from existing
tooling and provides integration with other standards and
tools in order to enhance SSP development.

The rest of the paper is organized as follows; first some
related work is given, followed by a presentation of the
sspgen software. Finally, a conclusion and notes on future
works is given.

2 Related works
Manually creating SSP configurations using basic and
readily-available tools, as previously mentioned, is not the
only alternative available today.

OMSimulator (Ochel et al. 2019) is a co-simulation
framework that allow both import and export of SSP
archives. Moreover, it features a simplified Python in-
terface to the underlying C/C++ library for accessibility
that can be used to import, define and export SSP con-
figurations. easySSP is a graphical, web-based, tool for
generating SSP archives. Like graphical tools in gen-
eral, it favours easy-of-use and accessibility over flexibil-
ity. However, large simulations quickly becomes cluttered
and editing in a graphical tool has some of the same chal-
lenges as editing XML directly.

Additionally, tools using alternative system formats
than SSP exists. Daccosim NG (Évora Gómez et al.
2019) is a co-simulation framework that features a desk-
top graphical users interface (GUI) for establishing a sim-
ulation graph. The graph may be exported in a custom
format only supported by Daccosim, or as an FMU that it-
self contains other FMUs. The latter allows the system to
be loaded into any FMI based simulation tool. While ac-
cessible, this solution adds a dependency to an additional
solver and the generated FMU is inflexible as it does not
allow modifications without re-running the original pipe-
line. kopl is a graphical tool for generating systems com-
patible with the Open Simulation Platform - System Struc-
ture (OSP-SS), which is a format similar to the SSP. By
supporting the OSP-IS, connection points are fewer, thus
making the system as a whole easier to reason with. The
downside is that the format produced is currently only
compatible with libcosim and eventual tools built on-top
of it.

Unlike the graphical tools mentioned, sspgen offers a
executable, text-based solution that is more flexible, per-
forms validation, is less verbose than XML, allows arbi-
trary expressions to be computed as input to the document,
and as a novelty, combines the OSP-IS standard with SSP.
The DSL defines much of the same concepts and struc-
ture as is found in the standard, making the learning curve
less steep for users already familiar with the SSP standard.
As the solution is text-based, modifications can be eas-
ily shared and version-controlled. The solution is further
elaborated in the following section.

3 sspgen
This section introduces sspgen, a Kotlin DSL for generat-
ing SSP archives that is publicly available as a Maven ar-
tifact. Kotlin is a statically typed programming language
that runs on the Java Virtual Machine (JVM) that is inter-
operable and comparable with the more known Java lan-
guage, but offers additional features and a offer a less ver-
bose syntax. Any and all libraries available for Java are
usable by Kotlin and visa versa. Today, Kotlin is mostly
known as the main programming language for Android
applications, however it is also used as a replacement for
JavaScript in web-applications and Java for desktop ap-
plications. Thanks to its intuitive type-system and smart
use of closures, Kotlin is a very suitable and powerful lan-
guage for building an embedded DSL. That is, a DSL that
is implemented within a host language. While embed-
ded DSLs in general are less flexible than external DSLs,
which use an independent interpreter or compiler, embed-
ded DSLs typically benefit from existing tooling. Kotlin
for instance, supports a scripting context that allow Kotlin
code to be executed without the need for a build-system.
While executing a script, any third party dependencies are
automatically resolved and the code is compiled on-the-
fly. The stand-alone Kotlin compiler that makes this pos-
sible is bundled with the IntelliJ integrated development

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 117115

environment (IDE), but it can also be downloaded directly
from the official Kotlin repository on GitHub. Using In-
telliJ, however, is encouraged as it adds auto-completion,
static-code-analysis, syntax highlighting and enables the
script to be executed through a GUI as opposed to the
command line.

Listing 1. Kotlin script skeleton demonstrating basic usage of
sspgen.
@f i l e : DependsOn ("info.laht.sspgen:dsl:0.5.2")

import no . n tnu . i h b . s s pg en . d s l . *

s s p ("...") {
r e s o u r c e s {

f i l e ("path/to/FMU.fmu")
}
s s d ("...") {

sys tem ("...") {
e l e m e n t s {

component ("FMU" , "resources/FMU.fmu") {
c o n n e c t o r s {

r e a l ("output" , o u t p u t) {
u n i t ("m/s")

}
r e a l ("input" , i n p u t)
i n t e g e r ("counter" , o u t p u t)

}
}

}
c o n n e c t i o n s {}

}
d e f a u l t E x p e r i m e n t (s t a r t T i m e = 1 . 0)

}
} . b u i l d ()

As mentioned, sspgen is powered by Kotlin, and makes
use of closures in such a way that it acts like a DSL. Thus
offering a DSL context within a generic programming lan-
guage. While the package is compatible with Java, it can
only be intuitively used in the context of Kotlin. As shown
in Listing 1, the idea is that users should create a generic
Kotlin script, which then adds sspgen as a dependency.
The script context allows the code to be easily modified,
executed, shared and version-controlled. The actual SSP
archive required for simulation is generated on demand
by running the script, hopefully reducing the likelihood
of bit-rot as maintenance becomes easier. As sspgen runs
in a scripting context, generic expressions can be evalu-
ated, which is immensely powerful. For one, loops can
be used to declare multiple similar connectors as shown in
Listing 2. Furthermore, scripts can make use of any third
party library compatible with Java in order to compute
e.g., parameterization options. Component references are
included either a through a file handle, an URL or as the
path to a PythonFMU script. Using the URL option, the
script definitions can be shared as a single executable file
and easily version-controlled. Another benefit from using
URLs is that the referenced components can be updated
automatically, as re-running the script can be configured
to download the latest version. If this behaviour is not
desired, one could naturally point the URL to a fixed ver-
sion. E.g., if the artifact version-controlled using Git, one

could point the URL to a fixed tag rather than an evolving
branch.

Listing 2. Using loops to declare similarly named connectors.
c o n n e c t o r s {

f o r (i in 0 . . 1 0) {
r e a l ("transform[i].position.x" , i n p u t)
r e a l ("transform[i].position.y" , i n p u t)
r e a l ("transform[i].position.z" , i n p u t)

}
}

Listing 3. Declaring connections using sspgen.
// SSP type connections
c o n n e c t i o n s {

"wheel.p1.f" t o "chassis.p.f"
"chassis.p.e" t o "wheel.p1.e"
"ground.p.f" t o "wheel.p.f"
"wheel.p.e" t o "ground.p.e"

}

// OSP-IS type connections
o s p C o n n e c t i o n s {

"chassis.linear mechanical port" t o
"wheel.chassis port"

"wheel.ground port" t o
"ground.linear mechanical port"

}

Listing 4. Declaring annotations using sspgen.
v a l s t e p S i z e = 1 . 0 / 1 0 0
. . .
d e f a u l t E x p e r i m e n t {

a n n o t a t i o n s {
a n n o t a t i o n ("org.openmodelica") {
"""
<oms:SimulationInformation resultFile=

" r e s u l t s . mat"/>
"""

}
a n n o t a t i o n ("com.opensimulationplatform") {
"""
<osp:Algorithm>
<osp:FixedStepAlgorithm baseStepSize=
" $ s t e p S i z e"/>

</osp:Algorithm>
"""

}
}

}

namespaces {
namespace ("oms" ,
"http://openmodelica.org/oms")

namespace ("osp" ,
"http://opensimulationplatform.com/SSP/

OSPAnnotations")
}

3.1 Connections
The connections closure in Listing 3 shows how regular
connections between components are made. By default,
outputs are declared on the left hand side of the infix func-
tion to. It is also possible to swap the ordering for all con-
nections by specifying a boolean flag. Declaring optional

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA118 115

linear transformations on the signals formed are achieved
by invoking an instance method on the object returned by
the individual connection objects.

3.2 Annotations
Several SSP importers, like OMSimulator and libcosim,
require tool-specific annotations to be present in the im-
ported XML. This requires users that want to support mul-
tiple tools, and use some tool for creating the SSP, to edit
the generated XML manually. sspgen allows annotations
to be added as plain-text, allowing multiple tools to be
supported without further editing. Listing 4 shows how
annotations are declared using sspgen.

3.3 Validation
sspgen performs several types of validation of the de-
clared content. Firstly, it checks that the connectors refers
to actual variables and that the declared type matches.
Secondly it checks that the connections are valid and
that a connector has been declared for a given variable.
FMI4j (Lars Ivar Hatledal, Zhang, et al. 2018), a JVM li-
brary for importing FMUs, is used to validate FMU com-
ponents based on their modelDescription.xml. sspgen is
also able to recognise proxy-fmu 1 components (a solu-
tion for remote execution of FMUs developed under the
umbrella of the Open Simulation Platform), so that their
modelDescription.xml files can be validated in the same
way as regular FMUs. Furthermore, sspgen can perform
additional checks as part of the integration with OSP-IS
and/or FMI-VDM-Model as explained in more detail be-
low. Currently, FMI version 1.0 and 2.0 for co-simulation
is supported. When working with non-compliant models
or unsupported FMI versions, it is possible to turn of vali-
dation.

3.4 Integration with OSP-IS
The OSP interface specification (OSP-IS) is an addition to
the FMI 2.0 standard for co-simulation which provides a
method for adding semantic meaning to model interface
variables. OSP-IS aims to simplify the model connec-
tion process, and enables validation of semantically cor-
rect simulations (Open Simulation Platform 2020b). In
short, an XML document adhering to the OSP-IS, which
declares more complex input and output variable relation-
ships, can be used by tools that support it to form more
complex and semantically correct connections between
models. Currently, the only tool that natively supports
the OSP-IS is libcosim (Open Simulation Platform 2020a)
from the OSP foundation. sspgen allows OSP-IS connec-
tions to be formed within the DSL, which are later tran-
spiled to single scalar connections that the SSP supports,
while retaining the static type checking during the build
process. Thus, sspgen enables the OSP-IS to be used by
any SSP compatible tool. For example the ospConnec-

1https://github.com/open-simulation-platform/
proxy-fmu

tions shown in Listing 3 are transpiled to the SSP compat-
ible XML as shown in Listing 5

Listing 5. OSP-IS connections transpiled to SSP.
< s s d : C o n n e c t i o n s>

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="wheel"
s t a r t C o n n e c t o r ="p1.f" endElement =
"chassis" endConnec to r ="p.f" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="chassis"
s t a r t C o n n e c t o r ="p.e" endElement =
"wheel" endConnec to r ="p1.e" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="ground"
s t a r t C o n n e c t o r ="p.f" endElement =
"wheel" endConnec to r ="p.f" />

< s s d : C o n n e c t i o n s t a r t E l e m e n t ="wheel"
s t a r t C o n n e c t o r ="p.e" endElement =
"ground" endConnec to r ="p.e" />

< / s s d : C o n n e c t i o n s>

3.5 Integration with FMI-VDM-Model
sspgen optionally integrates with the FMI-VDM-
Model (Battle et al. 2019) tool created by the INTO-CPS
project. The FMI-VDM-Model is a formal model of the
FMI standard using the VDM Specification Language.
The integration allows optional static analysis of the
included FMUs for informative purposes. To use, simply
provide the path to the FMI-VDM-Model executable
when invoking the sspgen functions validate or build.

3.6 Integration with PythonFMU
PythonFMU (Lars Ivar Hatledal, Collonval, and Zhang
2020) is a Python framework for developing FMUs using
the Python programming language. sspgen allows com-
ponents written using PythonFMU to be declared in its
source form. sspgen then calls the PythonFMU packaging
tool, which must be pre-installed on the system, during the
build process. This makes it easier to prototype SSP sys-
tems by shortening the development loop. This command
is featured in the DSL, but thanks to the underlying script-
ing context, it is possible for users to write generic code
that produced components from other sources on demand.

4 Conclusion and future work
This paper presents sspgen, a high-level DSL aimed at
easing and enhancing the creation of SSP archives. More
specifically, the DSL enables evaluation of complex ex-
pressions, is less verbose than XML and introduces con-
cepts that makes authoring easier, such as the ability to
copy data between components. Furthermore, the DSL
is written in Kotlin, a statically typed language that of-
fers auto-completion and syntax highlighting. More-
over, Kotlin features a standard library that further expand
the already well-established standard library provided by
Java. Additionally, a vast eco-system of third party li-
braries are readily-available. In the context of sspgen,
such libraries can be used to e.g., compute parameteriza-
tion options for components prior to export. More impor-
tantly, sspgen performs validation of its content so that the
user can address potential issues before actually loading

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 119115

the SSP into a simulation tool. Furthermore, the DSL sup-
ports the OSP-IS standard, allowing more complex con-
nections to be formed, which can be further validated for
semantic correctness. All while retaining compliance with
the SSP standard. The tool is not feature complete ac-
cording to the standard, but covers the necessary features
in order to be effective by the current users and has seen
wide usage internally by researchers and master students
at NTNU campus Aalesund for the purpose of modelling
maritime systems. The tool is largely stable and future
work includes maintenance, documentation and respond-
ing to user requests. Additionally, support for FMI 3.0
and further versions of the SSP standard will be consid-
ered. sspgen is open-source and available from https:
//github.com/Ecos-platform/sspgen under a
permissive license.

Acknowledgements
This work was supported in part by the Project “SFI Off-
shore Mechatronics”, under Grant 237896 from Research
Council of Norway.

References
Battle, Nick et al. (2019). “Towards a Static Check of FMUs in

VDM-SL”. In: International Symposium on Formal Methods.
Springer, pp. 272–288.

Évora Gómez, José et al. (2019). “Daccosim NG: co-simulation
made simpler and faster”. In: Linköping electronic conference
proceedings.

Hatledal, Lars I et al. (2021). “Vico: An entity-component-
system based co-simulation framework”. In: Simulation Mod-
elling Practice and Theory 108, p. 102243.

Hatledal, Lars Ivar, Frédéric Collonval, and Houxiang Zhang
(2020). “Enabling python driven co-simulation models
with pythonfmu”. In: Proceedings of the 34th Interna-
tional ECMS-Conference on Modelling and Simulation-
ECMS 2020. ECMS European Council for Modelling and
Simulation.

Hatledal, Lars Ivar, Houxiang Zhang, et al. (2018). “Fmi4j: A
software package for working with functional mock-up units
on the java virtual machine”. In: The 59th Conference on Sim-
ulation and Modelling (SIMS 59). Linköping University Elec-
tronic Press.

Köhler, Jochen et al. (2016). “Modelica-association-project
“system structure and parameterization”–early insights”. In:
The First Japanese Modelica Conferences, May 23-24, Tokyo,
Japan. 124. Linköping University Electronic Press, pp. 35–
42.

Ochel, Lennart et al. (2019). “Omsimulator–integrated fmi and
tlm-based co-simulation with composite model editing and
ssp”. In: Proceedings of the 13th International Modelica
Conference, Regensburg, Germany, March 4–6, 2019. 157.
Linköping University Electronic Press.

Open Simulation Platform (2020a). libcosim. (Date accessed 11-
May-2022). URL: https : / / github . com / open - simulation -
platform/libcosim.

Open Simulation Platform (2020b). OSP-IS. (Date accessed 11-
May-2022). URL: https : / / opensimulationplatform . com /
specification/.

Van Deursen, Arie and Paul Klint (2002). “Domain-specific lan-
guage design requires feature descriptions”. In: Journal of
computing and information technology 10.1, pp. 1–17.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA120 120

Development of a Modelica Model for the
Texas A&M Smart and Connected

Homes Testbed
Thomas Firsich1 Zhiyao Yang1 Zheng O’Neill1

1Department of Mechanical Engineering, Texas A&M University, United
States, {thomasfirsich17, z.yang, zoneill}@tamu.edu

Abstract
The Texas A&M Smart and Connected Homes Testbed
was developed to enable testing and fair comparison of
different smart home technologies and grid-interactive
capabilities. Having an accurate building model allows
researchers to design and optimize smart home systems
before implementing them into the experimental testbed.
The Modelica Buildings library gives researchers the
flexibility to prototype buildings and energy systems to
apply to their research projects. This study develops a
Modelica model using the Buildings library for the
building envelope of the testbed homes using data from
the home manufacturer. The A/C system model is
developed from the device’s rated performance data. Each
model goes through independent testing before
implementation in the complete building model. In the
future, real data from the lab homes will be used to tune
these models to ensure accurate performance before a
final model is made for testing.
Keywords: Buildings library, testbed modeling, model
tuning

1 Introduction
As Modelica grows in popularity among the research
community, libraries are built and maintained by labs to
further develop the software. Researchers at the Lawrence
Berkeley National Laboratory (LBNL) have created an
open-source library, the Modelica Buildings library,
which enables researchers in the building science
community to design and operate buildings and district
energy and control systems (Wetter at al. 2014). This
library contains dynamic simulation models for HVAC
systems, energy storage, multi-zone airflow, and so much
more. The contributions to this library come from many
researchers among different institutions that aid in
developing these tools for building research.

Buildings research is a growing field as the
electrification of the grid and modern technology
advancements enable the use of new smart home
technologies. Whether it is smart thermostats, high-
efficiency equipment, or even advanced building controls
that are being researched, they all require a dependable

model of the physical building to develop these complex
fields. With the help of Modelica and the Modelica
Buildings library, a flexible building model can be
constructed while saving time in simulation-based
projects.

The Buildings Energy and HVAC&R research group at
Texas A&M University has a smart home testbed that will
allow for the testing of smart home technologies, smart
grid applications, and other residential building research
topics. This paper will briefly go over the testbed before
walking through the modeling using Modelica and the
Modelica Buildings library. The paper will finish with
individual model inspection. The future work of this
project is to tune and verify the complete Modelica model
performance using data taken at the testbed during
operation.

2 Texas A&M Smart and
Connected Homes Testbed
The Texas A&M Smart and Connected Homes Testbed
(TAM-SCHT) is located at the RELLIS campus in Bryan,
Texas, United States. This testbed is used by the Building
Energy and HVAC&R research group at Texas A&M
University for smart home technology and smart grid
applications research (Firsich et al. 2022). It consists of
two identical mobile homes of 1,200 ft2 (111 m2), each
having 3 bedrooms, 2 bathrooms and an open living room
and kitchen layout. A picture of the testbed can be seen in
Figure 1.

Figure 1. The Texas A&M Smart and Connected

Homes Testbed (TAM-SCHT)

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 121120

This testbed is equipped with a wide-range of sensors to
collect building envelope measurements, indoor air-
quality, HVAC operation, as well as detailed power
consumption. The homes contain removable walls and
replaceable windows to provide potential reconfigurable
floorplan and advanced building envelope testing. High
efficiency HVAC equipment can be installed for testing
and the supply ducts can be switched from overhead vents
to floor vents. The testbed is also capable of smart grid
research with the addition of a PV panel solar farm and
on-site battery storage. The PV solar farm location,
system configuration, and budget has been established
already. Smart appliances will also allow for demand
control strategies with the ability to program the operation
and scheduling of these loads. The next section will go
through the Modelica modeling process for TAM-SCHT.

3 Modelica Models
The Modelica Buildings library is used to construct the
model of TAM-SCHT. A complete model of the testbed
includes a building model made up of three separate
thermal zones: a crawlspace, an attic space, and the living
floor, as well as an HVAC model. This building model
will be used to test new technologies or control strategies
before experimental testing within the testbed. A complete
Modelica model, with only a cooling HVAC system
implemented, can be seen in Figure 1. The following
sections will go over each element of the Modelica model.

Figure 1. The complete Modelica model of TAM-SCHT,
cooling only.

3.1 Building Envelope
The physical building of TAM-SCHT has been
constructed using the detailed thermal zone models in the
Buildings library. The thermal zones are assumed to be
completely mixed air and have been configured with
construction details from the building manufacturer. A
mixed air thermal zone model has been created for the
crawlspace foundation, the actual living zone of the
building, and the attic space. These three thermal zones
are then connected to form the entire building.

Each thermal zone model is constructed with material
data from the building manufacturer to get accurate heat

transfer into the building. Starting with the crawlspace
model in Figure 2, the testbed is built on top of 6 inches
(15.24 cm) of caliche white rock but will be modeled as
cement for the time being. Each wall of the crawlspace is
0.375 inch (0.92 cm) of plywood at 28 inches (0.71 m)
tall. The ceiling of the crawlspace is the floor of the living
area zone and is defined as a surface boundary. The heat
transfer for this layer is calculated in the living zone model
and input to the crawlspace through the heat transfer port
along with the temperature. Heat transfer from the ground
into the slab layer of the thermal zone is modeled with a
fixed temperature thermal conductance. This data uses the
average ground temperature in College Station, Texas
with a thermal conductance value found from (GreenCast,
Syngenta). Because there is nothing inside the crawlspace,
there is zero heat input into the internal gains of the
thermal zone.

Figure 2. Crawlspace thermal zone model.

The building envelope becomes more involved for the
part of the house designed for occupants. Exterior finished
layers, weather proofing sheets, insulation, and drywall
layers can be found in a typical building wall, from the
outside inward. These layers ensure that occupant comfort
is maintained throughout the year. For the thermal zone of
the living space, the wall construction begins on the
outside with a synthetic stucco, then a sheathing layer,
next fiberglass insulation between the structural wood
framing, and finally 0.5-inch (1.27 cm) gypsum board
interior, with a ceiling height of 8.5 ft (2.59 m). Thermal
properties of each layer are required and some come from
the IECC code compliant house for climate zone 2A
(Building Energy Codes Program). The ceiling is made up
of cellulose insulation and the same gypsum board for the
interior of the zone. The flooring has fiberglass insulation
which is beneath the linoleum flooring. Because the floor
and ceiling are shared constructions with the crawlspace
and attic thermal zones, they are both defined as
construction boundaries. The heat conduction through the
constructions is modeled in this thermal zone model and

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA122 120

then connected to the other thermal zones for the
convection, infrared, and solar radiation exchange with
the room using the surface ports. The thermal properties
of the windows come from the building manufacturer and
are defined based on their window area for each exterior
wall construction. There is 4 ft2 (0.37 m2) of window area
on the north wall, 60 ft2 (5.6 m2) on the east side, 15 ft2
(1.4 m2) on the south side, and 31 ft2 (2.9 m2) on the west
side of the thermal zone construction. The windows of the
testbed currently do not have shading or blinds.

Another crucial element to the thermal zone model of
the living space is the internal gains. The lab homes were
designed for research to be conducted with simulated
internal gains that a typical single-family house would
experience. The method used to calculate these internal
gains of the house come from the Building America
Housing Simulation Protocols (Wilson, E. et al. 2014) and
the accompanying spreadsheet tool developed by the
National Renewable Energy Laboratory and other
Building America partners. With this, the internal gains
that we would expect to see in a house of this size are
calculated with respect to occupants, appliances, and a
typical schedule for all. A weekend hourly profile of these
loads can be seen in Table 1.

Table 1. Weekday hourly profile of calculated internal loads.
 Living Room Bedroom (x3)

Hour Sensible
(Wh)

Latent
(Wh)

Sensible
(Wh)

Latent
(Wh)

1 386 20.2 195 6.2
2 362 17.2 184 5.9
3 345 11.5 179 5.7
4 339 11.1 179 5.7

These results can be input into the mixed air thermal
zone model as the heat input into the zone, split into
radiant, convective, and latent heat transfer. The living
space thermal zone also contains supply and return fluid
ports for the HVAC to be implemented later. The
complete living space thermal zone can be found in Figure
3.

Figure 3. Living space thermal zone model.

The thermal zone model of the attic varies from the
other models due to the geometry of the double-pitched
roof. Just like the crawlspace model, the floor of the attic
is defined as a surface boundary and connected to the heat
port of the living space thermal zone. The walls have the
same construction but without the fiberglass insulation
and gypsum board layers. The double-pitched roof is
made up of 0.438-inch (1.11 cm) OSB roof decking with
asphalt shingles. The thermal properties of these layers are
found in (property ref.). The angle of the roof is 11° (0.192
rad) and the tilt of the roof construction needs to be
specified following the Buildings.Types.Tilt method. In
Figure 4, we can see the orientation specifications that is
used in the Buildings library. A ceiling has a tilt of 0
radians due to the solar irradiation being on the other side
of the surface that faces the sky, viewing as an occupant
in the room. A floor has a tilt of π radians and a wall has
a tilt of π/2 radians with respect to the occupants in the
building. To get the 11° angle for both roof surfaces, the
left roof, letter A in the figure, will have a tilt of 0.192
radians and azimuth facing west, and the right roof, letter
B, will also have an angle of 0.192 radians but with an
azimuth facing east, matching the building orientation.

Figure 4. Modelica tilt orientations relative to occupants.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 123120

The attic space has no internal gains or heat input into
the thermal zone model, just as the crawlspace. Putting all
these elements together, the attic thermal zone can be seen
in Figure 5.

Figure 5. Attic thermal zone model.

3.2 HVAC System
TAM-SCHT is equipped with a split system air
conditioning package, serving a single zone, single
thermostat building. The outdoor unit is a 2.5-ton air
conditioner and the indoor fan coil unit is rated at 3 tons
and has a 10-kW electric heating package. The houses
come with a thermostat that operates using dual setpoint
control.

To model the air conditioning system, a single speed
direct expansion, DX, cooling coil, model is used from the
Buildings library. This model uses Equation 1 and
Equation 2 to calculate the cooling capacity and energy
input ration (EIR) of the cooling coil modeled for the
building (Wetter et al. 2014).

�̇�𝑄(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖, 𝑓𝑓𝑓𝑓)
= 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓)�̇�𝑄𝑖𝑖𝑛𝑛𝑛𝑛

(1)

𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖, 𝑓𝑓𝑓𝑓)
= 𝐸𝐸𝐸𝐸𝐸𝐸𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖)𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓)
/𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑛𝑛𝑛𝑛

(2)

𝑓𝑓𝑓𝑓 = �̇�𝑚/�̇�𝑚𝑖𝑖𝑛𝑛𝑛𝑛 (3)
where 𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖 is the evaporator inlet wet bulb temperature
and 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖 is the condenser inlet temperature. The
normalized mass flowrate, or flow fraction, is defined in
Equation 3, where �̇�𝑚 is the mass flow rate at the
evaporator and �̇�𝑚𝑛𝑛𝑛𝑛𝑚𝑚 is the nominal mass flow rate.
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖) is cooling capacity modifier as a
function of inlet temperatures, Equation 4, and
𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓) is cooling capacity modifier as a function of
normalized mass flowrate at the evaporator, Equation 5.

Similar to the cooling capacity, 𝐸𝐸𝐸𝐸𝐸𝐸𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖) is EIR
modifier as a function of inlet temperatures, Equation 6,
and 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓) is EIR modifier of normalized mass
flowrate at the evaporator, Equation 7.

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖) = 𝑐𝑐1 + 𝑐𝑐2𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖 + 𝑐𝑐3𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖
2

+ 𝑐𝑐4𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖 + 𝑐𝑐5𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖
2

+ 𝑐𝑐6𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖
(4)

𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓) = 𝑏𝑏1 + 𝑏𝑏2𝑓𝑓𝑓𝑓 + 𝑏𝑏3𝑓𝑓𝑓𝑓2 + ⋯ (5)
𝐸𝐸𝐸𝐸𝐸𝐸𝜃𝜃(𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖, 𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖) = 𝑐𝑐1 + 𝑐𝑐2𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖 + 𝑐𝑐3𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖

2

+ 𝑐𝑐4𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖 + 𝑐𝑐5𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖
2

+ 𝑐𝑐6𝜃𝜃𝑒𝑒,𝑖𝑖𝑖𝑖𝜃𝜃𝑐𝑐,𝑖𝑖𝑖𝑖

(6)

𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑓𝑓𝑓𝑓) = 𝑑𝑑1 + 𝑑𝑑2𝑓𝑓𝑓𝑓 + 𝑑𝑑3𝑓𝑓𝑓𝑓2 + ⋯ (7)

To get the coefficients for the modifier functions that
are required for the DX coil performance, the rated
performance data is fit using ordinary least squares linear
regression functions in the scikit-learn Python package.
The Air-Conditioning, Heating, and Refrigeration
Institute (AHRI) rated performance data of the HVAC
system is found using the model numbers of the
equipment and (International Comfort Products). The
modifier factors that are functions of inlet temperatures
are fit to biquadratic polynomials and the modifier factors
that are functions of flow fraction are equal to 1 because
the air handler that contains the evaporator has a constant
speed fan. A sample of the performance data at rated
conditions can be found in Table 2 at one condenser inlet
temperature. With the performance curves calculated for
the split system AC at TAM-SCHT, the Buildings library
DX coil is used in the building model as the HVAC
system, shown in Figure 6.

Table 2. Sample rated performance data from AHRI at 1000
CFM.

 Condenser Dry Bulb: 85°F

Evaporator
Wet Bulb
(°F)

Total
Cooling

(Btu)

Sensible
Cooling

(Btu)

Power
(kW)

57 27,536 27,536 2.22
62 27,575 27,575 2.22
67 29,906 23,497 2.21
72 33,025 18,681 2.21
76 35,519 14,827 2.21

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA124 120

Figure 6. HVAC model for the cooling.

The thermostat control for the model is representative
of the thermostat in the testbed. It uses dual setpoint
control with a cooling setpoint of 75°F (23.9°C) and a
heating setpoint of 69°F (20.6°C). An on/off controller is
implemented with a temperature setpoint of 75F with a
dead band of 2°F (1.11°C) to mimic the cooling operation
in the homes. The thermal zone temperature output from
the living floor model is also input to the controller to
operate the DX coil. The fan that moves air into the living
thermal zone model is a constant mass flow rate fan that
operates at the single speed nominal condition.

4 Modelica Model Verification
This section will cover the integration of the thermal zones
and HVAC system into one complete model. Initial tests
were run to verify the performance of each separate
model. The following sections will present the initial
results from testing. The period of testing is seven days
from August 4th to August 11th of 2022 in which on-site
weather conditions are used.

4.1 Building Envelope Verification
The thermal zone models are tested individually to show
their performance before implementing into the larger
model. An example of the model verification can be seen
in Figure 7. Weather data that has been recorded from an
on-site weather station and solar radiation data is pulled
from (Solcast) to create a TMY3 weather file for Bryan,
Texas for the seven days tested. A fan moving the outdoor
air into the zone will show the effects on the thermal zone
temperature after an intial temperature of 75°F (23.9°C).
This can also be seen in Figure 8. We expect this
performance from a recently built house with good
insulation, even with the outdoor air influencing the zone
temperature.

Figure 7. Thermal zone verification model with a fan.

Figure 8. Temperature profile of the outdoor dry bulb
(red) and the indoor thermal zone (blue).

The attic and the crawlspace undergo the same
verification simulations as the thermal zone but without
the fan connection because the two zones do not have air
flow through them. The crawlspace perfrmance over the
week can be seen in Figure 9 and the attic performance
can be seen in Figure 10. These results are what is
expected as the crawlspace temperature influence comes
from the solar irradiation and the ground heat transfer. For
the attic, solar irradiation plays a big role in the
temperature influence of the zone. If the horizontal global
radiation is plotted alongside the outdoor dry bulb and
zone air temperatures, the zone temperature effects follow
the radiation during the week simulation period, resulting
from the local weather.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 125120

Figure 9. Crawlspace temperature verification results
with outdoor dry bulb (red) and zone air (blue).

Figure 10. Attic temperature verification with outdoor dry
bulb (red), zone air (blue), and the horizontal global
radiation (green).

After the building thermal zone models, the HVAC
cooling system is next to check.

4.2 DX Coil Verification
For the DX coil verification, the AHRI rated conditions
performance data is used to check the accuracy of the
model. These rated conditions come from the same data
as table 2. The condenser inlet temperature, the outdoor
dry bulb temperature for a split system AC unit, and the
evaporator inlet temperature are supplied to the model. A
quick simulation is run and the cooling capacities and
power consumption is compared to the tabulated ratings
data.

The model that is used to verify the cooling capacity and
power consumption of the DX coil can be seen in Figure
11. This model comes from the air cooled DX coil
example called single speed. Modifications have been
made to this example. A constant condenser inlet dry bulb
temperature is wired to the DX coil model along with a
constant on signal for operation. A wether file is used to
supply the wet bulb temperature to the moist air media
that is supplied as the evaporator inlet air, also a rated
condition from AHRI performance data. A constant mass
flow rate fan is used to pull the moist air media through

the DX coil at the nominal condition. Relative humidity,
wet bulb, and dry bulb temperatures are measured for the
inlet air to ensure that the rated condition being run is
satisfied.

Figure 11. DX Coil verification model, derived from the
single speed example.

Each rated condition was run to compare the total and
sensible cooling capacity, as well as the power
consumption from the DX coil. The results from the rated
performance and the simulated perforamnce can be seen
in tables 3-5. The DX coil model performs accurately at
the highest 4 temperatures at the evaporator inlet. The
lowest 2 temperature conditions perform significantly
worse at every condenser inlet condition. Improvements
to the model will be discussed in the future work section
of this paper that follows.

Table 3. DX coil performance at a condenser inlet temperature
of 29.4°C, dry bulb.

 Total Capacity (W)

Twb (°C) AHRI Data Simulation

13.7 8,070.0 11,568.7
16.5 8,081.4 11,568.7
19.3 8,764.6 8,709.1
22.2 9,678.7 9,552.0
24.4 10,409.6 10,459.6

Table 4. DX coil performance at a condenser inlet temperature
of 29.4°C, dry bulb.

 Sensible Capacity (W)

Twb (°C) AHRI Data Simulation

13.7 8,070.0 11,568.7
16.5 8,081.4 11,568.7
19.3 6,8886.3 6,704.5

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA126 120

22.2 5,474.9 5,269.2
24.4 4,345.4 4,169.1

Table 5. DX coil performance at a condenser inlet temperature
of 29.4°C, dry bulb.

 Total Power (W)

Twb (°C) AHRI Data Simulation

13.7 2,220 2,030.3
16.5 2,220 2,030.31
19.3 2,210 2,245.8
22.2 2,210 2,237.3
24.4 2,210 2,175

The next step is to compile the models together.

5 Integrated Envelope and HVAC
Model
With all three thermal zone models and the HVAC cooling
model completed and verified, they can now be connected
together to simulate the operation of TAMSCHT. Because
the surface boundaries were defined in the attic and
crawlspace model, a heat port is used to connect with the
boundary construction that calculates the heat transfer.
Figure 1 shows the complete model and each thermal zone
is connected to each other. The HVAC cooling system
implementation in the complete model is discussed in
section 3.2.

The indoor temperature of the living space is plotted in
Figure 12 along with the outdoor dry bulb temperature and
the setpoint for the thermal zone. The Modelica
simulation of the one week period shows that even with
the high temperatures, the room setpoint was met. The
testbed does not haev any problems reaching this setpoint
as it is a newly built home. However, t he zone
temperature control can be seen as faulty as the
temperature drops to the lower bound of the setpoint
deadband. This will be discussed in the future work.

Figure 12. Temperature comparison of outdoor dry bulb
(red), zone air (blue), and the setpoint (green).

For validating the Modelica model of TAM-SCHT, we
look to compare the simulated AC power consumption
against measured power consumption. Detailed power
metering in the testbed contains data sampled every
minute on the power consumption from each end use.
Figure 13 shows the comparison of the simulated power
consumption against the measured data. The simulated
results managed to capture the trend of the AC power
consumption, while further model calibration is necessary
to corrrect the minor over-estimation.

Figure 13. Simulated (red) versus actual (blue) power
consumption of TAM-SCHT AC unit.

6 Future Work
Based on the initial simulation results of this integrated
model using on-site measure weather data illustrated in te
previous section, tuning and model calibration is
necessary to improve the model accuracy. On the
envelope side, the envelope of the living space thermal
zone contains a few materials that are common of code
compliant construction in IECC climate zone 2A. Due to
limited information from the manufacturer, these
materials were substituted in for the layers with
descriptions too vague to find thermal properties for, like
the “engineered wood panels“ on the exterior of the
houses. For the DX coil model, the accuracy at lower
evaporator inlet temperature needs to be improved. The
DX coil modifier functions need to be calibrated as shown
by the over-estimated power consumption from Figure 13.
The actual data allows us to tune these model inputs to
match the actual on-site measurement.

Further improvement and calibration of this Modelica
model is being carried out with the increasing stream of
on-site measurement data following the progress of sensor
deployment. The model for electric furnace will also be
implemented for the testing during the heating season.

7 Conclusion
An accurate building model is crucial for simulation based
research. Data from the building manufacturer, equipment
distributor, and knowledge of modeling techniques in
Modelica are necessary to have a model for testing. In this

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 127120

study, a building model for the Texas A&M Smart and
Connected Homes Testbed including its envelope and
cooling HVAC system has been developed. Models for
both the building envelope and the HVAC cooling system
were based on modules from the Modelica Buildings
library and set according to the manufacturer
specifications. These two models were combined into the
testbed model. Initial simulations were carried out
separately on the envelope and the HVAC model as well
as on the integrated testbed model with local weather data
to verify the expected behavior of these models. The
simulation results showed reasonable behavior out of the
models while further calibration is needed for improved
accuracy. This will be carried out with more data being
collected on-site on the building envelope thermostat
control, and HVAC performance as well as detailed power
metering. With the planned calibration, this Modelica
model will provide a digital twin to the actual testbed,
laying the foundation to future smart homes research at
TAM-SCHT.

References
Building Energy Codes Program, U.S. DOE. “Prototype

Building Models”. URL:
https://www.energycodes.gov/prototype-building-models

Firsich, Thomas, Zhiyao Yang, Fan Feng, and Zheng O’Neill
(2022). “Texas A&M Smart and Connected Homes Testbed
(TAM-SCHT): An Evaluation and Demonstration Platform
for Smart & Grid-interactive Technologies”. Accepted: 2022
ASHRAE Annual Meeting. Toronto, ON, Canada. June 25-29,
2022.

GreenCast, Syngenta. “Soil Temperature Maps”. URL:
https://www.greencastonline.com/tools/soil-temperature

International Comfort Products. AHRI Split System Ratings.
URL: https://www.icpeqp.com/AHRIratings/ratings.aspx

“Property Tables and Charts (SI Units)”. 2010
Solcast (2019). Global solar irradiance data and PV system

power output data. URL: https://solcast.com/
Wetter, Michael, Wangda Zuo, Thierry S. Nouidui, and Xiufeng

Pang. Modelica Buildings library. Journal of Building
Performance Simulation, 7(4), 253-270, 2014. DOI:
10.1080/19401493.2013.765506

Wilson, E., C. Engebrecht Metzger, S. Horowitz, and R.
Hendron (2014). “2014 Building America House Simulation
Protocols”. Tech. rep. National Renewable Energy
Laboratory. Report number: NREL/TP-5500-60988

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA128 128

Performance Enhancements for Zero-Flow Simulation of
Vapor Compression Cycles

Hongtao Qiao* Christopher R. Laughman

Mitsubishi Electric Research Laboratories
Cambridge, MA, USA

{qiao,laughman}@merl.com

Abstract
Models that correctly describe the dynamic behavior of
vapor compression cycle at low or zero refrigerant mass
flow rates are valuable because they can be used to
handle low load, on/off cycling and inactive component
conditions. However, low- or zero-flow simulation
imposes significant computational challenges because
of high frequency oscillations in mass flow. We explore
techniques that may be used for improving robustness
and performance of low- or zero-flow simulation.
Comparisons are conducted to demonstrate the efficacy
of the proposed techniques. It is shown that these
techniques can result in simulations that are more robust
and significantly faster than real-time.
Keywords: Modelica, zero flow, heat exchanger
modeling, dynamic simulation, vapor compression cycle

1 Introduction
Numerical simulations are widely employed in the
modern day HVAC&R (Heating, Ventilation, Air-
Conditioning and Refrigeration) industries to assist in
the design and optimization of advanced products in
response to the increasing pressure of cost reduction and
high-energy efficiency standards. With the aid of
simulation tools, design engineers can evaluate a
conceptual product design on computers instead of
building real systems and conducting expensive tests in
the laboratory, thereby shortening the time required for
design cycles.

In general, vapor compression system simulations
can fall into one of two categories: steady-state or
transient. The evaluation of the steady-state, full-load
performance of vapor compression systems is often used
to determine the system capacity and size. However,
vapor compression systems rarely operate under steady-
state conditions, and dynamic models are more adequate
for a realistic representation of the system response.
These models are typically used for two types of studies:
(1) examining small-scale changes in the refrigerant-
side behavior, such as flow instabilities, and (2)
examining larger system-level changes, such as system
behavior during start-up, shut-down, or defrosting.
While many models can typically reproduce small-scale

behavior quite accurately, the increased complexity and
nonlinearity associated with large-scale transients often
results in predictions that have much lower accuracy.

Low and zero-flow phenomena are often encountered
in the operation of vapor compression systems with
large transients, including on/off cycling of air-
conditioning systems, operating mode switch of variable
refrigerant flow systems, and reverse-cycle defrosting of
heat pump systems as examples. Simulation of system
dynamics under such conditions presents numerical
challenges, such as problems with robustness and an
attendant increase in simulation time due to direction
switching flows. In recognition of these problems,
Dermont et al. (2016) proposed an approach to improve
zero-flow simulation based on a systematic analysis of
heat transfer coefficients. Although this approach was
shown to increase simulation robustness under (near)
zero-flow conditions, the presented use cases ran much
slower than real time. In his sole-authored paper,
Zimmer (2020) suggested that regularization schemes
were required to improve model robustness against zero
mass flow without giving further details. Li (2020)
discussed the computational improvement from table-
based refrigerant property calculation models with
Analytical Jacobians. However, the implementation of
such methods is a long-term task and requires
significant effort. We are thus motivated to explore
effective numerical techniques to improve the
performance of zero-flow simulations, especially
focusing on robustness and improvements in the
simulation speed, with a goal of achieving faster than
real-time dynamic simulation.

The remainder of the paper is organized as follows.
In Section 2, we present a regularized pressure drop
model that has significant benefits for these on/off
transient simulations. In Section 3, we discuss the
advantages and disadvantages of static and dynamic
heat transfer coefficient models. In Section 4, we
describe the single pressure heat exchanger model and
its potential to speed up the zero-flow simulation.
Conclusions from this work are then summarized in
Section 5.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 129128

2 Pressure Drop Model
The finite volume method is often used to discretize the
governing equations that describe the dynamics of
refrigerant flow because it has been highly successful in
approximating the solution of a wide range of thermal-
fluid systems and maintaining quantity conservation. In
many of these types of models, a staggered grid scheme
is utilized to decouple the mass and energy balance
equations from the momentum balance equation. As a
result, the mass and energy balances are calculated
within the volume cells while the momentum balance is
calculated within the flow cells, as depicted in Fig. 1.

Figure 1. Staggered grid scheme

Since the inertia term, dynamic pressure wave and

gravity effect in the momentum equation are usually of
minor importance in these applications, they are often
neglected in heat transfer analyses to reduce the
modeling complexity (Brasz and Koenig, 1983). As a
result, the discretized governing equations for 1-D flow
are often given as

1/2 1/2
i

i i
dM m m
dt    (1)

1/2 1/2 1/2 1/2
i

i i i i i
dU m h m h P zq
dt         (2)

1 ,i i f ip p p   (3)

Pressure and specific enthalpy are often selected as

state variables to avoid non-linear algebraic equations
when they are the independent properties in the media
models. The equations of mass and energy can then be
rewritten using the time-derivative of pressure and
specific enthalpy based on the chain rule.

It is evident from Eq. (3) that the pressure difference
between adjacent volumes is solely determined by the
frictional pressure loss. The frictional pressure drop is
often a complex nonlinear function of Reynolds number

and thus mass flow rate, and is often impossible to invert
analytically. Since the pressures in each control volume
are known at each time step, numerical iterations may
be required to solve mass flow rate based on pressure
difference, resulting in slower simulations.

Unlike the steady-state models that are often used for
system design and require high prediction accuracy,
dynamic models are widely used over much wider
operating ranges and thus require high robustness and
high efficiency, which is sometimes achieved at the
expense of accuracy or fidelity to published frictional
pressure loss correlations (Idelchik, 1986). Therefore,
simplified models are often used to reduce modeling
complexity and improve simulation speed. Among
those, the following model approximating the frictional
pressure loss (Laughman and Qiao, 2018) Δ𝑝𝑝 = 𝑓𝑓(�̇�𝑚)
is expressed as

 0 0/ bp K p m m   (4)

where p0 and �̇�𝑚0 are the parameters in the nominal
condition, and K and b (often greater than 1) are curve-
fitting constants. This relation is not only less nonlinear
than the original correlation-based relations, but it is
also easily invertible and can allow the pressure loss to
be calculated as a function of the mass flow rate, or vice
versa. As such, the resulting system simulations have
much faster performance, since the nonlinear
dependence on the variety of input variables is removed
from the relation and the integrator can take much larger
steps. One can easily invert Eq. (4) and obtain the
derivative of mass flow rate with respect to pressure
drop

 
0

1
0

1b

b

mdm
d p bK p m 

 
 (5)

Eq. (5) suggests that �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝)is not Lipschitz

continuous and becomes increasingly sensitive to
pressure drop as it approaches zero and eventually the
derivative becomes infinite when mass flow is zero.
Meanwhile, we can examine the time derivative of the
mass flow

 
    10

0

b
bd p d pdm dm m m

dt d p dt bK p dt
 

 
 

 (6)

Eq. (6) shows that the time derivative of the mass

flow rate is very large when the mass flow rate is small,
indicating that Eq. (6) is a stiff ODE. One can make a
simple analogy between Eq. (6) and the ODE 𝑦𝑦′ =
−𝑎𝑎𝑦𝑦 (𝑎𝑎 > 0) . To obtain a stable solution with the
Explicit Euler method, the time step must satisfy Δ𝑡𝑡 <
2/𝑎𝑎. When 𝑎𝑎 is very large, the time step becomes very

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA130 128

small, which is exactly the case for Eq. (6) since 𝑎𝑎 =
− �̇�𝑚0

𝑏𝑏

(𝑏𝑏𝑏𝑏Δ𝑝𝑝0)
𝑑𝑑(Δ𝑝𝑝)
𝑑𝑑𝑑𝑑

1
�̇�𝑚𝑏𝑏 is infinite when the mass flow is zero.

The point with infinite derivative is often called
singularity point. In consequence of this behavior, the
simulation often stalls for off-cycle conditions of vapor
compression systems in which mass flow rate is
extremely low. A conventional remedy for this behavior
is to replace the singular part with locally non-singular
substitute resulting in a finite derivative at the point; this
process is often referred to as regularization. According
to Dermont et al. (2016), a regularized pressure drop
correlation is necessary for a complex thermo-fluid
model to compute under zero flow conditions. The built-
in implementation of power function that employs such
regularization for terms in Eq. (4) can be found in
Modelica.Fluid.Utilities.regPow.

function regPow
 extends Modelica.Icons.Function;
 input Real x;
 input Real a;
 input Real delta=0.01;
 output Real y;
algorithm
 y := x*(x*x+delta*delta)^((a-1)/2);
end regPow;

This regPow function approximates 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)|𝑥𝑥|𝑎𝑎 and is
regularized with finite derivatives around the singular
point. In this function, the parameter delta is used to
specify the regularization range. When abs(x) <<
delta, the regularization results in a linear
approximation for the original function with the
Lipschitz constant to be unity. Although the built-in
implementation successfully eliminates the singularity
point, it can be further improved. Consequently, one
more parameter can be added to regPow so that different
types of regularization can be formulated.

function regPowGen
 extends Modelica.Icons.Function;
 input Real x;
 input Real a;
 input Real delta=0.01;
 input Real b=1;
 output Real y;
algorithm
 y := x^b*(x*x+delta*delta)^((a-b)/2);
end regPowGen;

With different values for the parameter b, different
approximations can be obtained for the original
function. When b = a, the regPowGen function is
equivalent to the original power function without
regularization. With b = 1, the function is the same as
the built-in function regPow. Fig. 2 shows different
regularization schemes for the pressure loss relation in
the neighborhood around the singularity point. Without
regularization, the derivative at the origin is infinite and

the mass flow rate is extremely sensitive to the change
in pressure loss around the singularity point, which can
cause simulation of low- or zero-flow conditions to
crash. The simulation performance does improve with
the built-in approach, but is still far from satisfactory
because small pressure differences can still result in
large variations in mass flow. With b = 3, a cubic
approximation is used around the singularity point and
the Lipschitz constant is much smaller. As a result, the
mass flow rate becomes far less sensitive to pressure
differences so that the solver can take much larger step
sizes.

Figure 2. Different types of regularization for pressure

loss relation

To evaluate the efficacy of different types of

regularization, off-cycle transients of a room air-
conditioning system, illustrated in Fig. 3, were
simulated. The system ran steadily before it was shut
down at 500 sec. The off-cycle period then lasted for
4500 sec and the simulation ended at 5000 sec. As
shown in Fig. 4, adequate regularization can make a
substantial improvement to the simulation performance.
With the built-in regPow function for the simplified
pressure loss relation, it took more than 23000 sec of
CPU time to finish a 5000 sec simulation. However,
with modified regularization scheme (b=3), it only took
around 1700 sec to finish the simulation and CPU time
was reduced by more than 10 times. Reducing the
sensitivity of the mass flow rate to the pressure
difference around the singularity point can thus be a key
for faster simulation of low or zero flow conditions. No
changes in the component models were required with
the proposed regularization scheme. Please note that the
proposed cubic approximation should be directly
applied to the function that calculates the mass flow rate
given the pressure drop, i.e., �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝) . This
regularization scheme exhibits no robustness issues in
our models since the inverse function �̇�𝑚 = 𝑓𝑓−1(Δ𝑝𝑝)
can be easily computed. If the inverse function �̇�𝑚 =
𝑓𝑓−1(Δ𝑝𝑝) cannot be obtained, one needs to be cautious
when applying the proposed scheme due to the possibly
resulting numerical issues.

dp/dp0

No regularization (b=a)
Built-in regularization (b=1)
Modified regularization (b=3)

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 131128

Figure 3. Modelica model of a room air-conditioning

system

Figure 4. CPU time vs. simulation time with different

types of regularization

3 Heat Transfer Coefficient Model
The description of local heat transfer coefficients
(HTCs) in the simulation models of thermofluid systems
can be particularly challenging, as the correlations are
usually formulated with accuracy as the primary
concern, and with little regard for computational
considerations. Consequently, they can be difficult to
incorporate into system-level models of thermofluid
systems as they may be extremely nonlinear.
Meanwhile, these correlations are usually defined only
for specific flow conditions or refrigerant phases, so that
there will inevitably be significant discontinuities
between regions of the validity for specific correlations.
Dynamic simulation presents additional difficulties as
the unknown refrigerant mass flow rates, pressures, and
specific enthalpies preclude the use of any initial
information about the phase of the refrigerant
(condensation, evaporation, liquid, or vapor) or the flow
regime (laminar or turbulent), so the correlations must

be defined in a manner which encompasses a wide range
of flow conditions.

One alternative approach that has been successfully
used to mitigate the nonlinearities of detailed heat
transfer coefficient correlations has been the creation of
simplified models that capture the general trends of
those detailed correlations without implementing their
complexity. These simplified correlations can be
justified via the improved numerical performance of the
simulation models, which may not even function with
some of the complex correlations found in the literature,
as well as the fact that the overall heat transfer
coefficient for many refrigerant-to-air heat exchangers
is dominated by the air-side heat transfer coefficient,
rather than the refrigerant-side heat transfer coefficient.

A wide variety of forms can be used for these
relations, depending on the required parametric
dependence or level of fidelity to the behavior of the
original correlations. For example, we used a simplified
heat transfer relation for each phase according to

 0 0/ bK m m  (7)

The constants 0 for the liquid, two-phase, and vapor
flow regions were calculated by coarsely approximating
the behavior of the full correlations over their regions of
validity, and a trigonometric interpolation method was
used to smoothly transition between phases (Richter,
2008).

Laughman and Qiao (2018) proposed the
incorporation of dynamics into the closure models to
decouple the heat transfer coefficient from the other
state variables. This makes the closure variables into
state variables of the system, and will decouple the value
of the closure variable in the fluid computations with the
value of the closure variable calculated from the other
state variables. In the case of the heat transfer
coefficient, this may be calculated by

 1 ˆd
dt
  


  (8)

where �̂�𝛼 represents the algebraic heat transfer
coefficient which can be calculated using either detailed
or simplified relations, and  represents the filtered
version of the heat transfer coefficient. The parameter 
should be tuned to be substantially faster than other time
constants of the system in order to ensure that it will not
change the system response.

This dynamic heat transfer coefficient model has
proved to be effective at eliminating the spurious
oscillations caused by the high gain of 𝜕𝜕𝛼𝛼/𝜕𝜕𝜕𝜕 in the
transition region from vapor phase to two-phase and
increase model robustness. However, for the case of off-
cycle simulation, the filtered heat transfer model can
potentially slow down the simulation because it

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000 5000

CP
U

tim
e

(s
)

Simulation time (s)

Built-in regularization

Modified regularization

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA132 128

increases the number of state variables in the system. As
demonstrated in Fig. 5, it took around 3700 sec CPU
time to finish the same off-cycle simulation of the air-
conditioning system described in Fig. 3 with filtered
heat transfer coefficient model, which was 2 times
longer than the CPU time of the simulation with static
heat transfer coefficient model. It was evident that the
filtered model slowed down the simulation remarkably
for the first 500 sec after the system was shut down.
During this period of time, the refrigerant mass flow
rates declined dramatically, resulting in a rapid change
in heat transfer coefficients. Setting ‘log norm true’
during the running simulation when using the Modelica
compiler Dymola 2020x (Dymola, 2020) can determine
that some of heat transfer coefficient states were causing
the integrator to be slow. In summary, the filtered heat
transfer coefficient model can help improve model
robustness and eliminate the high-frequency numerical
oscillations, but not necessarily speed up the off-cycle
simulation. It is recommended that modelers try both
static and filtered approaches to the heat transfer
coefficients to choose a more appropriate approach on a
case-by-case basis.

Figure 5. CPU time vs. simulation time with different

HTC models

4 Single Pressure Heat Exchanger
Model

Heat exchangers usually require particular attention in
the modeling of vapor compression cycles because they
are the main components where exchange of mass,
energy and momentum take place. Accurate
mathematical and physical representations for heat
transfer and fluid flow phenomena in heat exchangers
are always crucial for the overall cycle simulation. In
general, three modeling paradigms are often used for
heat exchanger simulations. In order of increasing
complexity and sophistication, they are the lumped
parameter method, the moving boundary method and
the finite volume method, respectively.

Lumped parameter models simplify the description of
the characteristics of an inherently spatially distributed
physical system with mean properties that are assumed
homogeneous throughout the heat exchanger by
averaging out the spatial variations. With this approach,
only the overall mass and energy balances (2 equations)
are considered and the thermal behavior of heat
exchangers is modeled as a single control volume. Since
this approach disregards the spatial variation in
properties and the distinct differences of the heat
transfer mechanisms between single-phase and two-
phase, these models inevitably result in the most
inaccurate predictions amongst these three modeling
approaches.

Recently, Qiao and Laughman (2022) developed a
new low-order heat exchanger model based on the
lumped parameter approach. Unlike conventional
lumped parameter models, this new model assumes a
distribution of refrigerant enthalpy so that the spatial
variations of refrigerant properties such as density and
specific enthalpy can be taken into account. The overall
mass and energy balances to describe the refrigerant
dynamics are given as

in out
dp dhV m m

p dt h dt
   

     
 (9)

 
3

,
1

in in out out in out r j
j

dh dpV V
dt dt

m h m h m h qm





 

   
 (10)

It is assumed that refrigerant enthalpy varies
exponentially in the heat exchanger. Therefore, the local
refrigerant quality is determined by

     
 

exp 1
exp

1 exp 1 1 exp 1
out inin out x xx xx 
 

  
   

 (11)

where  is the fraction of the heat exchanger covered by
the portion from the inlet to the location of interest.
Fractions of vapor, two-phase and liquid zone can be
readily computed with this enthalpy distribution profile.
The mean specific enthalpy of refrigerant in the heat
exchanger can also be determined by

 1g g f f tpvap vap vap

liq liq liq

h hh
h

h

    
 

 


    



 (12)

where �̅�𝛾 is the mean void fraction of the two-phase flow.
Since ℎ̅ is a state variable and is known at each time

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

CP
U

tim
e

(s
)

Simulation time (s)

Filtered HTC
Static HTC

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 133128

step, Eq. (12) can be used to iterate hout so that the entire
system is closed. The accuracy of the new models can
be significantly improved with the addition of
refrigerant enthalpy profile as compared to moving
boundary models, but with minimum additional
computational cost. A full description of this modeling
approach, which is beyond the scope of the present
work, can be found in the referenced paper.

In comparison, the moving boundary method is
characterized by dividing the heat exchanger into
different control volumes, each of which exactly
encompasses a particular fluid phase (vapor, two-phase
or liquid) and is separated by a moving boundary where
the phase transition occurs. In contrast to the distributed
parameter models, the number of control volumes in
moving boundary models may vary because fluid phases
can disappear or appear under large disturbances. These
models may consist of at most three control volumes and
at least one at a time (6 equations at most). The objective
of such models is to capture the thermal behavior inside
these control volumes and time-varying position of
phase boundaries. Moving boundary models generally
result in much faster simulations compared to
distributed parameter models due to their small size
while more accurately capturing the time-varying
dynamics of these systems, but these models are
inherently fragile due to their variable model structures.
For instance, moving boundary models cannot manage
zero or reverse flows because these models are designed
with the strict assumption that refrigerant flow enters the
heat exchanger from one end, and leaves from the other.
These models are either are either over- or
underdetermined if these assumptions are violated (Qiao
et al., 2016).

Finite volume heat exchanger models are particularly
useful for describing spatially dependent phenomena
and detailed component performance, such as the effect
of local heat transfer and pressure drops or the branching
and joining of refrigerant pipes as a result of particular
circuiting configurations. As discussed earlier, finite
volume models are comprised of an alternative sequence
of volume cells and flow cells. The resultant modular
nature allows great flexibility in system configurations,
and different component models can be seamlessly
linked together (Qiao et al., 2015). However, one of the
disadvantages of this modeling approach is that it
creates many dynamic pressure states. For a model with
N control volumes, it has 2N dynamic states, i.e., N
pressure states and N specific enthalpy states, resulting
in N mass flow rates that need to be computed based on
pressure differences. Therefore, 3N equations are
needed to solve the model. Under off-cycle conditions,
these N mass flow rates will all decline rapidly and each
will enter the region where the mass flow rate is highly
sensitive to pressure difference. This will inevitably
increase the likelihood that the integrator will
substantially reduce the step size during the solving

process of the model. Based on this reasoning, it is
anticipated that the off-cycle simulation can be greatly
accelerated if the dependence of mass flow upon
pressure difference can be removed. We thus propose a
heat exchanger model with a single pressure state and
the governing equations are given as

,
1/2 1/2

,

ii i
i i

i

dhdpA z m m
p dt h dt





 
 

  
       

 (13)

   

,

1/2 1/2 , 1/2 1/2 1/2 ,

i
i

i i i i i i i i

dh dp
A z

dt dt

m h h h m h h P zq



 



    

  

    

 
 
 

 (14)

In this new modelling approach, the volume cells

within the component model share the same pressure.
The number of dynamic states is N+1, i.e., one pressure
and N specific enthalpies. Mass flow rates between
volume cells will be computed through the coupling
between the equations of mass and energy (Qiao and
Laughman, 2018). The momentum equation is therefore
not needed, so that the whole model consists of only 2N
equations. It is worthwhile to point out that pressure
drop between components is still taken into account in
the system model, though the pressure drop is lumped
together and calculated at the inlet or the outlet of the
component model depending upon the model structure.
As a result, the number of pressure states is significantly
reduced, while the number of flow models calculating
mass flow based on pressure differences is also
decreased. These changes can substantially speed up the
off-cycle simulation.

With the modified regularization scheme for pressure
loss relation, static heat transfer coefficient model, and
single pressure heat exchanger model, the same off-
cycle simulation finished with around 200s of CPU
time, which was 9 times faster than the conventional
finite volume models, as shown in Fig. 6. The speedup
improvement achieved using all of the techniques
discussed in this work was substantial, given that the
off-cycle simulation without any of these enhancements
was more than 100 times slower. The discrepancies
arising from the approximation of lumped pressure drop
were minimal, as the system pressures equalize quickly
under off-cycle conditions, and pressure drops between
volume cells are negligible. Fig. 7 illustrates the suction
and discharge pressure transients as well as compressor
mass flow during off-cycle. The compressor mass flow
instantly dropped to zero after system was shut down,
and suction and discharge pressures came to an
equilibrium shortly afterwards, which somewhat
justified the key assumption of the proposed single
pressure heat exchanger modeling approach.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA134 128

Fig. 8 illustrates a vapor compression system with
two evaporators, which was modified based on the
results of the single-evaporator system described in Fig.
3. To further demonstrate the efficacy of the proposed
enhancement techniques for zero-flow simulation, we
present another case study, in which the system
described in Fig. 8 was operated normally for the first
500 sec with two active evaporator branches, after
which the first evaporator branch was turned off (the fan
was off and the valve was closed) and the system
continued running before being completely shut off at
3000 sec. The changes in the actuators and the CPU time
as a function of simulation time were given in Fig. 9.
This simulation finished smoothly and only took 600 sec
of CPU time, indicating the effectiveness of the
proposed techniques.

Figure 6. CPU time vs. simulation time with different

heat exchanger models

Figure 7. Pressure and compressor flow transients under

off-cycle operation

Figure 8. A vapor compression system with two

evaporators

Figure 9. Actuator changes and CPU time vs. simulation

time for the system in Fig. 8

5 Conclusions
This paper explored a set of techniques to improve the
robustness and speed for zero-flow simulation of vapor
compression cycles. It was found that reducing the
sensitivity of mass flow to pressure differences was an
important key to accelerating the zero-flow simulation.
This can be achieved by regularizing the pressure loss
relation with cubic approximation in the neighborhood
around the singularity point. We also recommend using
a static heat transfer model because it reduces the
number of dynamic states if no spurious oscillations
appear in the simulation. Lumping refrigerant pressure
drops at the inlet or outlet of heat exchangers or pipes
also demonstrated value in further speeding up the zero-
flow simulation. These techniques proved to be efficient
to handle refrigerant dynamics in on/off cycling and
inactive component conditions.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 135128

References
Christopher Laughman and Hongtao Qiao. On closure

relations for dynamic vapor compression cycle models.
American Modelica Conference, 2018.

Christopher Richter. Proposal of new object-oriented
equation-based model libraries for thermodynamic systems.
Ph.D. thesis, Technische Universität Braunschweig, Institut
für Thermodynamik, 2008.

Dassault Systemes, AB. Dymola 2020x, 2020.
Dirk Zimmer. Robust object-oriented formulation of directed

thermofluid stream networks. Mathematical and Computer
Modeling of Dynamical Systems, Vol. 26, No. 3, pp. 204–
233, 2020.

Hongtao Qiao and Christopher Laughman. Comparison of
approximate momentum equations in dynamic models of
vapor compression systems. In Proceedings of the 16th
International Heat Transfer Conference, 2018.

Hongtao Qiao and Christopher Laughman. A Low-Order
Model for Nonlinear Dynamics of Heat Exchangers. 18th
International Refrigeration and Air Conditioning
Conference at Purdue. 2022.

Hongtao Qiao, Christopher Laughman, Vikrant Aute and
Reinhard Radermacher. An advanced switching moving
boundary heat exchanger model with pressure drop.
International Journal of Refrigeration, No. 65, pp. 154-171,
2016.

Hongtao Qiao, Vikrant Aute and Reinhard Radermacher.
Transient modeling of a flash tank vapor injection Heat
Pump System - Part I: Model Development. International
Journal of Refrigeration, No. 49, pp. 169–182, 2015.

Idelchik, I.E. Handbook of hydraulic resistance. Washington.
1986.

Joost J. Brasz and Kenneth Koenig. Numerical methods for
the transient behavior of two-phase flow heat transfer in
evaporators and condensers. Numerical Properties and
Methodologies in Heat Transfer, pp: 461-476, 1983.

Lixiang Li, Jesse Gohl, John Batteh, Christopher Greiner, Kai
Wang. Fast simulations of air conditioning systems using
spline-based table look-up method (SBTL) with analytical
Jacobians. American Modelica Conference, 2020.

Pieter Dermont, Dir Limperich, Johan Windahl, Katrin Prolss
and Cartsen Kubler. Advances of zero flow simulation of
air conditioning systems using Modelica. Proceedings of
the 1st Japanese Modelica Conference, Tokyo, Japan. 2016.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA136 136

Tradeoffs Between Indoor Air Quality and Sustainability for
Indoor Virus Mitigation Strategies in Office Buildings

Cary A. Faulkner1 John E. Castellini Jr.1 Yingli Lou2 Wangda Zuo3,4 David M. Lorenzetti5

Michael D. Sohn5

1Department of Mechanical Engineering, University of Colorado Boulder, USA
2Department of Architectural Engineering, University of Colorado Boulder, USA

3Department of Architectural Engineering, Pennsylvania State University, USA
4National Renewable Energy Laboratory, USA

5Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, USA

Abstract
The COVID-19 pandemic has motivated building opera-
tors to improve indoor air quality (IAQ) through long-term
sustainable solutions. This paper develops a modeling ca-
pability using the Modelica Buildings library to evaluate
three indoor virus mitigation strategies: use of MERV 10
or MERV 13 filtration and supply of 100% outdoor air
into a building with MERV 10 filtration. New evaluation
metrics are created to consider the impact of improving
IAQ on financial and environmental costs. The mitiga-
tion strategies are studied for medium office buildings in
three locations in the United States with differing climates
and electricity sources. The results show that use of 100%
outdoor air can significantly improve IAQ with limited in-
creases in costs in the milder climate, but leads to very
high costs in the hot and humid and very cold climates.
MERV 13 filtration can improve IAQ relative to MERV
10 filtration with small increases in costs in all locations.
Keywords: Indoor air quality, costs, COVID-19, sustain-
ability.

1 Introduction
Improving indoor air quality (IAQ) during the COVID-19
pandemic while limiting environmental impact in the age
of rapid climate change is challenging. Operation of build-
ing heating, ventilation, and air-conditioning (HVAC) sys-
tems can mitigate indoor virus concentration and reduce
risk of infection (Pease, Wang, et al. 2021; Shen et al.
2021; Vlachokostas et al. 2022; Pease, Salsbury, et al.
2022), but can also increase HVAC energy consump-
tion (Faulkner et al. 2022; Cortiços and Duarte 2021).
For example, higher outdoor air ventilation rates can in-
crease heating/cooling energy usage, or use of efficient,
high pressure drop filters can increase fan energy con-
sumption. Improving IAQ while minimizing increases in
energy costs and emissions is a challenge dependent on
several factors, including mitigation strategy, climate, and
electricity sources.

Previous literature studied tradeoffs between IAQ and
HVAC energy consumption. Santos and Leal (Santos and

Leal 2012) examined the impact of increased ventilation
rate on energy consumption in European cities. They
found the increase in energy is dependent on climate and
building type. Aviv et al. (Aviv et al. 2021) proposed a
novel HVAC strategy to couple radiant systems and nat-
ural ventilation to increase outdoor air ventilation while
minimizing energy consumption. Schibuola and Tam-
bani (Schibuola and Tambani 2021) found high mechani-
cal ventilation rates with efficient air handling units could
reduce the risk of infection of COVID-19 and improve en-
ergy efficiency in Italian secondary schools. Ben-David
and Waring (Ben-David and Waring 2018) studied the ef-
fects of increased filtration and ventilation on indoor ex-
posure to PM2.5 and ozone. They found that improving
filtration tended to have a greater impact on the cost func-
tion incorporating energy and exposure costs.

Despite significant recent progress in the literature,
there is potential for further analysis. First, studies of-
ten assume steady-state scenarios and neglect the dynam-
ics of the HVAC system. For example, constant ventila-
tion rates and outdoor air fractions may be assumed, when
these values are dynamic in practice and affect both IAQ
and energy consumption. Additionally, researchers often
consider energy and costs to quantify sustainability, but
do not always include greenhouse gas emissions. This is
especially important as new policies incentivize reducing
building emissions.

To address this research gap, we propose a study to ana-
lyze the tradeoffs between IAQ and costs, including costs
associated with filters, HVAC energy consumption, and
CO2 emissions. Newly available dynamic CO2 emission
data is used to quantify emissions in different locations
based on electricity sources. Three mitigation strategies
are studied in three locations with distinct climates and
electricity sources. The mitigation strategies include dif-
ferent levels of filtration, such as MERV 10 and MERV
13 filtration, as well as supply of 100% outdoor air into
a building with MERV 10 filtration. We simulate the
scenarios using detailed system modeling of a prototype
medium office building initially sized for MERV 10 filtra-
tion based on the Modelica Buildings library (Wetter, Zuo,

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 137136

et al. 2014; Wetter, Bonvini, et al. 2015). New component
models for HVAC filtration and viral transmission are de-
veloped to support the analyses in this study.

The remainder of this paper is organized as follows.
We describe the Modelica modeling to support the anal-
yses in this study in Section 2. Next, methods to evaluate
and compare the mitigation strategies are detailed in Sec-
tion 3. The scope of analysis for this study including the
three mitigation strategies and three locations is described
in Section 4. The results in terms of IAQ and costs are
presented in Section 5. Finally, conclusions are drawn in
Section 6.

2 Modelica Modeling
The modeling based on the Modelica Buildings library is
detailed in this section. First, we describe the developed
component models to support the analyses in this study.
We then detail the system modeling of the studied medium
office building.

2.1 Component Modeling
We describe the new component models for HVAC filters
and viral transmission in this section.

2.1.1 HVAC Filter Model

We first develop an HVAC filter model to simulate filtra-
tion of viral particles. The model includes: removal of vi-
ral particles based on a defined efficiency and static pres-
sure drop due to the resistance the filter imposes on the
airflow.

The removal of virus can be described as:

cout = (1−η f ilter)cin, (1)

where cout is the virus concentration exiting the filter,
η f ilter is the filter removal efficiency in terms of percent-
age of virus removed, and cin is the virus concentration
entering the filter. The filter efficiency can be between
0-100%, where η f ilter = 100% describes a filter that com-
pletely removes all virus in the airflow.

Next, the static pressure drop caused by the resistance
of the filter is:

∆p f ilter = k f ilterṁ2
f ilter, (2)

where ∆p f ilter is the static pressure drop caused by the
filter, ṁ f ilter is the mass flow rate of air though the filter,
and k f ilter is:

k f ilter =
∆pnom

ṁ2
nom

, (3)

where ∆pnom is the nominal pressure drop at the nominal
mass flow rate, ṁnom. These two values are inputs to the
filter model. The quadratic relation between static pres-
sure drop and mass flow rate can be approximated using
the Bernoulli equation and captures the general trend from
experimental data (ASHRAE 2017). It should be noted

that the filter pressure drop increases over time as the fil-
ter collects particles (Xia and Chen 2021), but the nominal
pressure drop was assumed to be constant in this study for
simplicity.

2.1.2 Viral Transmission Modeling

We use the building level concentration of COVID-19
virus to represent IAQ in the majority of this study. Sick
people generate viral particles directly into each well-
mixed zone at a constant generation rate. The balance of
concentration in a zone can be described as:

ċzone = (1/mair,zone)Σ(ṁc)zone+ ċgen,zone− ċdecay,zone, (4)

where ċzone is the rate of change of virus concentration
in the zone with respect to time, mair,zone is the mass of
air in the zone, Σ(ṁc)zone is the net sum of the virus con-
centration flowrates into/out of the zone, ċgen,zone is the
virus concentration generation rate within the zone, and
ċdecay,zone is the rate of viral decay in the zone, which is
modeled based on a first order method:

ċdecay,zone = kdecayczone, (5)

where kdecay is a defined constant rate of viral decay, and
czone is the virus concentration in the zone.

The presence of one sick person in each zone within
the building is simulated from 9:00 AM - 5:00 PM, Mon-
day through Friday throughout the year. This allows for
the evaluation of the mitigation strategies during differ-
ent conditions, such as weather, throughout the year. The
virus generation rate is dependent on many factors, such
as the activity level of the sick person. We select a typical
virus generation rate of 25 quanta/hr (Buonanno, Stabile,
and Morawska 2020; Buonanno, Morawska, and Stabile
2020) and a viral decay rate of 0.48 hr−1 (Pease, Wang,
et al. 2021) based on data from the literature.

2.2 System Modeling
We provide an overview of the studied medium office
building system and modeling of this system in this sec-
tion.

2.2.1 Studied Building System

The building system in this work is based on the DOE
commercial reference medium office building (Depart-
ment of Energy n.d.), with a focus on the bottom floor.
The schematic for this system is shown in Figure 1. The
floor consists of five zones, including a core zone and four
perimeter zones, with a total floor area of 1,664 m2. A
central air handling unit with heating and cooling coils
services this floor, with VAV terminal boxes containing
reheat coils for each zone. An outdoor air economizer
is used to supply the minimum outdoor airflow based
on ASHRAE standards (ASHRAE 2019) as well as pro-
vide free cooling. Natural gas is used to provide heating,
while electricity is used to provide cooling and power the

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA138 136

Figure 1. Schematic of VAV system servicing the bottom floor of the five zone medium office building.

fan. The HVAC system is controlled based on the VAV
2A2-21232 sequence from the Sequences of Operation for
Common HVAC Systems described in (Wetter, Hu, et al.
2018).

2.2.2 Modeling of Studied System

The new component models are added to a medium office
building system model, which is based along a prototype
provided in the Modelica Buildings library (Lawrence
Berkeley National Laboratory 2013), to create the fi-
nal modeling capability. The developed medium office
building system model for this study is shown in Fig-
ure 2. The HVAC system is sized for each climate us-
ing EnergyPlusTM and the fan is assumed to be sized for
MERV 10 filtration. We use typical meteorological year
data for each location (EnergyPlus n.d.). The entire sys-
tem model contains the following key subsystems: (1)
building envelope and room airflow model, including the
generation and decay of virus in the zones; (2) HVAC sys-
tem model which includes the central air handling unit, as
well as VAV terminal boxes and return duct; (3) control
system, which includes PI controllers for the heating and
cooling coils, outdoor air economizer, and supply fan; and
(4) the weather conditions, including dry bulb tempera-
ture, wind speed, and radiative exchange.

For the system located in Tampa in this study, the model
is adapted to supply air through the building at all times,
including unoccupied hours to avoid development of mold
due to the high humidity. The outdoor air damper is closed
during unoccupied hours and only recirculated air is sup-
plied to the building (including for the 100% outdoor air
case). For cooling scenarios, the supply air temperature
setpoint is reset from 12 ◦C to 27 ◦C and the zone tempera-
ture setpoints are reset from 24 ◦C to 30 ◦C in unoccupied
hours. For heating scenarios, the zone temperature set-
points are reset from 20 ◦C to 12 ◦C in unoccupied hours.
This allows for the system to run and prevent buildup of

mold, while limiting the increase in energy during the un-
occupied hours.

3 Methods to Compare Mitigation
Strategies

This section describes the methods to compare the miti-
gation strategies in terms of IAQ and costs. This includes
calculating the predicted number of infections based on
virus concentration, as well as determining total costs
based on costs associated with filters, HVAC energy con-
sumption, and CO2 emissions.

3.1 Predicted Number of Infections Calcula-
tion

To quantify the impact of the virus concentrations, risk of
infection is calculated using the Wells-Riley approach (E.
Riley, Murphy, and R. Riley 1978), which determines this
risk based on the amount of virus inhaled by an occupant.
Risk of infection is calculated as:

R(t) = 1− exp(−IR
∫ t

t0
c(t)dt), (6)

where R(t) is risk of infection in terms of percentage, IR
is the volumetric inhalation rate of air for an occupant,
and

∫ t
t0 c(t)dt is the integral of virus concentration in the

room with respect to time since initial time t0. The pre-
dicted number of infections, R0, can be calculated based
on the risk, R. The predicted number of infections over
time, R0(t) is calculated accounting for the variable occu-
pancy in the zones for this study. This is done by calcu-
lating R0(t) for a given time interval when the occupancy
is constant and adding the predicted number of infections
calculated from the previous time interval. This can be
described as:

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 139136

Figure 2. Modelica model of the medium office building system.

R0,T (t) = ST [1− exp(−IR
∫ t

t0
c(t)dt)]+R0,T−1(t0), (7)

where R0,T (t) is the predicted number of infections in the
zone for time interval T , ST is the number of susceptible
occupants in the zone during T , t0 is the time at the begin-
ning of interval T , and R0,T−1(t0) is the predicted num-
ber of infections from the previous time interval, T − 1,
ending at time t0. Susceptible occupants is determined as
S = N −1, where N is the number of occupants. This way
S does not account for the sick person, since they cannot
infect themselves.

3.2 Financial Cost Calculation
The annual financial costs for the different mitigation
strategies are calculated based on the following equation:

Jtotal = Jf ilter + Jelec + Jgas + JCO2 , (8)

where Jtotal is the total annual costs, Jf ilter are the costs as-
sociated with filtration, Jelec are the electricity costs to run
the HVAC system, Jgas are the costs for natural gas heat-
ing, and JCO2 are costs associated with CO2 emissions.
The costs associated with filtration include purchase costs
and labor costs for replacing the filters throughout the
year based on their expected life. The electricity costs to
run the HVAC system come from fan and cooling power,
while natural gas costs are calculated based on the heat
supplied in the HVAC system from natural gas. Finally,
we use a cost of $12 (USD) per ton of CO2 emissions
based on average prices in the U.S. described by the Re-
gional Greenhouse Gas Initiative and California Cap-and-
Trade Program (The World Bank 2021) to determine costs
associated with CO2 emissions. It should be noted Jf ilter,
Jelec, and Jgas are charged in current practice, but JCO2 has
not been implemented in the building sector in the United
States yet.

3.3 CO2 Emissions Calculation

The annual CO2 emissions for the mitigation strategies are
determined based on emissions associated with natural gas
heating and electricity consumed by the HVAC system,
using the method adopted in (Lou, Yang, et al. 2021; Lou,
Ye, et al. 2022). The emission factor for natural gas heat-
ing is constant and independent of location. However, the
emission factor for electricity is dynamic and depends on
the electricity sources of the location. Different locations
use various portions of renewable, nuclear, or fossil fuel
energy. The electricity sources vary based on the time of
day as well as season, for example depending on the avail-
ability of solar or wind energy. The emission factor data
comes from the Cambium project lead by the National Re-
newable Energy Laboratory (Gagnon et al. 2020).

Figure 3 shows an example of how CO2 emissions are
calculated for a sample day based on the natural gas and
electricity usage. Figure 3a shows the energy consump-
tion for one heating day in San Diego. We see the natu-
ral gas usage varies based on the heating demand and the
electricity consumption changes based on the fan power.
The emission factor of electricity in Figure 3b varies dur-
ing the day based on the availability of renewable energy,
while the emission factor of natural gas remains constant.
Finally, Figure 3c shows the hourly CO2 emissions are the
product of the hourly energy usage and emission factor.

3.4 Analysis of Combined Metrics

To evaluate the performance of the two strategies relative
to MERV 10 filtration, we define metrics to consider the
improvement in IAQ relative to an increase in costs. These
are relative metrics, since they are calculated for the strate-
gies relative to MERV 10 filtration. First, we calculate the
percent increase in costs relative to MERV 10 filtration.
This is described as:

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA140 136

∆Ji = Ji/JM10 −1, (9)

where ∆Ji is the percent increase in costs associated with
a strategy i relative to MERV 10 filtration, Ji is the costs
for strategy i, and JM10 is the costs for MERV 10 filtration
in that location.

(a) Hourly energy consumption.

(b) Hourly emission factors.

(c) Hourly CO2 emissions.

Figure 3. Calculation of CO2 emissions based on electricity and
natural gas usage for Jan 1, 2020 in San Diego.

The percent improvement in IAQ relative to the percent
increase in costs can then be calculated as:

∆IAQ/∆Ji = (1− IAQi/IAQM10)/∆Ji, (10)

where ∆IAQ/∆Ji is the marginal improvement in IAQ per
increase in costs for a strategy i relative to MERV 10 fil-
tration, IAQi is the IAQ metric for a strategy i, and IAQM10
is the IAQ metric for the MERV 10 strategy.

4 Scope
We describe the scope of our analysis in this section, in-
cluding the selected mitigation strategies and summary of
the chosen geographic locations.

4.1 Mitigation Strategies
Three mitigation strategies are chosen for this study, in-
cluding use of MERV 10 and MERV 13 filtration, or sup-
ply of 100% outdoor air into the building. MERV 10 fil-
tration may be used in existing buildings, while improved
MERV 13 filtration has been recommended for use during
the COVID-19 pandemic by ASHRAE (ASHRAE Epi-
demic Task Force 2021). The 100% outdoor air strategy
also uses MERV 10 filtration, since filtration is needed for
outdoor contaminants as well. This study assumes the vi-
ral particles have diameters between 1-3 µm, and a con-
stant, typical removal efficiency is chosen based on fil-
ter data for particles of this size. Table 1 shows the set-
tings for the HVAC filters used in the simulations. The
filtration efficiencies come from ASHRAE technical re-
sources (ASHRAE 2017) and the pressure drop values
come from data for MERV 10 (Dwyer n.d.[a]) and MERV
13 (Dwyer n.d.[b]). It should be noted the pressure drop
across the filter can increase over time as the filter accumu-
lates particles (Xia and Chen 2021) and the pressure drop
can vary for filters with the same rating, depending on the
depth or type of filter (Ben-David and Waring 2018). For
simplicity, a constant nominal pressure drop for each filter
is chosen based on the average of the typical initial and
final pressure drops.

Table 1. HVAC filter simulation settings.

Filter Nominal
Pressure
Drop (Pa)

Filtration
Efficiency

MERV 10 143 50%
MERV 13 162 85%

The costs of the HVAC filters, which are obtained
from (Azimi and Stephens 2013), are shown in Table 2.
The total annual costs are determined by the purchase and
labor costs throughout the year based on the expected life
of the filters.

4.2 Studied Locations
International Falls, MN, San Diego, CA, and Tampa, FL
are the locations studied in this paper. A summary of the
climates, electricity sources, energy prices, and average
electricity emission factor is shown in Table 3. The elec-
tricity (U.S. Energy Information Administration 2021b)

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 141136

Table 2. HVAC filter costs.

Filter Purchase
Cost
(USD)

Replacement
Labor Costs
(USD)

Expected
Life

Total
Annual
Costs

MERV
10

$7 $17 4 months $72

MERV
13

$11 $17 4 months $84

and natural gas (U.S. Energy Information Administration
2021a) prices for each location are also included. The
natural gas price is based on the total price paid by end-
users per thousand cubic feet of natural gas, and is inclu-
sive of all taxes and other fees. Compared to International
Falls and Tampa, San Diego has a lower average electric-
ity emission factor. San Diego is able to utilize significant
renewable energy, such as solar power, and limit its fos-
sil fuel usage. International Falls and Tampa instead rely
more on fossil fuels such as coal and natural gas for elec-
tricity generation.

5 Results and Discussion
We first show an overview of the results for the three mit-
igation strategies in the three locations in terms of IAQ,
HVAC costs, and CO2 emissions. We then discuss the
tradeoffs between IAQ and totals costs.

5.1 Overview of Results

The annual results for IAQ, HVAC costs, and CO2 emis-
sions are shown in Figure 4. The virus concentrations are
normalized by the annual average virus concentration for
the MERV 10 case in International Falls. The HVAC costs
in this section include costs associated with filters and
HVAC energy consumption, while the total costs includ-
ing those associated with CO2 emissions are used in the
next section. The results show dependencies on mitigation
strategy, climate, and electricity sources. The trends for
emissions and costs can be seen in Figure 4a. San Diego
has lower costs and emissions compared to Tampa, due to
less HVAC energy consumption in the milder climate. The
breakdown of HVAC energy consumption for the three
mitigation strategies in the three locations is shown in Fig-
ure 5. International Falls has lower costs but more emis-
sions compared to San Diego. This is because natural
gas heating is the dominant energy consumption in the
very cold climate of International Falls, which has much
lower costs compared to electricity. Due to its climate, San
Diego uses very little heating and most of the HVAC en-
ergy consumption comes from electricity to provide cool-
ing and power the fan. The lower emissions in San Diego
compared to International Falls can be explained by the
lower HVAC energy consumption, as well as the lower
average electricity generation emission factor.

(a) Annual CO2 emissions vs HVAC costs.

(b) Average virus concentration vs annual HVAC costs.

(c) Average virus concentration vs annual CO2 emissions.

Figure 4. Results for average virus concentration, annual HVAC
costs, and annual CO2 emissions for the three mitigation strate-
gies in the three locations.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA142 136

Table 3. Summary of selected locations.

Location Climate Electricity Price
(cents/kWh)

Natural Gas Price
(cents/kWh)

Avg. Electricity Emission
Factor (kg CO2/MWh)

International Falls, MN Very Cold 10.57 2.18 302
San Diego, CA Warm and Marine 18.00 3.34 196
Tampa, FL Hot and Humid 10.06 3.93 338

(a) International Falls.

(b) San Diego.

(c) Tampa.

Figure 5. Breakdown of HVAC energy consumption for the
three strategies in the three locations.

(a) Virus concentration.

(b) Predicted number of infections.

Figure 6. Virus concentration and predicted number of infec-
tions in the Core zone for the three strategies on June 24, 2020
in Tampa.

Figures 4b and 4c similarly show the trends based on
climate and electricity sources, as well as the IAQ trends
for the different mitigation strategies. The 100% out-
door air strategy provides the best IAQ in Tampa and San
Diego, but not in International Falls. This is because the
economizer only decreases the outdoor air usage for the
100% outdoor air strategy when it is very cold outside to
prevent freezing, which happens more often in the very
cold climate of International Falls. The 100% outdoor
air strategy leads to significant increases in costs and CO2
emissions in International Falls and Tampa, but not as sig-
nificantly in San Diego. This is because significant energy
is required either to cool and dehumidify the outdoor air in
the hot and humid Tampa climate or to heat the very cold
outdoor air in International Falls. In San Diego, however,
the weather is milder throughout the year, so the 100%

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 143136

outdoor air strategy leads to smaller increases in costs and
emissions. Figure 5 shows the increase in energy con-
sumption for the 100% outdoor air case in Tampa and
International Falls, as well as overall higher energy con-
sumption in these two locations compared to San Diego
because of climate.

To compare the impact of the differences in virus con-
centrations for these strategies, an example of the virus
concentration and predicted number of infections in the
Core zone for a hot summer day (June 24, 2020) in Tampa
is shown in Figure 6. The minimum outdoor airflow is
used for the MERV 10 and MERV 13 cases on this day.
Use of MERV 13 filtration reduces the peak virus concen-
tration on this day by 22% compared to MERV 10 filtra-
tion, and use of 100% outdoor air reduces the peak virus
concentration by 27% compared to MERV 10 filtration.
The predicted number of infections is above one for all
three strategies in this zone during this day, which means
at least one infection is expected to occur. MERV 13
filtration reduces the expected chance of a second infec-
tion occurring by 39% compared to MERV 10 filtration,
while supply of 100% outdoor air decreases the expected
chance of a second infection occurring by 50% compared
to MERV 10 filtration.

MERV 10 filtration is the cheapest and lowest emission
strategy due to having the lowest energy consumption, but
also provides the worst IAQ in all locations. MERV 13 fil-
tration improves the IAQ relative to MERV 10 filtration,
but with moderate increases in costs and emissions be-
cause of the increase in fan energy consumption. It can be
seen that the improvement in IAQ for the other strategies
relative to MERV 10 filtration differs between the two lo-
cations. Additionally, the costs and emissions for the mit-
igation strategies also differ for these locations. Analysis
of these tradeoffs is performed in the following section.

5.2 Analysis of Tradeoffs
The tradeoffs between IAQ and costs for the mitigation
strategies relative to MERV 10 filtration are analyzed for
the three locations in this section. Associating a cost with
CO2 emissions allows us to directly compare the marginal
improvement in IAQ to both costs and emissions simulta-
neously, as described in Section 3.4. This is shown for the
two strategies relative to MERV 10 in the three locations
in Figure 7.

Use of 100% outdoor air outperforms MERV 13 fil-
tration in San Diego. This is because supply of 100%
outdoor air is able to provide better IAQ compared to
MERV 13 with less of an increase in costs in this loca-
tion. The milder weather in San Diego allows for lim-
ited increases in heating/cooling costs throughout the year,
while the increase in fan energy for the MERV 13 case
slightly increases the overall costs compared to 100% out-
door air. On the other hand, MERV 13 filtration appears
to be the most beneficial strategy in International Falls and
Tampa. Unlike San Diego, use of 100% outdoor air sig-
nificantly increases the costs due to the energy required to

heat or cool and dehumidify the outdoor air in these loca-
tions. MERV 13 filtration also shows a more significant
improvement in IAQ in the two locations relative to San
Diego due to the limited amount of outdoor air usage in
those climates.

Figure 7. Marginal improvement in IAQ relative to total costs
for the three locations.

(a) International Falls.

(b) San Diego.

(c) Tampa.

Figure 8. Dynamic usage of outdoor air using MERV 10 filtra-
tion in the three locations.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA144 136

Figure 8 shows the outdoor air usage for the MERV 10
cases in the three locations. Because of its milder weather,
the MERV 10 case in San Diego can use high outdoor air-
flow rates most of the year, except in the peak of sum-
mer in July - September. In International Falls, the MERV
10 case uses less outdoor air during the very cold win-
ter, as well as during the peak of summer around July.
In Tampa, much less outdoor air is used for the MERV
10 case throughout the year, with an exception during the
cooler winter mornings. Because of these trends for the
MERV 10 cases, the additional filtration in the MERV 13
case or outdoor air usage in the 100% outdoor air case
significantly improves the IAQ in International Falls and
Tampa.

6 Conclusion
The tradeoffs between IAQ and sustainability for three
strategies to mitigate indoor virus are compared for three
locations in the United States. The mitigation strategies
include different levels of filtration, such as MERV 10
or MERV 13 filtration, as well as supply of 100% out-
door air into the building. The locations have differing
climates and their electricity profiles are also comprised
with varying portions of renewable energies and fossil fu-
els for generating electricity. The strategies are evaluated
using a prototypical medium office building model ini-
tially sized for MERV 10 filtration, developed using the
Modelica Buildings library.

The results show the tradeoffs between IAQ and costs
for the different strategies have a strong dependency on
climate and electricity sources. MERV 10 filtration is al-
ways the cheapest option, since this strategy tends to use
the least energy, but also provides the worst IAQ. Use of
100% outdoor air provides the best IAQ in San Diego and
Tampa, and significantly increases costs in the hot and hu-
mid climate of Tampa and very cold climate of Interna-
tional Falls. Use of 100% outdoor air can be a good option
in the relatively milder climate of San Diego, where the in-
crease in costs and emissions is limited. MERV 13 filtra-
tion can improve IAQ with limited increases in costs in all
locations due to its high virus filtration efficiency and rela-
tively smaller increases in energy consumption. This strat-
egy outperforms use of 100% outdoor air in International
Falls and Tampa, since it avoids the significant increase in
cooling/dehumidification or heating of the outdoor air.

Future studies can be conducted based on the work in
this paper. The models we used in this study can be ap-
plied to other contaminant scenarios, for example PM2.5
which can infiltrate the building from outdoor air. They
can also be used to evaluate advanced control strategies
to improve IAQ, such as occupant-based strategies. Fi-
nally, this study focuses on applying mitigation strategies
to an existing building, since redesigning an HVAC sys-
tem is costly. However, the models can be used to evaluate
HVAC system designs for new buildings, for example to
study a system designed for high-efficiency filters.

Acknowledgements
This research was supported in part by the U.S. Defense
Threat Reduction Agency and performed under U.S. De-
partment of Energy Contract No. DE-AC02-05CH11231.
This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associa-
tion (IBPSA). Project 1 will develop and demonstrate a
BIM/GIS and Modelica Framework for building and com-
munity energy system design and operation. This research
was supported by the National Science Foundation under
Awards No. CBET-2217410.

References
ASHRAE (2017). “Standard 52.2. Method of Testing General

Ventilation Air-Cleaning Devices for Removal Efficiency by
Particle Size”. In: American Society of Heating, Refrigerating
and Air-Conditioning Engineers.

ASHRAE (2019). “Standard 62.1 Ventilation for Acceptable In-
door Air Quality”. In: American Society of Heating, Refrig-
erating and Air-Conditioning Engineers.

ASHRAE Epidemic Task Force (2021). “Core Recommenda-
tions for Reducing Airborne Infectious Aerosol Exposure”.
In: ASHRAE.

Aviv, Dorit et al. (2021). “A fresh (air) look at ventilation for
COVID-19: Estimating the global energy savings potential of
coupling natural ventilation with novel radiant cooling strate-
gies”. In: Applied Energy 292, p. 116848.

Azimi, Parham and Brent Stephens (2013). “HVAC filtration
for controlling infectious airborne disease transmission in in-
door environments: predicting risk reductions and operational
costs”. In: Building and environment 70, pp. 150–160.

Ben-David, Tom and Michael S Waring (2018). “Interplay of
ventilation and filtration: Differential analysis of cost func-
tion combining energy use and indoor exposure to PM2.5 and
ozone”. In: Building and Environment 128, pp. 320–335.

Buonanno, Giorgio, Lidia Morawska, and Luca Stabile (2020).
“Quantitative assessment of the risk of airborne transmission
of SARS-CoV-2 infection: prospective and retrospective ap-
plications”. In: Environment international 145, p. 106112.

Buonanno, Giorgio, Luca Stabile, and Lidia Morawska (2020).
“Estimation of airborne viral emission: Quanta emission rate
of SARS-CoV-2 for infection risk assessment”. In: Environ-
ment international 141, p. 105794.

Cortiços, Nuno D and Carlos C Duarte (2021). “COVID-19: The
impact in US high-rise office buildings energy efficiency”. In:
Energy and Buildings 249, p. 111180.

Department of Energy (n.d.). Commercial Reference Buildings.
https : / / www . energy . gov / eere / buildings / commercial -
reference-buildings.

Dwyer (n.d.[a]). MERV 10 Pleated Filters. https://www.dwyer-
inst.com/PDF_files/Priced/DF10_cat.pdf.

Dwyer (n.d.[b]). MERV 13 Pleated Filters. https://www.dwyer-
inst.com/PDF_files/Priced/DF13_cat.pdf.

EnergyPlus (n.d.). Weather Data. https : / / energyplus . net /
weather.

Faulkner, Cary A et al. (2022). “Investigation of HVAC oper-
ation strategies for office buildings during COVID-19 pan-
demic”. In: Building and Environment 207, p. 108519.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 145136

Gagnon, Pieter et al. (2020). Cambium data for 2020 Standard
Scenarios. National Renewable Energy Laboratory. https : / /
cambium.nrel.gov/.

Lawrence Berkeley National Laboratory (2013). Build-
ings.Examples.VAVReheat. https : / / simulationresearch . lbl .
gov/modelica/releases/v5.0.0/help/Buildings_Examples_
VAVReheat.html#Buildings.Examples.VAVReheat.

Lou, Yingli, Yizhi Yang, et al. (2021). “The effect of building
retrofit measures on CO2 emission reduction–A case study
with US medium office buildings”. In: Energy and Buildings
253, p. 111514.

Lou, Yingli, Yunyang Ye, et al. (2022). “Long-term carbon emis-
sion reduction potential of building retrofits with dynamically
changing electricity emission factors”. In: Building and Envi-
ronment 210, p. 108683.

Pease, Leonard F, Timothy I Salsbury, et al. (2022). “Size de-
pendent infectivity of SARS-CoV-2 via respiratory droplets
spread through central ventilation systems”. In: International
Communications in Heat and Mass Transfer 132, p. 105748.

Pease, Leonard F, Na Wang, et al. (2021). “Investigation of po-
tential aerosol transmission and infectivity of SARS-CoV-2
through central ventilation systems”. In: Building and Envi-
ronment 197, p. 107633.

Riley, EC, G Murphy, and RL Riley (1978). “Airborne spread
of measles in a suburban elementary school”. In: American
journal of epidemiology 107.5, pp. 421–432.

Santos, Hugo RR and Vıtor MS Leal (2012). “Energy vs. venti-
lation rate in buildings: A comprehensive scenario-based as-
sessment in the European context”. In: Energy and Buildings
54, pp. 111–121.

Schibuola, Luigi and Chiara Tambani (2021). “High energy ef-
ficiency ventilation to limit COVID-19 contagion in school
environments”. In: Energy and Buildings 240, p. 110882.

Shen, Jialei et al. (2021). “A systematic approach to estimating
the effectiveness of multi-scale IAQ strategies for reducing
the risk of airborne infection of SARS-CoV-2”. In: Building
and environment 200, p. 107926.

The World Bank (2021). Carbon Pricing Dashboard. https : / /
carbonpricingdashboard.worldbank.org/map_data.

U.S. Energy Information Administration (2021a). Natural Gas
Prices. https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_
PCS_DMcf_a.htm.

U.S. Energy Information Administration (2021b). State Elec-
tricity Profiles. https://www.eia.gov/electricity/state/.

Vlachokostas, Alex et al. (2022). “Experimental evaluation of
respiratory droplet spread to rooms connected by a central
ventilation system”. In: Indoor air.

Wetter, Michael, Marco Bonvini, et al. (2015). “Modelica build-
ings library 2.0”. In: Proc. of The 14th International Confer-
ence of the International Building Performance Simulation
Association (Building Simulation 2015), Hyderabad, India.

Wetter, Michael, Jianjun Hu, et al. (2018). “OpenBuildingCon-
trol: Modeling feedback control as a step towards formal de-
sign, specification, deployment and verification of building
control sequences”. In: Building Performance Modeling Con-
ference and SimBuild.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica build-
ings library”. In: Journal of Building Performance Simulation
7.4, pp. 253–270.

Xia, Tongling and Chun Chen (2021). “Evolution of pressure
drop across electrospun nanofiber filters clogged by solid par-
ticles and its influence on indoor particulate air pollution con-
trol”. In: Journal of Hazardous Materials 402, p. 123479.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA146 146

Guidelines and Use Cases for Power Systems Dynamic Modeling
and Model Verification using Modelica and OpenIPSL

Giuseppe Laera1 Luigi Vanfretti1 Marcelo de Castro Fernandes1 Sergio A. Dorado-Rojas1

Fernando Fachini1 Chetan Mishra2 Kevin D. Jones2 R. Matthew Gardner2 Hubertus
Tummescheit3 Stéphane Velut3 Ricardo J. Galarza4

1ECSE, Rensselaer Polytechnic Institute, Troy (NY), USA,
{laerag,vanfrl,decasm3,dorads,fachif}@rpi.edu

2Dominion Energy, Richmond (VA), USA,
{chetan.mishra,kevin.d.jones,matthew.gardner}@dominionenergy.com

3Modelon, Glastonbury (CT), USA & Lund, Sweden,
{hubertus.tummescheit,stephane.velut}@modelon.com

4PSM Consulting, Inc., Guilderland (NY), USA, rgalarza@psm-consulting.com

Abstract
This paper offers systematic guidelines for modeling
power systems components in the phasor time-domain us-
ing the Modelica language and their verification. It aims
to share the authors’ experience in power system model-
ing with Modelica and the approaches used to meet the
high expectations of the power industry w.r.t. to the mod-
els’ simulation results. While the modeling guidelines
are generic, the verification procedure includes the valida-
tion against a domain-specific commercial software tool
called PSS®E that is the de facto tool used for power sys-
tem transmission planning and analysis. To formalize the
proposed approaches, a schematic description of the pro-
cesses of model implementation and validation is elicited
through flowcharts. Challenging use cases are presented to
point out some of the major difficulties that can be faced
in the modeling steps because of unclear or missing doc-
umentation of the models’ dynamics in the reference tool.
Finally, unique features of the Modelica language that al-
low for power system modeling and verification unavail-
able in traditional tools are illustrated.
Keywords: Modelica, OpenIPSL, PSS®E, Dymola, Mod-
elon Impact, SystemModeler, OpenModelica

1 Introduction
This paper aims to formalize the process of power sys-
tems dynamic modeling and model verification using the
Modelica language. The mail goal is to provide, for
the first time, a formal description of the steps neces-
sary for complete re-implementation of power systems
components of closed-source commercial software like
PSS®E in the Modelica language. A generic method-
ology for re-implementing existing models from differ-
ent software tools and domains can be derived from the
proposed steps. Key use cases that have been challeng-
ing to implement and verify are presented to highlight
the value of the proposed approaches for model imple-

mentation and validation. Moreover, it is shown how
the self-documenting nature of object-oriented equation-
based modeling offered by Modelica provides unique ad-
vantages for human and computer readable model imple-
mentation, as compared to existing modeling tools that do
not always offer transparency regarding the dynamic be-
havior implemented in their tools. In this collection of ex-
amples, models for the OpenIPSL library1 have been con-
sidered and validated against PSS®E. Finally, we empha-
size the value of the open-access standardized Modelica
specification as a key enabler of open-access standards-
based interoperability (Gómez et al. 2020), showing how
the newly implemented models can be re-utilized in multi-
ple Modelica-standard-compliant tools without a need for
re-implementation.
The reminder of this paper is organized in four sections:
Introduction describing some motivations and contribu-
tions, Guidelines formalizing in flowcharts the process of
models implementation and validation, Use Cases illus-
trating the proposed approaches with examples of imple-
mented models and Future Work and Conclusions with
some final comments.

1.1 Motivations
Modeling of power systems has always been fundamen-
tal for the design, operation and planning of electric net-
works. To help all the players of the electric power sys-
tems sector to perform their studies and analyses, over
the last decades several software tools have been devel-
oped. The de facto tools used by industry include propri-
etary software like PSS®E, PSCAD, EMTP-RV, Power-
Factory, etc., that require the user to become an expert of
their functionalities and poses intimate tool-and-domain
specific knowledge to be productive. In addition, each
tool has its own way of defining the data used to char-
acterize their discretized model (i.e. “data format”) mak-

1https://github.com/OpenIPSL/OpenIPSL

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 147146

ing it inflexible when attempting to share models and data
between tools (Hongesombut et al. 2005). Another draw-
back is represented by the inconsistency of dynamic simu-
lation results between different simulation platforms. This
is due to the need to re-implement models in each simu-
lation platform, which has tremendous costs. As reported
by the Australian Energy Market Commission 2, the order
of magnitude costs for model implementation in each indi-
vidual tool can reach almost $500,000.00 in the case of ex-
isting components with power electronic interfaces, such
as wind and solar, thus making it challenging to study the
effects of the integration of renewable energy resources.
Therefore, the idea to remove ambiguity in power systems
modeling was suggested in (Vanfretti et al. 2013) by us-
ing the object-oriented equation-based modeling language
Modelica (Tiller 2001). Following this innovative idea a
power systems library called OpenIPSL has been devel-
oped (Baudette et al. 2018). The library continues to be
maintained and expanded based on the concepts of regres-
sion testing and Continuous Integration (CI) (Rabuzin,
Baudette, and Vanfretti 2017), that allow the models to
be verified against a traditional commercial software tool
like PSS®E giving the user of the power systems com-
munity the confidence about its reliability for performing
dynamic simulations and studies.

1.2 Previous Works

The proposed process for testing newly implemented
models in Modelica and their verification make use of a
Single Machine Infinite Bus (SMIB) equivalent system
model (Zhang et al. 2015). This model is typically used
to test the implementation of new models and designs of
control strategies, which has been emphasized in the liter-
ature (Chaudhary and Singh 2014; Kumar 2018; Jayapal
and Mendiratta 2010; Wang et al. 2015). This small net-
work is useful in describing the key behavior of a power
plant within a power system for most practical purposes. It
offers a good framework for studying basic power systems
stability concepts and the application of different control
techniques to understand their effects on the network.

Regarding the development of new open-source soft-
ware for power systems studies several examples based
on different languages have been reported in the litera-
ture. During the 1990’s and 2000’s, MATLAB saw an
exponential adoption in academia, resulting in a num-
ber of power system simulation software, such as MAT-
POWER (Zimmerman, Murillo-Sánchez, and Thomas
2010), focusing on steady state computations and the
Power System Analysis Toolbox that offers an array of
analysis types, both steady state or dynamic (F. Mi-
lano 2005). With the rise of Python, a new generation
of Python-based tools for modeling, analysis and opti-
mization of electric power systems have been developed.
Among these, pandapower (Thurner et al. 2018) which

2Online: https://tinyurl.com/aemc-rule2017

aids with steady state computations. GridCal3 is another
platform for power systems research and simulation based
on Python, again, focusing on steady state computations.
Meanwhile, another Python-based tool for power system
simulation is ANDES (Cui, Li, and Tomsovic 2020). It
is an open-source Python library for power system mod-
eling, computation, analysis, and control and it uses a
hybrid symbolic-numeric framework for numerical anal-
ysis. What these software have in common is that they
define both their models in discretized form, interlinking
a specific numerical solver (e.g. Newton solver for steady
state analysis or trapezoidal integration for dynamic sim-
ulation) during implementation.

In recent years, the Julia language has been gain-
ing popularity by the modeling and simulation commu-
nity (Elmqvist, Henningsson, and Otter 2016). Nat-
urally, Julia packages for power system modeling and
simulation of power systems have also emerged, with
PowerSimulationsDynamics.jl for power system dynam-
ics and for power systems operations called PowerSim-
ulations.jl (Henriquez-Auba et al. 2021). While these
packages do require the user to specify their models in
discretized form and target a specific solver, as in the
case of the MATLAB and Python-based tools described
above, they do require the user to specify models with
pre-defined data structures and the resulting models can
only be used with the solvers available within the Julia
ecosystem (Henriquez-Auba et al. 2021), not to mention
the models have not been validated against any other ref-
erence software tool.

Regardless, as each of the afromentioned tools define
their own approach for model implementation, the means
to define parameter data and support only specific solvers,
the results obtained will be different.

In contrast, Modelica facilitates the re-use of models
among different Modelica-compliant tools by defining in-
teroperable libraries, with the models of each component
implemented separately and without the need of a nu-
merical solver. There are several power system analy-
sis libraries based on Modelica, (Winkler 2017) gives an
overview of all available open-source libraries for power
system dynamic analysis and highlights the advantages
and disadvantages of each library. Note that most li-
braries listed are for positive sequence phasor-based dy-
namic simulation. In addition, it is worth mentioning
MSEMT: an advanced Modelica library for power system
electromagnetic transient studies (Masoom et al. 2021).
This paper enhances and expands the OpenIPSL library,
which focuses on power system models in the phasor-
domain that have been validated against PSS®E. In that
regard, some recent examples of models validation for re-
newable energy sources and battery energy storage sys-
tems are given in (Fachini et al. 2021).

3https://github.com/SanPen/GridCal

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA148 146

1.3 Contributions
The use of the object-oriented equation-based modeling
language, Modelica, allows for unambiguous power sys-
tems modeling. The flexibility of the language offers
options to model a component, either by using typical
block diagram representations or by defining mathemati-
cal equations that describe its dynamic behavior. The clas-
sical approach to validate a component’s dynamics is by
creating a small reference power network model, like an
SMIB as used herein. As shown in Section 3, using the
Modelica language it is also possible to validate each in-
dividual sub-system component within a model by using
the reference tool’s output signals and connecting them to
the inputs of the newly implemented model. This simpli-
fies the modeling process as it allows to isolate the specific
individual part of the model that is being implemented in
Modelica, instead of having to use it in a small reference
power network as it is necessary for the traditional soft-
ware tools to perform simulations.

Explicitly, the contributions of this paper are as fol-
lows:

• To formalize the model implementation approach used
for component model development in Modelica to
meet the requirements of the power industry.

• To formalize the software-to-software model valida-
tion process for Modelica model validation against ref-
erence domain-specific tools, illustrated with the de
facto standard in the power industry, PSS®E software.

• To propose an approach to validate sub-system model
components without the need to define entire system
models in Modelica by replaying the reference tool
simulation results into the Modelica model.

• To illustrate the proposed approach with challenging
implementation and validation use cases.

• Synthesizing the know-how described above into
guidelines which fully elicit the model implementa-
tion and validation process using flowcharts.

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar
pwLine

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar
pwLine3

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar
pwLine4

INF

5e-05 MW+j1e-05 MVA

constantLoad

pw
Fault

GEN1 LOAD GEN2

FAULT

0.0 MW 0.0 MW

0.0 Mvar 0.0 Mvar
pwLine1 pwLine2

SHUNT

SPEED_HP
PMECH_HP

PMECH_LP

IEEEG1

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

cte1

k=0

const3

k=-Modelica.Constants.inf
const4

k=Modelica.Constants.inf

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

VOTHSG2

VT
VUEL2VUEL3

ESST1A
V_S1

V_S2
VOTHSG

PSS2A

Constant network configuration

Component or subsystem for
implementation

Figure 1. SMIB template in Modelica.

2 Guidelines
In this section the approach of modeling power systems
components in Modelica is described.

2.1 Template Models for Modeling and Vali-
dation

A basic example of electric power system network is the
SMIB. Its block diagram in Modelica is given in Figure
1. This system is used to model a power plant with its
controls connected to the rest of the grid through trans-
mission lines and substations represented by buses. This
small network also defines the model to standardize the
testing of different device models implemented in Model-
ica and having PSS®E models as reference.

In Figure 1, in the red block, a complete power plant
is modeled with a generator, connected to bus GEN1, and
its controls. The grid is represented by the generator con-
nected to bus GEN2. Between GEN1 and GEN2 other
power systems components are considered like lines, a
load and a ground fault. The bus SHUNT also allows to
connect other components to this small network. Depend-
ing on the type of power systems component to model, the
configuration of the generating unit (red block) connected
to bus GEN1 varies whereas the configuration of the rest
of the network (green block) remains the same.

In the sequel, components in the red block of Figure
1 will be implemented and validated. Note that for all the
tests, the remainder of the power system in the green block
of Figure 1 remains unchanged.

2.2 Model Implementation Guide
The modeling implementation process is defined in Fig-
ures 2 and 3. While the approach is generic, the process
depicted considers PSS®E the reference software tool. In
Figure 2 the process of implementation starts with the as-
signment of a model to implement (a). The identification
of available technical information (b) about the model is
necessary to the model implementation in Modelica. If
the PSS®E manuals do not present sufficient information
about the model’s dynamics then it is necessary to find
additional literature (c) that can help understanding how
the models were implemented within the reference tool.
Once the documents describing the model have been iden-
tified, collected and analyzed by finding the block dia-
grams and/or the equations of the model (d), it is possible
to determine if the building blocks of the model are al-
ready present in the OpenIPSL library (e). It might be re-
quired to implement missing blocks or functions (f) before
building the entire component model with the appropriate
initialization of its sub-blocks (g). To assess the validity
of the model to implement, a small test network (SMIB)
is used in both Modelica and the reference software, and
generating the reference results from PSS®E (h). That
means the SMIB network with the target model needs to
be assembled both in PSS®E (i) and Modelica (l). After
that the software-to-software validation can be performed

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 149146

a

b
c

d

e f

g

h i

l

m n

Figure 2. Flowchart of the process of implementation of power
systems models.

31 2 4

5678

9

10

11 12

13

Figure 3. Flowchart of the process of software-to-software val-
idation of power systems models.

(m) following the model validation guide (n) (see Figure
3).

2.3 Model Validation Guide
The process of model validation is defined through the
flowchart in Figure 3 and it comes after the process of
Figure 2. After assembling the SMIB in PSS®E it is nec-
essary to obtain the steady state computation results of a
“power flow” (1), export them (2) and provide them as
initial guess values to solve the initialization problem of
the corresponding SMIB in the Modelica compliant soft-
ware tool (3). The OpenIPSL library used in this vali-
dation process describes the dynamic behavior of power
system components therefore it relies on external tools for
the power flow calculations necessary for initializing the
models. The import of the power flow results can be made
manually or automatically (Dorado-Rojas et al. 2021), the
latter increasing numerical accuracy and reducing human
errors. Next, the scenario for the dynamic simulation in
both tools can be defined (4) and a dynamic simulation of
the SMIB in both softwares can be run (5). Once the re-
sults are generated the quantities to compare can be chosen
(6) and exported in the appropriate format (7) to be used
in another tool, for example CSV Compare4 (8). Tools
like CSV Compare allow to quantify the discrepancies be-
tween the simulation software tools after defining an ac-
ceptable tolerance level (see Figure 4). If the errors be-
tween the quantities to compare are within the tolerance
band (9) then the validation is complete (10). If the er-

4https://github.com/modelica-tools/csv-compare

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA150 146

Figure 4. Example of the use of the CSV Compare tool.

rors are bigger than the defined tolerance then more de-
bugging (11) of the model is required. A better insight of
the model dynamics can be obtained by comparing sub-
component inputs, outputs and states of the implemented
model (an example is given in Section 3) with the analo-
gous signals from the SMIB in PSS®E (12). The iterative
process continues until the difference between signals is
lower than the tolerance (13), meaning that the validation
is completed. This process can be part of a continuous
integration and regression methodology, such as the one
described in (Baudette et al. 2018).

3 Use Cases
In this section some key use cases of the implementation
of power system components are described following the
steps in Section 2. The verification illustrated through the
plots of some quantities includes a software-to-software
validation between PSS®E and different Modelica com-
pliant platforms.

3.1 Power System Stabilizer PSS2A model
3.1.1 Implementation
An example of the difficulties faced when implementing
a standard power system model like those of power sys-
tem stabilizers (PSSs) PSS2A and PSS2B is given in this
section. The reference software tool PSS®E comes with
several manuals to help understanding the implementation
and behavior of the different components present in its li-
braries. In some cases, like for the aforementioned PSSs
models, the documentation is insufficient and not help-
ful to understand the behavior of one of the blocks of the
models. In particular, this block is the ramp tracking filter
highlighted in Figures 5 and 6.

An initial implementation of the ramp tracking filter in
Modelica revealed to be not accurate compared to PSS®E
implementation. This result led to additional investiga-
tions about the ramp tracking filter block. Because the
PSS®E documentation does not offer more details, then
the idea of analysing the continuous time trajectories of
the states of this block was used. This idea was derived

Figure 5. Block diagram of PSS2A from PSS®E manual
(Siemens Industry 2013).

Figure 6. Block diagram of PSS2B from PSS®E manual
(Siemens Industry 2013).

considering the available information, that needs to be ap-
propriately selected, included in the simulation results of
a SMIB test system in PSS®E with one of the PSSs. So
from PSS®E it is possible to analyze the dynamics of the
ramp tracking filter block through its input, output and
states. A visual illustration of the implemented corrections
when the filter model was debugged is given in Figure 7.

Figure 7. Original and new block diagram representation of the
ramp tracking filter for the Modelica implementation.

The Modelica code for the ramp tracking filter model
is given in Listing 1. With this kind of implementation
several features of the Modelica language have been used.
The language is object-oriented and, in this case, it allows
for the creation of arrays of transfer functions to build
the model. This implementation is transparent and self-
documented without leaving any uncertainty about the dy-
namics of the component as opposed to the de facto stan-
dard proprietary tools of the power systems domain that
are not always well documented, or as in this case, the
documentation of the software was erroneous. In addition
to that, the level of abstraction and portability with the
Modelica language is superior.

1 model R a m p T r a c k i n g F i l t e r "Ramp− t r a c k i n g f i l t e r "
2 ex tends Model ica . B locks . I n t e r f a c e s . SISO ;
3 import Model ica . B locks . C o n t i n u o u s ;
4 p a r a m e t e r Rea l T_1 ;
5 p a r a m e t e r Rea l T_2 ;
6 p a r a m e t e r I n t e g e r M = 5 " >=0 , M*N<=8 " ;

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 151146

7 p a r a m e t e r I n t e g e r N = 1 " >=0 , M*N<=8 " ;
8 p a r a m e t e r Rea l y _ s t a r t = 0 " Outpu t s t a r t v a l u e " ;
9 f i n a l p a r a m e t e r Boolean by pa s s = i f M == 0 or N == 0 then t r u e

e l s e f a l s e " Boolean p a r a m e t e r " a n n o t a t i o n (E v a l u a t e =
t r u e) ;

10 C o n t i n u o u s . T r a n s f e r F u n c t i o n TF1 [M] (b= f i l l ({ 1 } ,M) , a= f i l l ({ T_2
, 1 } ,M) , each y _ s t a r t = y _ s t a r t) i f by pa s s == f a l s e "
C o n d i t i o n a l component " ;

11 C o n t i n u o u s . T r a n s f e r F u n c t i o n TF2 [N] (b= f i l l ({ T_1 , 1 } ,N) , a= f i l l ({
T_2 , 1 } ,N) , each y _ s t a r t = y _ s t a r t) i f by pa s s == f a l s e "
C o n d i t i o n a l component " ;

12 equat ion
13 i f M == 0 or N == 0 then
14 u = y ;
15 e l s e i f M == 1 then
16 c o n n e c t (u , TF2 [1] . u) ;
17 f o r i in 1 :N−1 loop
18 c o n n e c t (TF2 [i] . y , TF2 [i + 1] . u) ;
19 end f o r ;
20 c o n n e c t (TF2 [N] . y , TF1 [1] . u) ;
21 c o n n e c t (TF1 [1] . y , y) ;
22 e l s e i f N == 1 then
23 c o n n e c t (u , TF2 [1] . u) ;
24 c o n n e c t (TF2 [1] . y , TF1 [1] . u) ;
25 f o r i in 1 :M−2 loop
26 c o n n e c t (TF1 [i] . y , TF1 [i + 1] . u) ;
27 end f o r ;
28 c o n n e c t (TF1 [M− 1] . y , TF1 [M] . u) ;
29 c o n n e c t (TF1 [M] . y , y) ;
30 e l s e i f M == 1 and N ==1 then
31 c o n n e c t (u , TF2 [1] . u) ;
32 c o n n e c t (TF2 [1] . y , TF1 [1] . u) ;
33 c o n n e c t (TF1 [1] . y , y) ;
34 e l s e
35 c o n n e c t (u , TF2 [1] . u) ;
36 f o r i in 1 :N−1 loop
37 c o n n e c t (TF2 [i] . y , TF2 [i + 1] . u) ;
38 end f o r ;
39 c o n n e c t (TF2 [N] . y , TF1 [1] . u) ;
40 f o r i in 1 :M−2 loop
41 c o n n e c t (TF1 [i] . y , TF1 [i + 1] . u) ;
42 end f o r ;
43 c o n n e c t (TF1 [M− 1] . y , TF1 [M] . u) ;
44 c o n n e c t (TF1 [M] . y , y) ;
45 end i f ;
46 end R a m p T r a c k i n g F i l t e r ;

Listing 1. Modelica code for Ramp Tracking Filter model

The implementation of the ramp tracking filter has been
tested first with the component alone as in the system of
Figure 8. A ramp signal has been applied as input and the
following parameters: T1 = 0.5, T2 = 0.1, M = 5, N = 1
for the filter have been used. The choice of the parame-
ters of the ramp tracking filter has been derived from the
reference example of Figure 11. By varying those param-
eters it is possible to obtain the desired ramp tracking be-
havior (Bérubé and Hajagos 2007; Berube, Hajagos, and
Beaulieu 1999).

The results of the test in Figure 8 are given in Figure 9.

3.1.2 Validation
The new implementation of the ramp tracking filter has
been introduced in the PSS2A component model. The
Modelica model of PSS2A corresponding to the one in
Figure 5 is given in Figure 10.

Original_RampTrackingFilter

1+sT
(1+sT)

1
2

M

N

Ramp

duration=2 s

New_RampTrackingFilter

1+sT
(1+sT)

1
2

M

N

Figure 8. Ramp tracking filter test with the original and final
version (see Figure 7).

Figure 9. Results of the ramp tracking filter test: reference ramp
signal (red), original Modelica implementation of ramp tracking
filter (blue) and final new implementation of ramp tracking filter
(black) (see Figure 7).

Leadlag1

1+sT

1+sT
K

1

2

Leadlag2

1+sT

1+sT
K

1

2

SimpleLag1

K
1 + Ts

SimpleLag2

K
1 + Ts

add

+
+1

+K_S3

add1

+
+1

-1
k=K_S1

gain limiter

uMax=V_STMAX

rampTrackingFilter

1+sT
(1+sT)

1
2 M

N

derivativeLag

Ks

1+sT

derivativeLag1

Ks

1+sT

derivativeLag2

Ks

1+sT

derivativeLag3

Ks

1+sT

V_S2

V_S1

VOTHSG

Figure 10. Block diagram of PSS2A in Modelica.

Figure 11. SMIB test system for PSS2A in PSS®E.

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

pw
Fault

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

zero

k=0

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

VOTHSG2

VT
VUEL2VUEL3

ESST1A

minusInf

k=-Modelica.Constants.inf

plusInf

k=Modelica.Constants.inf

V_S1

V_S2

VOTHSG

PSS2A

Figure 12. SMIB test system for PSS2A in Modelica.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA152 146

Figure 13. Results comparison between the Modelica SMIB
with the original (see Figure 7) and final implementation (see
Listing 1) of the ramp tracking filter and the SMIB from PSS®E.

Figure 14. Generator terminal voltage at bus GEN1 of the sys-
tem in Figure 12.

The component PSS2A has then been tested in a small
network like a SMIB. The PSS®E benchmark system is
illustrated in Figure 11.

The corresponding SMIB implementation in Modelica
is given in Figure 12.

The tested scenario for the SMIB consists of a 3 phase
fault to ground applied at bus FAULT at t = 2s for 0.15s.
The results are plotted in Figure 13.

A multi-platform software-to-software validation of
PSS2A using the same SMIB system in Figure 12 with
the same scenario is given in Figures 14, 15, 16 and 17.
The simulations in the different tools have been performed
with the same tolerance (1e-06) and the same output inter-
val length (0.001s).

Another feature of the Modelica language is the
possibility to implement models in the traditional way
using block diagrams, like PSS2A, or with coding, like
the ramp tracking filter. The graphic layer and the text
layer of a model are linked to each other without the need
to work on both separately like in the standard software
tools, which is illustrated next.

Figure 15. PSS2A output of the system in Figure 12.

Figure 16. Active Power of the generator at bus GEN1 of the
system in Figure 12.

3.2 IEEE 421.5 2005 DC4B Excitation System
model

3.2.1 Implementation

Another example of model implementation is the exciter
model DC4B. In Figure 18 the block diagram of the com-
ponent from a PSS®E manual is given.

The PID with non-windup limits included in the model
in Figure 18 is represented in Figure 19.

The challenge of the implementation of this component
was represented by the integrator block inside the PID
block. From (Murad and Federico Milano 2019) it is clear
that for the same component, like a PI, there can be dif-
ferent implementations. In our case, to find the right rep-
resentation of the dynamics of the PID block it has been
necessary to check the state of the integrator. The interpre-
tation has been facilitated by observing the output of the
PID block together with the state of the integrator of the
PID during a dynamic simulation in PSS®E of the SMIB
including the DC4B model. The considered scenario is a
3-phase fault applied at bus FAULT at t = 2s for 0.15s.
The corresponding SMIB in Modelica is given in Figure
20. The time trajectories of the PID output and its in-
tegrator state from PSS®E for the bus fault scenario are
illustrated in Figure 21.

From Figure 21 it is possible to see that when the out-
put of the PID reaches its limits the state of the integrator
freezes to avoid windup effects (the so called conditional
integrator). This observation led to the Modelica imple-

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 153146

Figure 17. Speed Deviation of the generator at bus GEN1 of the
system in Figure 12.

Figure 18. Block diagram of DC4B from PSS®E manual
(Siemens Industry 2013).

mentation of the PID with non-windup limits as in Figure
22.

The Modelica text layer of the model in Figure 22 ex-
plains the behavior of the integrator of the PID (see Listing
2). To make the code more easily readable, in Listing 2 all
the annotations, the lines indicating the blocks and addi-
tional parameters for the initialization of the model have
been removed.

1 model PID_No_Windup
2 import Model ica . U n i t s . SI ;
3 p a r a m e t e r SI . P e r U n i t K_P " V o l t a g e r e g u l a t o r p r o p o r t i o n a l g a i n

(pu) " ;
4 p a r a m e t e r SI . TimeAging K_I " V o l t a g e r e g u l a t o r i n t e g r a l g a i n (

pu) " ;
5 p a r a m e t e r SI . P e r U n i t K_D " V o l t a g e r e g u l a t o r d e r i v a t i v e g a i n (

pu) " ;
6 p a r a m e t e r SI . Time T_D " V o l t a g e r e g u l a t o r d e r i v a t i v e c h a n n e l

t ime c o n s t a n t (s e c) " ;
7 p a r a m e t e r SI . P e r U n i t V_RMAX "Maximum r e g u l a t o r o u t p u t (pu) " ;
8 p a r a m e t e r SI . P e r U n i t V_RMIN "Minimum r e g u l a t o r o u t p u t (pu) " ;
9 equat ion

10 r e s e t _ s w i t c h . u2 =

Figure 19. Block diagram of PID with non-windup limits from
PSS®E manual (Siemens Industry 2013).

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

pw
Fault

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0
PELEC

EFD0

XADIFD0

PMECH

EFD

GENROU

VUELVOEL

ECOMP
VOTHSG

EFD0

EFD

XADIFD
VT

DC4B
const

k=0

Figure 20. SMIB with DC4B in Modelica.

Figure 21. Plot of the output of the PID and the state of its
integrator from a bus fault simulation in PSS®E.

integral

I
k=K_I

k=K_P

proportional

k=K_D/T_D

gain1

add3_1
+1

+1

+1
+

add

+
+1

-1

derivative

I
k=1k=1/T_D

gain2

limiter

uMax=V_RMAX

reset_switch
0.0

realExpression

u
y

Figure 22. PID with non-windup limits implemented in Model-
ica.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA154 146

VoltageReference

k=V_REF

DiffV

+
+1

-1

Rotating Exciter

I_C V_E

Limited
TransducerDelay

K
1 + Ts

Vpss_Add

+
+1

+1

add3_1
+1

+1

-1
+

derivativeLag

DT1

k=K_F

product1

LV
GateHV

Gate

sw
itc

h_
VU

EL
1 2

sw
itc

h_
VO

EL
1 2

VU
EL

_V
O

EL
_a

dd

+
+1 +1

k=
V_

R
M

IN

ga
in

k=
V_

R
M

AX

ga
in

1

pID_No_Windup

first_Order_Lag_Non_Windup

VU
EL

VO
EL

EFD

EFD0

VOTHSG

ECOMP

XA
D

IF
D

VT

Figure 23. IEEE 421.5 2005 DC4B Excitation System model in
Modelica.

Figure 24. Generator terminal voltage at bus GEN1.

11 i f (abs (V_RMAX − y) <= Model ica . C o n s t a n t s . eps and d e r (i n t e g r a l
. y) >0)

12 then t r u e
13 e l s e i f (abs (V_RMIN − y) <= Model ica . C o n s t a n t s . eps and d e r (

i n t e g r a l . y) <0)
14 then t r u e
15 e l s e f a l s e ;
16 end PID_No_Windup ;

Listing 2. Modelica code for PID with non-windup limits model

Then the implementation of the DC4B model in Mod-
elica has been completed as in Figure 23.

3.2.2 Validation

The software-to-software validation of the DC4B model
against PSS®E has been performed to check the validity
of the adopted modeling approach. For the verification the
SMIB in Figure 20 has been considered with a bus fault
applied at bus FAULT at t = 2s for 0.15s. Some results of
the validation are given in Figures 24, 25 and 26.

An alternative approach for the validation of the DC4B
excitation system, that Modelica flexibility allows for,
consists of simulating only the block representing the
DC4B component driven by external input signals col-
lected from the reference SMIB network in PSS®E. This
means that the Modelica model of DC4B can also be run

Figure 25. Time trajectory of the state of the integrator of the
PID with non-windup limits included in the DC4B model.

Figure 26. Time trajectory of the state of the derivative part of
the PID with non-windup limits included in the DC4B model.

using different input signals coming, for example, from
real measurements.
To prove this new approach the PID model in Figure 22
has been modified replacing the integrator blocks with an
input so to use the integrator state trajectory as input to the
model (see Figure 27).

Then a new test system in Modelica has been created
as in Figure 28. Instead of assembling an SMIB to test
the new implemented model it is possible to build a test
system with only the target model with all the inputs de-
pending on the available signals and a table collecting the
external signals driving the model. To clarify the link be-
tween the external signals and the model to test, the text
layer of the Modelica model in Figure 28 is given in List-
ing 3 keeping only the equation section.

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD
VT

DC4Binputs

Figure 28. New Modelica test system for DC4B.

1 model D C 4 B _ s t a t e _ i n p u t _ t e s t
2 equat ion
3 d C 4 B _ s t a t e _ i n p u t .VOTHSG = i n p u t s . y [1] ;
4 d C 4 B _ s t a t e _ i n p u t .ECOMP = i n p u t s . y [2] ;
5 d C 4 B _ s t a t e _ i n p u t . EFD0 = i n p u t s . y [3] ;

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 155146

k=K_P

proportional

k=K_D/T_D

gain1

add3_1
+1

+1

+1
+

add

+
+1

-1

derivative

I
k=1k=1/T_D

gain2

limiter

uMax=V_RMAX

u
y

int_state

Figure 27. Modified PID with non-windup limits model.

6 d C 4 B _ s t a t e _ i n p u t .VUEL = i n p u t s . y [4] ;
7 d C 4 B _ s t a t e _ i n p u t .VOEL = i n p u t s . y [5] ;
8 d C 4 B _ s t a t e _ i n p u t . XADIFD = i n p u t s . y [6] ;
9 d C 4 B _ s t a t e _ i n p u t . VT = i n p u t s . y [7] ;

10 d C 4 B _ s t a t e _ i n p u t . i n t _ s t a t e = i n p u t s . y [8] ;
11 end D C 4 B _ s t a t e _ i n p u t _ t e s t ;

Listing 3. Modelica code for the DC4B test system in Figure 28

Then the validation of the model has been performed
comparing the DC4B exciter output (EFD) in a scenario
of SMIB system, as in Figure 20, with a bus fault applied
at bus FAULT at t = 2s and duration t = 0.15s. The results
are given in Figure 29.

0 2 4 6 8 10

������

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

�
�
�
�
�
�
�
�
�
�
�

��������������	��

SMIB PSS/E

SMIB Modelica

DC4B with inputs (Modelica)

Figure 29. DC4B exciter output (EFD).

In Figure 29 the output of DC4B for the SMIB in Figure
20, the corresponding SMIB in PSS®E and the new test
system in Figure 28 has been plotted. The system in Fig-
ure 28 takes the required input signals exported from the
SMIB in PSS®E simulated with a bus fault as described
before.

3.3 Examples of interoperability: portable
system modeling with unambiguous and
homogeneous results

Finally, to demonstrate an additional value of implement-
ing and validating models with the Modelica language, we
highlight the portability of system models using validated
components. This can be shown by running the simula-
tion of an example of the OpenIPSL library in different

software environments. The example of a SMIB with the
exciter EXST1 has been chosen (see Figure 30).

pwLine

pwLine3 pwLine4

INF

50 MW+j10 MVA

constantLoad

pw
Fault

GEN1 LOAD GEN2

FAULT

pwLine1 pwLine2

SHUNT

SPEED

ISORCE

ETERM

ANGLE

PMECH0

PELEC

EFD0

XADIFD0

PMECH

EFD

GENROE

zero

k=0

VUELVOEL

ECOMP

VOTHSG

EFD0

EFD

XADIFD

EXST1

Figure 30. SMIB example for EXST1 from the OpenIPSL li-
brary.

Some results of the simulation of the network in Figure
30 are reported in Figures 31 and 32. The plots show that
the model gives the same results regarless of the tool being
used, which means that tool-specific re-implementation
can be avoided.

Another example is illustrated with the network model
IEEE14 in Figure 33.

Figure 33. Modelica model of the power systems network
IEEE14.

A simulation of the network has been run in the
reference tool PSS®E and three different platforms
that are Modelica based. They are Dymola, Modelon
Impact and SystemModeler. The same scenario has
been considered in all three software and it consists of
applying a three-phase fault to ground at Bus 4 at time
t = 3s for 0.01s. The fault to ground has an impedance
Z = R + jX = (0.01 + j0.02)pu. The same simulation
settings about the output interval length (0.01s) and
the tolerance (1e-06) have been used. Results of the

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA156 146

0 2 4 6 8 10

Time [s]

0.5

0.6

0.7

0.8

0.9

1.0

V
o
l
t
a
g
e

[
p
u
]

�	�����������
��

SystemModeler

Dymola

Impact

OpenModelica

Figure 31. Voltage at bus GEN1 of the system in Figure 30.

0 2 4 6 8 10

Time [s]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V
o
l
t
a
g
e

[
p
u
]

����	����
	�
	

SystemModeler

Dymola

Impact

OpenModelica

Figure 32. EXST1 output of the system in Figure 30.

simulation are given in Figure 34, where it is possible
to see that once the models are validated they can give
the same results as the reference tool with the same
simulation settings even for larger networks.

4 Conclusions and Future Work
This paper formalizes and illustrates a procedure to imple-
ment power system models in Modelica with a software-
to-software validation methodology that is an important
step for developing and maintaining a Modelica library
using the concepts of regression testing and continuous
integration. The guidelines illustrated in this paper are in-
dispensable for the initial debugging of new models ad-
dressing all possible challenges of the time consuming re-
implementation process in a systematic way. The guide-
lines were illustrated through key use cases that proved to
be challenging to implement, this gives an idea of the diffi-
culties faced when developing power system models from
a reference software tool. Once the results of an initial
validation are satisfactory then the software-to-software

0 2 4 6 8 10

Time [s]

0.6

0.7

0.8

0.9

1.0

V
o
l
t
a
g
e

[
p
u
]

�	�����������
��

PSS@E

Dymola

Impact

SystemModeler

OpenModelica

Figure 34. Voltage at bus 1 of the IEEE14 model with a fault to
ground at bus 4.

validation process can be automated using scripts to test
different scenarios in the different simulation platforms.
This work will be presented in a future publication.

Acknowledgements
This material is based upon work supported in whole
or in part by Dominion Energy, New York State Energy
Research and Development Authority (NYSERDA) and
the New York Power Authority (NYPA) under agreement
numbers 137940, 37951, and by the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable En-
ergy (EERE) under the Advanced Manufacturing Office,
Award Number DE-EE0009139. The views expressed
herein do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

References
Baudette, Maxime et al. (2018). “OpenIPSL: Open-instance

power system library—update 1.5 to “iTesla power systems
library (iPSL): A modelica library for phasor time-domain
simulations””. In: SoftwareX 7, pp. 34–36.

Berube, GR, LM Hajagos, and Roger Beaulieu (1999). “Practi-
cal utility experience with application of power system stabi-
lizers”. In: 1999 IEEE Power Engineering Society Summer
Meeting. Conference Proceedings (Cat. No. 99CH36364).
Vol. 1. IEEE, pp. 104–109.

Bérubé, GR and LM Hajagos (2007). “Accelerating-power
based power system stabilizers”. In: Year not known, p. 10.

Chaudhary, Rekha and Arun Kumar Singh (2014). “Transient
stability improvement of power system using non-linear con-
trollers”. In: Energy and Power Engineering 2014.

Cui, Hantao, Fangxing Li, and Kevin Tomsovic (2020). “Hy-
brid symbolic-numeric framework for power system model-
ing and analysis”. In: IEEE Transactions on Power Systems
36.2, pp. 1373–1384.

Dorado-Rojas, Sergio A. et al. (2021-09). “Power Flow Record
Structures to Initialize OpenIPSL Phasor Time-Domain Sim-
ulations with Python”. In: Proceedings of the 14th In-
ternational Modelica Conference. Ed. by Martin Sjölund

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 157146

et al. Linköping Electronic Conference Proceedings 181.
Linköping, Sweden: Modelica Association and Linköping
University Electronic Press, pp. 147–154. ISBN: 978-91-
7929-027-6. DOI: 10.3384/ecp21181147.

Elmqvist, Hilding, Toivo Henningsson, and Martin Otter (2016).
“Systems Modeling and Programming in a Unified Environ-
ment Based on Julia”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemi-
nation, Applications. Ed. by Tiziana Margaria and Bernhard
Steffen. Cham: Springer International Publishing, pp. 198–
217. ISBN: 978-3-319-47169-3.

Fachini, Fernando et al. (2021). “Modeling and Validation of
Renewable Energy Sources in the OpenIPSL Modelica Li-
brary”. In: IECON 2021 – 47th Annual Conference of the
IEEE Industrial Electronics Society, pp. 1–6. DOI: 10.1109/
IECON48115.2021.9589148.

Gómez, Francisco J. et al. (2020). “Software requirements for
interoperable and standard-based power system modeling
tools”. In: Simulation Modelling Practice and Theory 103,
p. 102095. ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.
simpat.2020.102095.

Henriquez-Auba, Rodrigo et al. (2021). “Transient Simulations
With a Large Penetration of Converter-Interfaced Genera-
tion: Scientific Computing Challenges And Opportunities”.
In: IEEE Electrification Magazine 9.2, pp. 72–82. DOI: 10.
1109/MELE.2021.3070939.

Hongesombut, K. et al. (2005). “Object-oriented modeling for
advanced power system simulations”. In: 2005 IEEE Russia
Power Tech, pp. 1–6. DOI: 10.1109/PTC.2005.4524823.

Jayapal, R and JK Mendiratta (2010). “H∞ Controller Design for
a SMIB-Based PSS Model 1.1.” In: Journal of Theoretical &
Applied Information Technology 11.

Kumar, Ajit (2018). “Damping enhancement for smib power
system equipped with partial feedback linearization avr”.
In: 2018 20th National Power Systems Conference (NPSC).
IEEE, pp. 1–6.

Masoom, Alireza et al. (2021). “MSEMT: An Advanced Mod-
elica Library for Power System Electromagnetic Transient
Studies”. In: IEEE Transactions on Power Delivery.

Milano, F. (2005). “An open source power system analysis
toolbox”. In: IEEE Transactions on Power Systems 20.3,
pp. 1199–1206. DOI: 10.1109/TPWRS.2005.851911.

Murad, Mohammed Ahsan Adib and Federico Milano (2019).
“Modeling and simulation of PI-controllers limiters for the
dynamic analysis of VSC-based devices”. In: IEEE Transac-
tions on Power Systems 34.5, pp. 3921–3930.

Rabuzin, Tin, Maxime Baudette, and Luigi Vanfretti (2017).
“Implementation of a continuous integration workflow for
a power system Modelica library”. In: 2017 IEEE Power
Energy Society General Meeting, pp. 1–5. DOI: 10 . 1109 /
PESGM.2017.8274618.

Siemens Industry, Inc. (2013-03). MODEL LIBRARY. English.
Siemens Power Technologies International. 748 pp.

Thurner, Leon et al. (2018). “pandapower—an open-source
python tool for convenient modeling, analysis, and optimiza-
tion of electric power systems”. In: IEEE Transactions on
Power Systems 33.6, pp. 6510–6521.

Tiller, Michael (2001). Introduction to physical modeling with
Modelica. Springer Science & Business Media.

Vanfretti, Luigi et al. (2013). “Unambiguous power system dy-
namic modeling and simulation using Modelica tools”. In:
2013 IEEE Power & Energy Society General Meeting. IEEE,
pp. 1–5.

Wang, Xiaodong et al. (2015). “Nonlinear dynamic analysis
of a single-machine infinite-bus power system”. In: Applied
Mathematical Modelling 39.10-11, pp. 2951–2961.

Winkler, Dietmar (2017). “Electrical Power System Modelling
in Modelica - Comparing Open-source Library Options”. In:
Proceedings of the 58th Conference on Simulation and Mod-
elling (SIMS 58), pp. 263–270.

Zhang, Mengjia et al. (2015). “Modelica implementation and
software-to-software validation of power system component
models commonly used by nordic TSOs for dynamic simu-
lations”. In: Proceedings of the 56th Conference on Simula-
tion and Modelling (SIMS 56), October, 7-9, 2015, Linköping
University, Sweden. Linköping University Electronic Press,
pp. 105–112.

Zimmerman, Ray Daniel, Carlos Edmundo Murillo-Sánchez,
and Robert John Thomas (2010). “MATPOWER: Steady-
state operations, planning, and analysis tools for power sys-
tems research and education”. In: IEEE Transactions on
power systems 26.1, pp. 12–19.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA158 158

Material Production Process Modeling with

Automated Modelica Models from IBM

Rational Rhapsody

John Batteh1 Jesse Gohl2 James Ferri3 Quang Le4

Bill Glandorf5 Bob Sherman6 Rudolfs Opmanis7
1,2Modelon Inc., USA, {john.batteh, jesse.gohl}@modelon.com

3,4Virginia Commonwealth University, {jkferri, leq2}@vcu.edu
5Procter and Gamble, USA, glandorf.wm@pg.com

6Occam Systems Inc., USA, bob@occamsystemsinc.com
7Tom Sawyer Software, USA, rudolfs@tomsawyer.com

Abstract
This paper describes a method to author dynamic

simulation models in Modelica from a manufacturing

architectural model structure in SysML. Modelica models

are generated from IBM Rational Rhapsody and simulated

using Modelon Impact. Following a brief overview of the

overall modeling approach and tool coupling, the

Modelica modeling is detailed for computing process

throughput and processing time. Following the model

overview, a sample application for the production of the

pharmaceutical ingredient atropine is demonstrated.

Keywords: SysML, Rhapsody, process modeling,

pharmaceuticals, manufacturing

1 Introduction

The increasing complexity of modern manufacturing

systems has created a paradigm shift from the traditional

document-centric approach in systems engineering to

Model Based System Engineering (MBSE). MBSE

provides stakeholders access to an authoritative thread of

information describing the system design throughout the

product lifecycle. Complementary to MBSE,

Multidisciplinary Design Analysis and Optimization

(MDAO) focuses on creating an analysis model to

demonstrate properties or outcome of the intended system

by leveraging high performance computing and dynamic

simulations. However, there is little effort in bridging the

gap between the two approaches. We propose a method to

author dynamic simulation models from a structural

model. Specifically, we are developing infrastructure to

automatically generate simulations in the Modelica

language from a manufacturing architectural model

structure in SysML (SysML 2022). This digital coupling

allows for the unified design vision be developed with

analytical rigor throughout the product lifecycle.

This work is part of a U.S. Defense Advanced Research

Projects Agency (DARPA) project to build a digital

infrastructure that the chemicals and materials industry

needs to improve efficiencies. The goal of this project is

to make it easier for chemical manufacturers in the U.S. to

produce critically needed medicines. The models and

workflow described in this paper allow manufacturers to

explore production duration, synchronization,

requirements, and constraints to improve and optimize

chemical synthesis processes. Addressing challenges in

the chemical industry to encourage domestic production

of these medications will also pave the way for

manufacturing a broad range of active pharmaceutical

ingredients (APIs) for drugs in the U.S., instead of

overseas. These include in-demand APIs related to

COVID-19 and several others on the federal government’s

Strategic National Stockpile list.

This paper focuses on just the modeling and simulation

portion of the project. Following a brief overview of the

overall approach and tool coupling to generate Modelica

models from SysML using IBM Rational Rhapsody (IBM

2022), the Modelica modeling is detailed for computing

process throughput and processing time. An overview of

the modeling approach and key components is provided.

Following the model overview, a sample application for

the production of atropine is demonstrated with

simulations in Modelon Impact (Modelon 2022).

2 Modeling Process Overview

This section provides a high level overview of the

modeling process to generate an executable Modelica

model starting from an MBSE system model in IBM

Rational Rhapsody. Figure 1 illustrates key components

of the modeling process and the various software tools

involved. The overall steps in the modeling process are as

follows for the drug manufacturing use case:

• Based on research regarding the process to create

a particular pharmaceutical ingredient, a SysML

model is created in IBM Rational Rhapsody that

outlines the manufacturing process steps.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 159158

• Based on the SysML model and an equipment

database for chemical plants, a fully

parameterized Modelica model is automatically

created using Tom Sawyer Software technology

for the manufacturing process based on a

Modelica model library for the various process

primitives

• The resulting Modelica model is then simulated

in Modelon Impact using its simulator API

• Key simulation results, including process

throughput and process time, are then returned to

Tom Sawyer Software for visualization and also

for use in an optimization process regarding the

manufacturing process and equipment allocation

Figure 1. The modeling process overview.

This modeling process will be outlined in detail in separate

future publications.

3 Modelica Models

As outlined in Section 2, the intended studies supported

by this work are focused on the process layout for

analyzing and optimizing the process time and yield for

batch based material processing. The degrees of freedom

for such an optimization are not only individual steps’

boundary conditions (parameters) but also the overall

process topology. Since the process steps required for

manufacturing a given pharmaceutical ingredient are not

wholly documented in public references and since the

models are expected to be used in massive optimization

loops, the models are intentionally implemented to be

computationally fast due to low fidelity implementations

and the use of time events.

The distinct stages of the process are simulated as
individual components in the Modelica model. These

stages compute their status (complete or not) and the batch

material characteristics based on the behavior of the

specific stage. The material characteristics and status feed

successive stages. This data that is shared between

components are described in Section 3.2. Details about

specific implementations are provided in Section 3.3.

Finally, examples of a fully assembled process are given

in section 3.4.

3.1 Material Data Record

The properties of individual species are maintained within

a data record that can be customized to each process. The

records contain an array of the species names which are

necessary for the process along with arrays of the species

properties. The material data record approach is used in

lieu of the more rigorous and detailed medium model

approach to provide material information and

thermophysical properties due to the lack of rigorous

species information at various stages of the manufacturing

process.

Figure 2. The material data record.

As an example, the process simulated in Section 3.4,

uses the species listed in Table 1.

Table 1. An example process data record species list.

Index Species
1 DCM
2 Tropine
3 Methanesulfonic acid
4 DCM+Tropine
5 DCM+Methanesulfonic acid
6 DCM+Tropine+Methanesulfonic acid
7 DCM+Tropine methanesulfonate

This record is instantiated as an inner component at the

top level of any simulation model for access by model

components via an outer relationship.

3.2 Component Interfaces

Material Interface

The individual “steps” in the production process implies

an explicit ordering to the stages. This approach allows

the interface between Modelica model components to use

a causal interface with distinct inputs and outputs that

define the material state.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA160 158

Figure 3. A process step’s material data input and output.

These connectors represent the material type, quantity,

and state that is shared between process stages. Because

all of the steps represent processes that operate on batches

of material (e.g. heating, stirring), these connectors are

instantiated in interface base classes.

The first of these is ComponentSingle that supports

components that operate on a single batch of material. In

this case a single input and output is needed.

Figure 4. The single component base class.

To support processing steps that operate on multiple

batches of material (e.g. mixing and reactions), the

ComponentArray base class is used.

Figure 5. The array component base class.

Notice that the dynamically incremented connector size

parameter is named nu2. This naming is to avoid conflicts

with the connector size parameter for the trigger inputs,

discussed in the next section. Components that extend

from these base classes are required to include at least

three equations to balance the three variables mass,

temperature (T), and species_index on the output

connector pOut. The ancestor base class for both of these

base classes is the MaterialData model that instantiates

an outer instance of the process_data record

described in Section 3.1.

Figure 6. The material data base class.

Logical Interface

In addition to the material data, stages also share their

status with adjacent steps. This Boolean status is the local

variable complete and is an output from all stages that

serves as the trigger for successive stages to start their

process. Because a stage could depend on previous steps

(for example when process steps occur simultaneously),

the input trigger is a Boolean array. Processing for a

stage begins when all trigger inputs are true. Thus, all

components include a scalar Boolean output named

complete and an array Boolean input named trigger.

These Boolean inputs and outputs are collected in a base

class named TriggeredComponent that includes the

logic to consider all input triggers to start the process step.

The diagram and text of this base class appears in the

following figure.

Figure 7. The triggered component base class diagram.

The base class includes the parameter option

paraOption_trigger which allows the same

component to be used either with external trigger

connectors or from a parameter for absolute trigger time,

triggerTime. The triggered internal Boolean

variable becomes true when all triggers are true. This also

starts the internal timer by setting the discrete variable

startTime to the time instant of the trigger.

 Fixed Time

The required duration for some stages can be specified

directly. For example, stirring stages are specified as “stir

the material for x seconds”. These stages extend from the

fixed TimeComponent base class which includes the

process time parameter tau. Notice the state is complete

when the simulation time exceeds the process time after

that stage starts.

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 161158

Figure 8. The fixed time component base class.

Prescribed Rate

Other stages operate at prescribed rates. The processing

time required for these stages is computed based on a rate

equation using the ratio of the total quantity to be

processed and the processing rate. For example, the

duration of mass transfer is computed as the total mass to

be transferred divided by the rate of transfer. For these

stages the RateComponent base class is used.

Figure 9. The rate component base class.

3.3 Process Stages

Elemental Stages

The following components represent fundamental stages

used to describe an overall material handling process.

These elemental components are responsible for

computing the time required to complete their stage based

on the established equations that describe the process

physics. In addition, each stage is responsible for

computing the exit state mass, temperature, and species

index. Some stages can also produce a change of species

(e.g. reactions, mixing, and drying). Due to the limited

information available regarding each process step and the

species mix, mass conservation is handled based on the

incoming mass but also based on a yield input or

parameter to allow the output mass to be calculated.

Time and Hold

The Time and Hold components represent simple timed

stages that require a fixed time delay. Both of these

components extend from the TimeComponent base class

and add equations for the output connector’s contents.

These components behave as pure delays with no

additional modification to the material. The same material

species leaves that entered, no mass is stored in the

component, and no heat is transferred. When the stage is

complete, the mass and the temperature at the outlet

become the same as the inlet.

Figure 10. Time and Hold components’ icons.

Parameter Rate

The FixedRate component describes the time required

for handling mass at a fixed rate. It adds a parameter for

the fixed mass flow rate and species the outlet connector

similar to the Time and Hold components discussed

above. When the stage starts (triggered becomes true),

the processing time is computed based on the incoming

mass divided by the fixed mass flow rate from the

parameter.

Figure 11. The FixedRate component icon.

Stir

The Stir component is another trivial component used to

simulate the duration required to stir the material for a

fixed amount of time. It specifies the outlet state in the

same way as the components above.

Figure 12. The Stir component icon.

Mix

The Mix component extends from the ComponentArray

base class. It is used to simulate stages where multiple

materials are combined over a fixed amount of time. The

new, outgoing species is specified by a parameter. The

outgoing mass is conserved as the sum of incoming

masses and the temperature of the outlet material is the

mass-average of the incoming materials (note: not a

rigorous conservation of energy due to lack of detailed

information about the process species at each stage).

Figure 13. The mix component icon.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA162 158

Reaction

The Reaction component is similar to the Mix

component because it combines multiple materials to

produce a new outgoing species. It also extends from the

ComponentArray base class in order to support multiple

incoming materials. In addition to the

species_index_out parameter, there are parameters

for the reaction time (tau_reaction), yield fraction, and

reaction temperature change (dT). The yield fraction

reduces the outgoing mass to account for losses and

incomplete reactions. The temperature difference applies

an additional offset to the outgoing temperature from the

mass averaged inlet temperatures.

Figure 14. The Reaction component icon.

Volumetric Rate

The VolumetricRate component simulates a process

that applies a fixed volumetric flow rate to the incoming

material. This component also demonstrates the use of the

“process_data” record. The density of the incoming

material, rho, is selected based on the incoming species

index. This density is then used together with the

incoming mass, to compute the volume of the material that

must be transferred by this stage. When the stage starts

(triggered becomes true), the process time is updated

based on the ratio of the material volume, Vf, with the

fixed volumetric flow rate, Q.

Figure 15. The Volumetric rate component icon.

Liquid Transfer

The LiquidTransfer component is similar to the

VolumetricRate component except the volumetric flow

rate is computed assuming hydraulic flow through a

smooth pipe driven by a constant power pump. The

Fanning friction factor (Incropera 2007) relates the

pressure drop to the mean fluid velocity and the Reynolds

number characteristic of the flow (Munson 2009).

 = 4


(1)

∆ = 2


(2)

 = 0.0791 ∙ / (3)

 =  ∙  (4)  =  ∙ ∆ (5)

For Re – Reynolds number, ρ – fluid density, Q –

volumetric flow rate, μ – dynamic viscosity, D – pipe

diameter, Δp – pressure drop, f – Fanning friction factor, v – mean fluid velocity, A – pipe cross-sectional area, Pb

– pump power

The unknown variables in these five equations are Re,

Δp, Q, f, and v, which can be solved from these five

equations. The volume of the fluid, Vf, is directly

computed from the incoming mass and density. With the

solution of the volumetric flow rate, Q, the duration can be

directly computed.

Dissolution

The Dissolution component computes the duration

required to fully dissolve a specified mass of solute in a

stirred, fixed volume vat. The solute can be specified

either as a fixed parameter, or it can enter from a

conditional connector. The time for dissolution is

calculated based on mass transfer analysis for a stirred

vessel.

Figure 16. The Dissolution component icon.

Heat Transfer

As with the Dissolution component, the

HeatTransfer component assumes a liquid in a fixed

volume, stirred vessel. The formulation starts with

Newton’s law of cooling and the First Law of

Thermodynamics to relate the heat capacity, heat transfer

rate, and the material temperature for a constant pressure

process (Castellan 1983).

∆ =  = ∆ = ( − ) (5)

 =  = ℎ( − ) (6) T – material temperature, Cp – heat capacity at constant

pressure, h – heat transfer coefficient, A – heat transfer

area, Tht – temperature of the heat transfer element. From

these equations, the solution to the initial value problem

for (0) =  is:

() =  + ( − )
 (7)

The final time, , can be calculated from this equation to

heat (or cool) the material to the final temperature, .

 = − log 
  (8)

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 163158

Figure 17. The heat transfer component icon.

Drying Fixed Rate

The DryingFixedRate component accounts for two

physical phenomena. First is the addition of heat to

evaporate a fraction of the incoming material stream.

Second is the optional change of species to the outlet

stream. This change depends on whether the evaporate or

the dessicate (remainder) continues to the outlet or is

discarded. This implementation allows the same

component to be used for both a drying operation as well

as a distillation step. The component assumes heat is

added at a fixed rate defined by a parameter Qmax. The

process time accounts for the duration to add sensible heat

to raise the temperature of both the evaporate and

dessicate and to add the latent heat of the evaporate. The

fraction of the incoming stream that evaporates is

specified by a parameter. From this information, the

masses of both the evaporate and dessicate are known.

From these masses and the heat capacity at constant

pressure of each species, the total energy required for the

sensible heat necessary to raise the temperature of both

species from the incoming temperature to the vaporization

temperature of the evaporate species can be directly

computed. The total heat required also includes the latent

heat of vaporization. This heat is directly computed from

the evaporate mass and the evaporate species specific

latent heat of vaporization. The duration of this step is

then directly computed from the fixed rate of heating,

Qmax.

This component includes an optional Boolean flag that

allows the user to select whether the process is a drying or

distillation step. This selection determines which species

continues to the outlet stream. An assumption of this

component is that the species index of the incoming

stream is the evaporate species.

Figure 18. The Drying component icon.

Filter/Wash Base Class

Both the Filter and Wash component use Darcy’s law

to model the flow rate of a solvent through a permeable

solid. This law relates the volumetric flow rate of a liquid

to the hydraulic permeability, cross sectional area,

dynamic viscosity, flow length, and pressure difference.

 = ∆
∆ = 

  (9)

Q – volumetric flow rate, ΔV – volume, Δt – duration, k

– hydraulic permeability, A – cross sectional area of the

filter path, μ – dynamic viscosity, L – length of the filter

path, Δp – pressure difference

For gravity driven filtrations, this equation can be

rearranged to use hydraulic conductivity, fluid density,

and gravity in place of the permeability and dynamic

viscosity. 
 = 

 (10)

 K – hydraulic conductivity, ρ – density,  – gravitational

constant

These equations are implemented in the FilterWash

base class model to calculate the filtration time.

Δ = 
 ∙ 

 + 
 (11)

 Lf – filter length, Kf – filter conductivity, Lc – cake path

length, Kc – cake conductivity

In this case, Lf/Kf is assumed to be a constant and is

specified as a parameter. Lc is computed from the solid

volume, packing efficiency, and cross sectional area.

The outlet mass is the solute mass computed from a fixed

yield fraction of the filtration.

The Filter component extends from the FilterWash

base class and assumes the incoming material already

contains the solvent and solute. The solvent mass is based

on the yield fraction of the filtration and is used to

compute the volume. The filtration is also assumed to be

isothermal, so the outlet temperature is the same as the

inlet.

Figure 19. The Filter component icon.

Like the Filter component, the Wash component also

extends from the FilterWash base class. In this case a

new connector is added for a separate inlet for the solvent.

The solvent volume is explicitly computed from the

solvent mass and density. The outlet temperature for the

Wash component is specified by a parameter. An

additional condition for completion for this stage is that

all the solvent must be delivered. Because prior stages

hold their outlet mass at zero until they are complete, the

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA164 158

Wash stage uses the inlet solvent mass greater than epsilon

to indicate completion. This implementation prevents the

stage from completing until all the solvent mass has been

transferred.

Figure 20. The Wash component icon.

Phase Cut

The PhaseCut stage represents a process separation step

that splits the material on the input connector into two

separate outputs based on a fixed fraction

(usable_fraction). An additional yield_fraction

parameter is defined to account for losses that occur

during the separation process.

Figure 21. The PhaseCut component icon.

End

The End component performs two functions. First it

records the overall completion time in the discrete

variable t_final. This value is updated when the End

component is triggered. The second function the

component performs is to terminate the simulation. The

additional condition for termination guarantees the

simulation does not terminate before the solver has

updated all outputs (e.g. t_final). Notice the final

product species, mass, and temperature is available on the

input connector.

Figure 22. The End component icon and implementation.

Source

The Source component provides a fixed amount of

material (mass), at a fixed temperature, as a specific

species. It does not include an output complete signal

because it is assumed to be a source of material. If the

delivery time must be considered at the start of a process,

one of the transfer components can be placed immediately

after the source.

Figure 23. The Source component icon and implementation.

Composite Stages

In many cases during material handling, multiple stages

are often associated with each other. For this reason, it is

convenient to create composite stages that combine these

steps into a single component. This approach to create

composite stages reduces the effort required for the

automated code generation process.

Heat Transfer and Dissolution

In many cases of dissolution during material processing,

the instructions specify simultaneous heating during the

dissolution. The elemental Dissolution component

however assumes an isothermal process (the outlet

material maintains the same temperature as the inlet). For

this reason, a composite component was created that

includes both these steps in parallel. This component

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 165158

starts with a mixing stage that combines the solute with

the inlet material. After this stage is complete the heating

and dissolution stages can start. The overall stage cannot

complete until both stages are done.

Figure 24. The Heat transfer and Dissolution component.

Add Liquid and Wash

Because washing steps require the addition of a liquid, the

AddLiquidAndWash convenience component combines

both the Wash component with the VolumetricRate

liquid transfer component. Because washing can

commence immediately, no mixing component is

necessary. The volumetric transfer component only needs

to generate its completion signal to complete the

composite step.

Figure 25. The AddLiquidAndWash component system.

3.4 Complete System Configuration

To demonstrate the usage of these components, the

following model was created. This model is used to

simulate the synthesis of tropine methanesulfonate, which

is a precursor in the synthesis of atropine. The process

starts by mixing species dichloromethane (DCM) to

tropine as indicated by the species indices, 1 and 2 as listed

in Table 1, as shown on the source_DCM and

source_Trop components. The liquidTransfer and

solidTransfer components compute the duration

required to transfer the supplied materials to the mixing

vessel (mix).

Figure 26. The Tropine methanesulfonate synthesis system.

Notice the mix component gets its material from

liquidTransfer and solidTransfer and starts its

process when both these steps are complete. Because it is

based on the TimeComponent base class, it also includes

a process time, tau for the additional duration after it starts.

Finally the mix component also changes the species index

to 4, which is the identifier for the mixture of DCM and

Tropine (see Table 1).

After mixing, the mixture is heated and the tropine is

dissolved in solution. This process is simulated by the

heatTransfer and dissolution components. Notice

the DCM liquid transfer is connected to the main material

inlet of the dissolution component. The tropine material

outlet connector is connected to the dissolution

component solute material inlet. This approach allows the

dissolution step to be computed for cases when the

materials are not already mixed.

Alternatively the dissolution component also includes

the parameter option to premix the solvent and solute, in

which case the solute connector is disabled and the solute

species can be specified via parameter. In this case the

materials are already mixed so the dissolution component

only needs to indicate when dissolution occurs. This

demonstrates the flexibility of the models to be connected

in multiple ways to accommodate different processes.

This version of the library does not account for thermal

effects of dissolution so there is no feedback from the

heating step to the dissolution step. In this case they occur

in parallel and are connected to the next mix1 component.

The mix1 component accounts for the time to complete

both the heating, dissolution, and to add the third

component, methanesulfonic acid, that is the reagent for

the reaction. The outlet is the new species 6, DCM,

tropine, and methanesulfonic acid.

10.3384/ECP21186 DOIPROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 OCTOBER 26-28, DALLAS, TX, USA166 158

The reaction component is another fixed time

component that accounts for the reaction time based on a

specified duration as a parameter. The outlet of this

component is the final species 7, DCM and tropine

methanesulfonate.

The final step in this sub-process is to transfer the liquid

from the reaction vessel. This step is simulated with an

additional liquid transfer component,

liquidTransfer1. When this step is complete, it

triggers the end step which records the overall duration

and terminates the simulation. The progression of

completion the stages can be tracked throughout the

process by observing the complete local Boolean

variable for individual stages as shown in the following

figure.

Figure 27. Atropine precursor process, completion progression.

The final results are shown in the following image. The

overall process time (t_final), the mass, temperature

(T), and final species index are visualized.

Figure 28. Precursor final results.

A larger process system is shown in the following

image. This system simulates the final stages in the

synthesis of atropine starting from the precursor created

by the previous process. The stages are numbered

according to the identifiers used in the original synthesis

instructions. Again, the final results are indicated in the

diagram and the progression of individual stages

completion can be tracked by plotting the time trajectory

for the Boolean variable, complete, shown in Figure 30.

Figure 29. Atropine synthesis system model, and final results.

Figure 30. Atropine synthesis, completion progression.

4 Conclusions

This paper focuses on the modeling and simulation

capability for the DARPA project to build a digital

infrastructure to improve efficiencies in the chemicals and

materials industry. Based on the work in the DARPA

project to build SysML models that describe the

manufacturing process for given pharmaceutical agents,

simulation models for process throughput and yield are

automatically generated in Modelica using the model

library detailed in the paper. The models are simulated in

Modelon Impact using its simulator API and key results

returned to the software stack for use in visualization and

DOI 10.3384/ECP21186 OCTOBER 26-28, DALLAS, TX, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2022 167158

optimization processes. A sample use case for the

synthesis of atropine is demonstrated.

 This paper focuses on the model library developed to

support this digitalization approach and an initial use case.

Ultimately this project will support efforts to analyze the

chemical supply chain and identify capability gaps in

pharmaceutical manufacturing for key drugs.

Acknowledgements

This work has been supported by U.S. Defense Advanced

Research Projects Agency (DARPA).

References

Castellan, Gilbert W. (1983). Physical Chemistry. 3rd ed. The

Benjamin/Cummings Publishing Co., Inc. ISBN: 0-201-

10386-9.

IBM (2022). IBM Engineering Systems Design Rhapsody. URL:

https://www.ibm.com/products/systems-design-rhapsody

Incropera, Frank P., David P. Dewitt, Theodore L. Bergman, and

Adrienne S. Lavine (2007). Fundamentals of Heat and Mass

Transfer. 6th ed. John Wiley & Sons, Inc. ISBN: 978-0-471-

45728-2.

Modelon (2022). Impact. URL:
https://www.modelon.com/modelon-impact/.

Munson, Bruce R., Donald F. Young, Theodore H. Okiishi, and

Wade W. Huebsch (2009). Fundamentals of Fluid

Mechanics. 6th ed. John Wiley & Sons, Inc. ISBN: 978-0470-

26284-9.

SysML (2022). SysML Open Source Project - What is SysML?

Who created SysML? URL: https://sysml.org/

