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Abstract— Intensifying climate change will lead to more
extreme weather events, including heavy rainfall and drought.
Accurate streamflow prediction models which are adaptable
and robust to new circumstances in a changing climate will
be an important source of information for decisions on climate
adaptation efforts, especially regarding mitigation of the risks
of and damages associated with flooding. In this work we
propose a machine learning-based approach for predicting
water flow intensities in inland watercourses based on the
physical characteristics of the catchment areas, obtained from
geospatial data (including elevation and soil maps, as well as
satellite imagery), in addition to temporal information about
past rainfall quantities and temperature variations. We target
the one-day-ahead regime, where a fully convolutional neural
network model receives spatio-temporal inputs and predicts the
water flow intensity in every coordinate of the spatial input
for the subsequent day. To the best of our knowledge, we
are the first to tackle the task of dense water flow intensity
prediction; earlier works have considered the prediction of
flow intensities at a sparse set of locations at a time. An
extensive set of model evaluations and ablations are performed,
which empirically justify our various design choices. Code
and preprocessed data have been made publicly available at
https://github.com/aleksispi/fcn-water-flow.

I. INTRODUCTION

As climate change intensifies, hydrological conditions will
change. This will manifest itself both in the form of water
shortages and as flooding in cases of intense precipitation.
According to the Swedish Environmental Protection Agency,
the climate in Sweden is becoming warmer and wetter [1],
and municipalities are encouraged to increase their climate
adaptation efforts, especially regarding mitigating the risks
of, and damages associated with, flooding [12], [15]. The
effects of climate change on rainfall-runoff will be more
severe further north [14]. At the same time, the hydrological
conditions in Sweden have been severely disturbed during
the last two hundred years, with wetlands being drained
and natural streams being straightened, which will further
increase the effects of extreme weather events.

Hydrological modeling can shed light on the dynamics
of water flow and how it is affected by various aspects
of the environment. This can in turn allow for making
informed decisions about the efficacy of nature-based climate
change adaptation techniques such as wetland restoration,
urban greening, and soil protection. Traditional hydrological
models are based on expert knowledge and physical prop-
erties such as the preservation of volume, which have to be
specified a priori. These work well for a certain domain if

they are properly calibrated, but have difficulties generalizing
to wider environmental categories [17]. Statistical data driven
modeling, including machine learning (ML), is an alternative
which has the potential to become more robust as long as
the model can be trained on a large enough dataset with
a suitable learning signal. This way, not only can the flow
intensity be estimated for any given water course following
a heavy precipitation event, but also the response time of
the given area, i.e. an estimation of the time lapse from
the precipitation event to peak flow. Such information is
vital to better understand flood risks and the effects of
flood and drought mitigation, as well as general hydrological
implications from changes in land use.

In this work we propose an ML-based approach for
water flow intensity prediction that leverages the physical
characteristics of a catchment area. We target the one-day-
ahead regime, where a fully convolutional neural network
[11] receives spatio-temporal inputs and predicts the water
flow intensity at every coordinate for the subsequent day (the
same modeling should however be able to handle other time
horizons with minor modifications). Two important novelties
of our proposed approach are:

• In addition to temporal data (past rainfall and tempera-
tures), we include spatial data as inputs to the modeling,
provided as satellite imagery and several derived GIS
layers. This allows the model to build internal represen-
tations about relationships between temporal and spatial
aspects of the local environment (including land cover,
soil depth and moisture, and elevation).

• Using a fully convolutional model, we tackle the task
of dense water flow intensity prediction, as opposed to
only predicting flow intensities for a sparse set of spatial
locations. To the best of our knowledge, we are the first
to consider the dense prediction task.

The remainder of this paper is organized as follows. In
Section II we provide a brief overview of the related work.
Then, in Section III, we describe in detail the data we have
used for modeling, training and evaluation. In Section IV we
explain our approach for tackling the water flow intensity
prediction task, and our proposed approach is empirically
evaluated against alternative methods in Section V-B. Finally,
the paper is concluded in Section VI.

https://github.com/aleksispi/fcn-water-flow


II. RELATED WORK

Water flow prediction (also known as stream forecasting
or rainfall-runoff modeling) for rivers in the U.S. have
been modeled using Long Short-Term Memory (LSTM [7])
networks [8], [5], [4], [6]. The modeling follows a traditional
setup inspired by earlier physics-based hydrological models
such as the U.S. National Water Model (NWM), based on
WRF-Hydro [2]. Jia et al. [8] modeled river segments using
an LSTM network with graph convolutions. One segment in
the river network corresponds to a distance that the water
flows during approximately one day. Input features include
daily average precipitation, daily average air temperature,
date of the year, solar radiation, shade fraction, potential
evapotranspiration, elevation, length, slope, and width of
each segment. Models were trained using a physics-informed
setup where a traditional flow model acted as a teacher for
the machine learning model. LSTM networks have also been
used for post-processing the output from the NWM [5].
Similar to our work, most of these prior works have focused
on next-day predictions. However, there are examples of
hourly predictions [6].

Others have also employed convolutional neural networks
(CNNs) for stream forecasting [3], [18], [13]. However, in
contrast to us, these works do not incorporate spatial data
from satellites or GIS, but instead model only the much
lower-dimensional data (in single coordinates or very small
neighborhoods, not entire areas as in our setup) provided as
a feature vector for each time step, similar to the models
using LSTMs. More broadly, deep learning has been used
for many related tasks, such as groundwater level estimation
[21], water quality estimation [19], and rainfall-runoff [10].

While some of the above mentioned works on streamflow
estimation include information about the near environment
(such as elevation and slope), none of them use detailed
spatial information inputs as is proposed in our work. The
use of fully convolutional neural networks to encode this
information, in combination with traditional inputs such as
rainfall and temperature, has the potential of representing
more complex relationships and can result in a more detailed
view of the near environment. It also enables us to perform
dense water flow intensity prediction, different to prior works
who consider the prediction of flow intensities in a sparse,
discrete set of points.

III. DATASET DESCRIPTION

We use data from 12 locations in Sweden, based on
where the Swedish Meteorological and Hydrological Institute
(SMHI) has stations for measuring weather and water flow
data. These locations are Jönköping (Tabergsån), Knislinge
(Almaån), Krycklan, Skivarp (Skivarpsån), Skövde (Ösan),
Torup (Kilan), Tumba (Saxbroån), Dalbergsån, Degeå, Häss-
jaån, Lillån, and Lillån-Blekinge (see Figure 1).

In each location we have access to the following spatial
data layers (see also Figure 2):

• satellite RGB image (Sentinel-2) from the Land Survey
of Sweden (Lantmäteriet), 10m × 10m resolution;

Fig. 1. The data used in this paper comes from 12 locations in Sweden:
Jököping (Tabergsån), Knislinge (Almaån), Krycklan, Skivarp (Skivarpsån),
Skövde (Ösan), Torup (Kilan), Tumba (Saxbroån), Dalbergsån, Degeå,
Hässjaån, Lillån, and Lillån-Blekinge. Note that Lillån and Lillån-Blekinge
are far apart (Lillån is north-west of Stockholm).

• elevation map from the Land Survey of Sweden, 50m×
50m resolution;

• terrain slope map from the Land Survey of Sweden,
50m × 50m resolution;

• soil moisture map the Swedish University of Agricul-
tural Sciences, 2m × 2m resolution;

• land cover map the Swedish Environmental Protection
Agency, 10m × 10m resolution;

• soil type map from the Geological Survey of Sweden,
10m × 10m resolution;

• soil depth map from the Geological Survey of Sweden,
10m × 10m resolution;

• hydraulic conductivity map from the Geological Survey
of Sweden, 100m × 100m resolution.

The elevation map provides each coordinate’s elevation
above the ocean level, whereas the terrain slope map provides
the slope of each coordinate (obtained by computing differ-
ences between adjacent coordinates of the elevation map).



Fig. 2. Overview of our machine learning (ML) approach for dense water flow intensity prediction in catchment areas. The fully convolutional neural
network receives both spatial and temporal inputs and produces a map of predicted water flow intensities. The spatial input Ispat ∈ RH×W×C represents
relevant properties of the region (red rectangle, which can be located anywhere) in which to perform water flow intensity prediction (e.g. elevation map,
soil moisture, land cover). The temporal inputs itemp = {rj , τj}j=t−1

j=t−T are the daily average rainfall amounts rj and temperatures τj over the past T
days, provided at times t− T, t− T +1, . . . , t− 1. The model then produces the flow map F ∈ RH×W , where each pixel (k, l) represents the model’s
estimate of the daily average water flow intensity at location (k, l) in the input map during day t. Note that our model is only trained in a very sparse
set of coordinates (since water flow intensity measurement stations are very scarcely located), but the model nonetheless predicts flow intensities in every
coordinate, not only in those for which contain flow intensity measurement stations.

All input data were provided as spatially aligned sets of
raster maps, each of size 825×1244 pixels. For all locations
except the Krycklan catchment area, there is exactly one
water flow intensity measurement station. In Krycklan there
are 14 such measurement stations, so in total there are 28
water flow intensity measurement stations in the dataset. In
each measurement site, the daily average water flow intensity
(m3/sec) is provided. The specific length of each time series
varies, but generally span several decades (in average about
three decades).

In each location we also have access to two additional time
series – daily cumulative rainfall (mm) and daily average
temperature (degrees Celsius). These were obtained from the
Swedish Meteorological and Hydrological Insitute (SMHI),
and are often measured some distance away from the water
flow intensity measurement sites (typically 1-3 kilometers).

It is common with missing measurements in the time
series. For those time series which are used as model inputs
(see Section IV), this is remedied by linearly interpolating
the missing values between end points. Note that this is
not done for the regressor (water flow intensity), since we
only want the model to learn on and be evaluated on actual
measurements.

Data preprocessing. We perform normalization of
both the spatial and temporal data. Specifically, the spatial
inputs are normalized to the [0, 1]-range by dividing with
the maximum value (layer-wise) across all locations. A
similar [0, 1]-normalization is performed for the temporal
inputs (rainfall, temperature, and water flow intensity). We

also tried another common normalization technique, where
the variables are normalized to zero mean and unit variance,
but empirically found that the [0, 1]-normalization works
best in our setup.

IV. METHODOLOGY

In this section we provide an overview of the approach
that we have developed for tackling the water flow intensity
prediction task. See Figure 2 for an overview of our model
and setup.

Our model leverages both spatial inputs Ispat ∈ RH×W×C

and temporal inputs itemp = {rj , τj}j=t−1
j=t−T (cf. Section III),

in order to predict water flow intensities ft at time1 t. The
task of the model is to predict the water flow intensity fh,w

t at
every coordinate (h,w) in a given geographical area of size
H×W given Ispat and itemp. For the temporal inputs, we have
chosen to only use readily available rainfall rt−T , . . . , rt−1

and temperature data τt−T , . . . , τt−1 for the past T days
(with T = 20 in our setup), and not water flow intensity
data ft−T , . . . , ft−1, which is often unavailable in practice.
In particular, note that water flow intensity is only measured
at a very sparse subset of all coordinates in each location –
and there are many locations in Sweden (and beyond) where
no such measurement setups exist at all. Hence, for the model
to be useful in a much larger set of contexts, it does not rely
on past water flow intensities as input. However, in Section V
we also compare with model variants that include past water
flow intensities when predicting future flow intensities.

1Similar to most prior works, we target next-day prediction, but the model
and approach can be extended to predict further into the future.



The spatial input Ispat ∈ RH×W×C contains relevant
information regarding land and topological properties that
affect the water flow intensity in any given coordinate. These
spatial input layers were introduced in Section III. In our
setup we let H = W = 100, which corresponds to a real-
world area of size 1km×1km. The number of layers C is 10
in our case (three layers for the RGB satellite images, and
one layer each for the other types of spatial input).

Since the task is to predict the water flow intensity in
every coordinate in a map of size H × W , based (in part)
on spatial inputs of size H ×W ×C = 100× 100× 10, we
have opted for a fully convolutional neural network2 (FCN)
[11]. This architecture expects a spatial input at one end,
and gives a spatial output at the other end. To achieve this,
we first concatenate the spatial and temporal data Ispat and
itemp into a unified input I ∈ RH×W×(C+2T ). The first C
channels are identical to Ispat, while the last 2T channels are
obtained by tiling rainfall rt−T , . . . , rt−1 and temperature
data τt−T , . . . , τt−1 into H ×W -dimensional maps that are
concatenated along the channel-dimension (each such map
contains HW copies of a single value ri or τi, for i ∈ {t−
T, . . . , t − 1}). Given an input I , the water flow intensity
mapping is straightforward: F = gθ(I), where θ denotes
the learnable parameters of the FCN g. We also evaluate
and compare with other architecture variants in Section V.

A. Model Training

We randomly set aside 9 of the 12 data locations for
training and 3 for validating the models. Specifically, the
models are evaluated in Jönköping (Tabergsån), Hässjaån
and Lillån, and trained on the other 9 locations; please refer
to Section III for details about the dataset. In particular,
note that Lillån-Blekinge is in the training set, but it is at
a vastly different location than the validation set location
Lillån (cf. Figure 1).

Each training input I in a batch is generated by randomly
sampling a location and time period from the training set.
Once a specific location has been randomly selected, we
randomly sample a sub-region of size H×W which contains
a water flow measurement site at the given location – see
Figure 3. This results in the spatial input Ispat ∈ RH×W×C .
After having sampled a spatial location, we then concatenate
the temporal information itemp from a randomly sampled
time interval (of T consecutive days), to obtain the input
I ∈ RH×w×(C+2T ).

There are roughly 25·100·100 = 250, 000 different spatial
training inputs (25 measurement sites, and at each site there
are roughly 100 · 100 possible locations for an enclosing
rectangle of size H ×W = 100× 100 – see Figure 3). Note
however that there is a spatial overlap between all different
rectangles at a given site, which significantly reduces the data
variability, compared to if all 250, 000 different rectangles
would have come from different locations. The sites have on
average roughly three decades of daily rainfall, temperature
and water flow averages, which means there are 30 · 365 ≈

2We use the FCN8 model from the open-source FCN library [20].

Fig. 3. Examples of possible sampled spatial locations (colored, dashed
rectangles) that contain a water flow intensity measurement station (red dot).
The random sampling increases the data variability (compared to e.g. always
requiring the measurement station to be at the center). Since each possible
spatial location has size H × W , with H = W = 100 in our setup, the
union of all possible such rectangles covers roughly 200×200 pixels, which
corresponds to a real-world area of size 2km × 2km.

11, 000 different temporal inputs per site. Hence, in total
there are roughly 250, 000 · 11, 000 = 2.75 · 109 spatio-
temporal training inputs. Again, however, note that there is
an overlap between a large majority of these training inputs,
so the training set is effectively much smaller.

For model evaluation (see Section V), the end objective
is to minimize the root-mean-square error (RMSE) of the
predicted water flow intensities (thus note that the error
is measured in m3/sec), assessed based on ground truth
flow intensities. During training, in order to balance loss
smoothness with robustness to outliers, we use the Huber
loss:

L(f, f gt) =

{
1
2 (f − f gt)

2 if ∥f − f gt∥ ≤ δ

δ
(
∥f − f gt∥ − 1

2δ
)

else
(1)

where f and f gt denote predicted and ground truth flow
intensity, respectively. We set δ = 1 by default, as it is shown
to result in the best performance (see Section V, where we
also compare with other loss functions). The Huber loss can
be seen as a combination of the commonly used MSE- and
L1-losses, where the MSE-loss is applied when the error
is smaller than the threshold δ, and the L1-loss is applied
otherwise.

Note that for each predicted flow map F , the loss (1)
is only given for an extremely sparse set of coordinates
(most commonly in a single point). This is because in
the ground truth flow map F gt, we only have access to
water flow measurements in very few coordinates (since
the measurement sites are so sparsely located in the data).
Despite this extreme loss sparsity, we show in Section V that
the model generalizes well to unseen data. This finding is is
in line with earlier works that have shown that it is possible
to train semantic segmentation models from extremely few
annotated pixels [16].



TABLE I
EXPERIMENTAL RESULTS ON THE VALIDATION SET FOR OUR MAIN MODEL, ITS ABLATED VARIANTS, AND BASELINES. WE REPORT THE

ROOT-MEAN-SQUARE ERROR (RMSE; LOWER IS BETTER). COLUMN 1 REPRESENTS OUR MAIN FCN MODEL, CF. SECTION IV. COLUMNS 2-4
REPRESENT MODEL VARIANTS WHICH OMIT SOME OF THE SPATIAL INPUT LAYERS. COLUMNS 4-6 REPRESENT VARIANTS WHICH OMIT SOME

TEMPORAL INPUTS. COLUMNS 7-8 REPRESENT BASELINE METHODS AGAINST WHICH TO COMPARE THE RESULTS IN COLUMNS 1-5. NOTE THAT

PREVIOUS FLOW LEVERAGES PAST WATER FLOW INTENSITY INFORMATION THAT IS UNAVAILABLE TO THE OTHER APPROACHES.

Main model No-elev Only-elev No-soil No-temp No-rain Half-time-hist Mean-per-site Previous flow
1.35 4.74 3.22 4.49 1.91 5.91 1.40 2.05 0.59

For model parameter optimization, we use Adam [9] with
batch size 64 and learning rate 2 ·10−4. The model is trained
for 250, 000 batches, which takes about 48 hours on the
Titan V100 work station that is used for experimentation.
To improve model generalization towards unseen data, we
resort to the customary deep learning training technique of
augmenting the data by horizontal and vertical flips of the
inputs (an independent probability of 50% per flip).

V. EXPERIMENTS

In this section we present the results of our empirical
model evaluations on the validation set. We first describe the
various baselines and model variants in Section V-A. Then,
in Section V-B, the empirical results are presented.

A. Baselines and Model Variants

We compare our main model described in Section IV
against the following baselines:

• Mean-per-site: For each water flow intensity time series
f i = {f i

j}
j=tNi

j=t1
, where i indexes the i:th spatial

location for a water flow measurement site, we return
the mean f̂ i and use that as the predicted water flow
intensity at time t (for each day t) at the i:th site. Note
that this provides the optimal prediction (in terms of
RMSE) in case only spatial information would be used
as model input.

• Previous flow: Provides ft−1 as the predicted water
flow intensity at time t. Note that this baseline leverages
information that our model does not have access to; our
model only obtains past rainfall and temperature infor-
mation, not past water flow intensities. Thus previous
flow can be regarded as a proxy for an upper bound in
terms of model performance.

We also train and evaluate the following variants of our
proposed ML model:

• No-elev: Omits the elevation and terrain slope maps
from the set of spatial input maps.

• Only-elev: For the spatial part of the input, this model
only uses the elevation and terrain slope maps. It omits
the other spatial input layers.

• No-soil: Omits the soil information spatial layers (soil
type, soil moisture, soil depth, land cover) from the set
of spatial input maps.

• Half-time-history: Uses temporal information from the
past T = 10 days (instead of T = 20 as is default).

• No-temp: Omits temperature information as an input.
• No-rain: Omits rainfall information as an input.

• Flow-(t-k): In addition to all the spatial and temporal
inputs of our main model, this model has water flow
intensity information ft−T−k+1, ft−T−k+2, . . . , ft−k as
an additional temporal input when predicting the water
flow intensity ft at time t. We train and evaluate models
with k ∈ {1, 2, 3}, i.e. models that have temporal
information up to between three and one day prior to
the day for which flow intensities are predicted.

Finally, we also train and evaluate the effect of variations
to the main model architecture (cf. Section IV):

• Alt-rain-temp: Uses a more efficient temporal input
representation, which results in the input I having di-
mension H×W×(C+T ) instead of H×W×(C+2T ).
This is achieved by having two unique values per tem-
poral layer (instead of only one), where every second
element (spatially) is a rainfall measurement, and every
second element is a temperature measurement. Note
that the convolutional filters (even the first one) will
have sufficiently receptive fields to observe all relevant
temporal inputs in this case as well.

• FC-early: Instead of performing a concatenation of the
raw temporal data along the channel dimension, this
model first processes the temporal inputs through two
fully connected (FC) layers, the last of which produces a
20, 000-dimensional vector. It then reshapes this vector
into size H × W × C temp = 100 × 100 × 2 and
concatenates with Ispat ∈ RH×W×C . This data volume
of dimension H×W × (C+C temp) is then run through
all the layers of the FCN, as for the main model.

• FC-mid: Similar to FC-early, this model first processes
the temporal inputs through two FC layers, but here the
resulting vector has dimension 2888 = 38 ·38 ·2. It then
reshapes this vector into size Hmid ×Wmid × C temp =
38 × 38 × 2. Different to FC-early, this model does
not perform the concatenation with the raw spatial data
Ispat ∈ RH×W×C ; instead it first processes Ispat through
the first third of the convolutional layers of the FCN.
It then performs the concatenation at this stage of the
FCN, followed by joint processing for the remaining
two thirds of the network.

B. Empirical Results

As mentioned in Section IV-A, we randomly set aside 9
of the 12 data locations for training and 3 for validating the
models. The results of our experiments on the validation set
are shown in Figure 4 and Table I - IV. The evaluation metric
that we report is the root-mean-square error (RMSE).



Fig. 4. Training (left) and validation (right) RMSE curves during model training for our main ML model (FCN) described in Section IV. It can be seen
that the validation RMSE curve of our model flattens (marginally decreases) throughout training, i.e. the model does not begin to overfit on the training
data despite the relatively small size of the training set. Mean-per-site and previous flow represent baselines, of which previous flow can be seen as an
oracle that leverages past water flow intensity information that is unavailable to our model.

TABLE II
COMPARISON TO MODELS WHICH OBTAIN PAST WATER FLOW

INTENSITIES AS INPUT. COLUMN 1 IS OUR MAIN MODEL THAT DOES

NOT OBTAIN PREVIOUS FLOWS AS INPUT. PROVIDING PAST FLOW

INFORMATION IMPROVES PREDICTION ACCURACY SIGNIFICANTLY, BUT

NOTE THAT IN MANY CASES SUCH INFORMATION IS NOT AVAILABLE.

No flow Flow-(t-3) Flow-(t-2) Flow-(t-1)
1.35 0.94 0.80 0.63

Due to the small size of the overall dataset (12 distinct
locations), we have not yet considered a proper train-val-test
split of the data. This will be done once more data of the
appropriate type has been acquired. Currently however, when
comparing other model variants and baselines to our main
model, we report in the tables the best validation RMSE
that was obtained during training of the respective model
variant. Different to many of the alternative approaches,
however, our main model’s RMSE on the validation set
monotonically improves throughout training (see Figure 4),
and hence the results of the main model have not been
’cherry picked’ at a certain optimal iteration number based
on the validation set. Thus any reported improvements of
the main model relative to alternatives may in fact be larger
if assessed on a withheld test set.

Main results. It can be seen in Table I that our main model
outperforms its ablated variants no-elev, only-elev, no-soil,
no-temp and no-rain. In particular, the elevation and terrain
slope maps are crucial, as is past rainfall information. Past
temperature information is not as important, but omitting it
still results in a higher error. Using rain and temperature
information from the past T = 10 (instead of T = 20; see
half-time-hist) days leads to similar results for this data.

Furthermore, our main FCN method is significantly better
than the mean-per-site baseline, which indicates that our
model has learnt to properly leverage spatio-temporal infor-
mation. Our approach does however not outperform previous
flow, which is a very strong baseline that leverages past water
flow intensity information. Since such information is often
hard to come by in practical scenarios, we have opted for a
model that does not require past flow intensities as input,
since it makes the model much more broadly applicable.
Model variants which obtain previous water flow intensity
information are however evaluated in Table II.

In Figure 4 we show training and validation RMSE curves
during model training for our main FCN model. Note that
the validation RMSE curve flattens (marginally decreases)
throughout training, i.e. the model does not begin to overfit
on the training data despite the relatively small size of the
training set.

Effect of providing previous water flow intensity
information as model input. As seen in Table II, models
that receive flow information for T = 20 past consecutive
days until three (flow-(t-3)), two (flow-(t-2)), or one (flow-
(t-1)) day before the prediction day are significantly more
accurate at predicting water flow intensity. Note however that
in many practical scenarios such information is not available.

Effect of loss function. In Table III we compare the
effect of using different loss functions during training;
cf. (1). It is clear that the Huber loss (with δ = 1.0 or
δ = 1.1) yields the best results, whereas the L1-loss results
in the worst results.

Effect of model architecture. In Table IV we compare
the effect of using different model architectures. The more



TABLE III
LOSS ANALYSIS. THE HUBER LOSS YIELDS THE LOWEST RMSE, WITH

δ = 1.0 AND δ = 1.1 BEING BEST. THE HUBER LOSS OUTPERFORMS

THE MSE LOSS, AND THE L1 LOSS YIELDS POOR RESULTS.

Huber-1.0 MSE L1 Huber-0.8 Huber-1.1
1.35 1.55 3.17 1.47 1.35

TABLE IV
MODEL ARCHITECTURE COMPARISONS. THE FC-EARLY AND FC-MID

ARCHITECTURES YIELD SIGNIFICANTLY WORSE RESULTS THAN THE

MAIN MODEL AND THE ALT-RAIN-TEMP ARCHITECTURE.

Main model Alt-rain-temp FC-early FC-mid
1.35 1.47 2.57 2.49

efficient alt-rain-temp architecture yields almost as good
results as our main architecture, so it would be suitable to
consider if compute is a limiting factor. The FC-early and
FC-mid architectures yield significantly worse results.

Qualitative examples. Several qualitative examples
for our main model are shown in Figure 5 - 6. Different
to the quantitative experimental results above – which are
only performed for the sparse set of spatial ground truth
locations that are available in the data3 – these qualitative
examples shed more light into the full spatial extents of
the model predictions. For example, as can be expected,
higher water flow intensities are typically predicted where
the terrain slope is high.

VI. DISCUSSION AND CONCLUSIONS
In this work we have introduced a fully convolutional ap-

proach for dense water flow intensity prediction in catchment
areas. Our specific results were shown for Swedish basins,
but the general methodology is expected to be transferable
to other geographical regions.

The proposed model is able to learn and generalize from
a limited training dataset. In this work, we have used
training data from merely 25 measurement points (28 in
total; 3 were used for evaluation). The fact that we obtain
such high performance may be attributed to the training
setup. In particular, the model generalization is alleviated
by the fact that the model sees many slight variations of
each measurement site during training, since there are many
ways to select a viewpoint around a given measurement
site (cf. Figure 3). To the best of our knowledge, this
is the first work which models water flow intensity using
a fully convolutional neural network, which allows us to
provide dense flow predictions – in effect, we predict one
flow intensity per coordinate, even though we only have
annotations for 28 specific coordinates.

Since our main FCN method is significantly better than
the mean-per-site baseline, we conclude that our model has

3One can however argue that a form of (semi-)dense evaluation is
being performed also in the quantitative results, since we vary the spatial
coordinates of the ground truth flow intensity measurement stations in each
spatial input example (cf. Figure 3). Note that the model is never aware of
the spatial coordinates in which it is being evaluated.

learnt to properly leverage spatio-temporal information. Our
approach does however not outperform the previous flow
baseline, which is a very strong baseline that leverages past
water flow intensity information. Such information is not
available to our model, and is often hard to come by in
practical scenarios. As can be seen in Table II, the FCN
model variants which utilize past flow information also
obtain better results. A potential avenue of future work is
thus to consider our setup through a privileged learning lens,
wherein flow information could be leveraged during training,
but where the model must perform inference using only
rainfall and temperature information (in addition to spatial
information).

We hope that our work will serve as a solid stepping
stone and an inspiration for further research within dense
water flow modeling, which in turn could deliver useful
information when it comes to future climate adaptation
planning (e.g. within flood risk management) in Sweden and
beyond.
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Fig. 5. Two qualitative examples for our main model on the validation set (examples differentiated by the dashed horizontal line). In each example,
the top-left image represents the predicted water flow intensities at the given area; darker blue means lower intensity, while brighter yellow means higher
intensity. The other seven images represent various spatial input layers to the FCN model. For all images except the satellite image, the maximum color
intensity is individually normalized so that variations within images become as visible as possible. As can be expected, in both examples, higher flow
intensities are typically predicted where the terrain slope is higher. In the example above the dashed line, the model also predicts relatively high flow
intensities on the lake that can be observed at the top-left of the satellite image. Note however that the training set contains no ground truth water flow
intensities on lakes, and thus the model has never been able to adapt to what is reasonable in terms of flow intensity on lakes.



Fig. 6. Two additional qualitative examples for our main model on the validation set (examples differentiated by the dashed horizontal line). In the example
above the dashed line, the predicted flow is moderately high within most of the map. A peak in terms of predicted flow can be seen at a corresponding
peak within the terrain slope map. In the example below the dashed line, in can again be seen that the predicted flow is typically relatively higher where
the terrain slope map is higher
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