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Abstract 
Energy efficiency is increasingly being considered as a 

critical measure of process performance due to its 

importance both in production costs and in 

environmental footprint. In this work, an indirect energy 

efficiency estimator was developed for the Tennessee 

Eastman (TE) benchmark process for the first time. The 

TE model was first modified to provide the reference 

values of energy efficiency. A sophisticated model 

selection scheme was then applied to build the 

surrogate-model. The results indicate reasonable model 

performance with mean absolute prediction error around 

1.7%. The results also highlight the limitations present 

in the training set, which are, together with other 

practical implementation issues, discussed in this work. 

Keywords:    Chemical Process Engineering, Tennessee 
Eastman, Energy Efficiency, PLSR models, Model 

adaptation 

1 Introduction 

Energy efficiency is an important factor to consider in 

modern chemical process engineering; the efficiencies 

often are concentrated to reducing energy costs per 

product. Higher energy prices strongly contribute to 

increasing operating and manufacturing costs. 

Additionally, inefficiencies in energy usage also 

contribute to higher greenhouse gas emissions and 

environmental footprint. It has been concluded that the 

improvements in energy efficiency require pragmatic 

and holistic approaches (Drumm et al., 2012).  

The increased computational resources have enabled 

energy efficiency estimation and monitoring using large 

data sets collected from process plants. The dynamic 

losses (difference between the current energy 

consumption and the historical or theoretical energy 

consumption) can be estimated from the process data 

and visualized to the plant operators (Drumm et al., 

2012). The predictive soft sensors could also assist in 

the selection of process paths at least with a suboptimal 

energy efficiency (Nikula et al., 2016). However, with 

large and complex data sets, the development of soft 

sensors is not straightforward. It should be also 

mentioned that regardless of the suboptimality, typically 

large energy savings can be realized in the chemical 

industry because of the high production volumes 

(Saygin et al., 2011).  

This study demonstrates the development of a real-

time data-driven energy efficiency estimator using an 

artificial data set.  For this aim, a multivariate simulation 

study with the Tennessee Eastman (TE) process 

benchmark is carried out. The TE process is a multi-step 

chemical process with relatively slow dynamics and 

consequently large delays. After introducing a step 

change, the settling time is approximately 24–48 hours, 

severely complicating the analysis (Downs and Fogel, 

1993). The TE process has five main unit comprising an 

exothermic reactor, a condenser, a compressor, a 

separator, and a stripper. The operating cost of the TE 

process is related to the loss of product and reactants (in 

purge and product streams), steam utilization and the 

compressor work (Konge et al., 2020).  

Being an open-loop unstable process, the TE process 

has been extensively used to develop and test plant-wide 

control strategies (e.g. Larsson et al., 2001; Jämsä, 

2018). The scenarios embedded to the benchmark model 

have also resulted as numerous studied aimed for fault 

detection and diagnosis (e.g. Kulkarni et al., 2005; Xie 

and Bai, 2015; Zou et al., 2018). In addition, the plant-

wide, nonlinear nature of the TE process has gained 

attention for developing surrogate models; For example, 

Tran and Georgakis (2018) used Net-elastic 

regularization and D-optimal designs to reach steady-

state surrogate models with reduced complexity. Sheta 

et al. (2019) developed dynamic NNARX models with 

interpretable structures for four TE outputs. Recently, 

Konge et al. (2020) proposed several machine learning 

based regression modeling techniques for building 

lower dimensional subsystems and performing process 

operability analysis to the TE process. 

However, the energy efficiency estimation of the TE 

process is still an unexplored topic. The energy balances 

for the reactor, the product separator, the stripper and the 

mixing zone were introduced by Jockenlhövel et al. 

(2003).   

2 Material and methods 

2.1 Energy efficiency 

Energy efficiency is here defined as the energy 

consumed by the process divided by the amount of 
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product produced. Hence, the value should be 

minimized in order to minimize the energy usage per 

produced tons. Both terms should also involve possible 

losses related to production and energy utilization, 

having negative effect to the energy efficiency, namely 

increasing the value. In TE process model, the product 

losses are negligible (less than 0.7%) and the model does 

not account for the energy losses. Therefore, the 

simplified definition of the instantaneous energy 

efficiency for the product component n at time instant k 

is calculated as in Eq. (1): 

𝜂𝑛(𝑘) =
𝑃(𝑘)

𝑚𝑛(𝑘)
 (1) 

Where ηn is the energy efficiency with respect to 

component n at time instance k, P [MJ/h] is the energy 

consumed per hour by the compressor and reboiler, and 

mn [ton/h] is the amount of produced component n per 

hour. In TE process, the components of interest are the 

liquid products G and H. 

In order to extract the instantaneous, real value of the 

energy efficiency from the TE model, a set of 

modifications to the simulation were required: 

1. The average liquid densities of the product streams 

were calculated based on the measured molar 

fractions, and component liquid densities given in 

Downs and Vogel (1993), 

2. The product mass flows were calculated from the 

average liquid densities and the measured product 

volumetric flows, 

3. The reboiler energy was calculated from the 

measured steam mass flow according to 

Jockenhövel et al. (2003). 

The product stream’s molar fractions were the delay 

and disturbance free model outputs, while the other 

measurements consisted of the default delays and noise 

levels of TE benchmark. The energy efficiency 

described above represents the reference (target) signal 

for the surrogate model. 

2.2 Simulation scenario 

In TE process, gaseous reactants A, C, D and E are 

converted into liquid products G and H, and byproduct 

F (Downs and Vogel, 1993). TE model by Balthelt et al. 

(2015) is used in this study to generate the simulated 

process data. In the simulation, the base case operational 

mode of the TE process is considered, where the target 

product mass ratio of G and H is set to 50/50. The 

simulation was run with disturbance flags disabled and 

using the decentralized control strategy included in the 

TE simulator.  

First, a subset of manipulated variables was selected 

using first order finite difference-based sensitivity 

analysis of the inputs with respect to ηG and ηH (energy 

efficiency of components G and H). The ranges for the 

selected variables were determined based on 

simulations and earlier findings from the literature. It is 

well known that the ranges of inputs need to be reduced 

as the number of inputs is increased (Konge et al., 2020; 

Tran and Georgakis, 2018). Table 1 lists the selected 

variables and their feasible ranges applied to this study. 

Next, a Monte Carlo type simulation scenario is 

formulated. There, the TE process is simulated for two 

months (60 days, 1440 h) to mimic a typical set of 

routine process data. The set points of the manipulated 

and operational variables are changed pseudo randomly 

to illustrate the effect of sudden changes in the 

production and on the energy consumption. 

The simulation was performed in a following way; 

Firstly, a random number generator was initialized. 

Secondly, a random time instant between 24 and 48 

hours was selected from an even distribution. Then, one 

to four manipulated variables are randomly selected to 

the adjusted time step. Finally, their values are randomly 

chosen from an even distribution and previously 

adjusted variables are changed back to nominal values 

to keep the process within control range.  

The time spans for the set points changes were chosen 

to occur between 24 and 48 hours after the previous 

change in order to ensure robust process behavior and 

following the recommendations in original TE model 

(Downs and Vogel, 1993). Using a step size of five 

seconds, the resulting data matrix consist of 1,036,801 

rows (time instants) and 43 columns (simulated process 

variables).  

Table 1. Setpoints of the manipulated variables and their 

range in TE simulation. 

Manipulated 

variable 

Nominal 

value 

Lower 

bound 

Upper 

bound 

Production rate 

[m3/h] 
22.9 20.5 24.0 

Stripper level (%) 50.0 40.0 60.0 

Component G in 

product (mole-%) 
53.7 51.0 57.0 

Component A in 

reactor feed 

(mole-%) 

55.0 49.5 65.9 

Components 

A&C in reactor 

feed (mole-%) 

58.6 52.7 64.4 

Reactor 

temperature [⸰C] 
120.0 118.0 125 

2.3 Data preprocessing 

The simulated data had a substantial start-up transient. 

Hence, the first 1000 data points (1.39 h) were excluded 

from the training set prior to modeling. 

The data matrix was then down-sampled to reduce the 

effect of delays and measurement noise present in the 

simulated process measurements. The down-sampling 

was performed with 6-minute averaging, resulting as a 

data matrix with 14,400 x 43 (41 inputs, 2 reference 
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outputs). Then, each of the input variables were delay-

compensated using a discrete time shift with a maximum 

lag of 30 minutes (i.e., 5 different time shifts with a 6-

minute sampling time). Consequently, before filtering 

there were 41 x 5 = 205 input variable candidates.   

Prior to model selection the down-sampled data set 

was divided into training and testing sets. The division 

was simply made with respect to simulation time, 

reserving the latter 30% for testing. 

2.4 Model selection and validation 

In the second phase, a dynamic surrogate model for the 

operational mode one is constructed based on the 

training data (70% of the whole set) to estimate the 

energy efficiency. Prior to model selection, the input 

data space was normalized such that X = {0,1} using the 

min-max-scaling.  

The model structure here is based on the partial least-

squares (PLS) regression. The estimator is selected 

based on a sufficiently representative training set of 40 

days and tested with an independent time series of 20 

days. The delay analysis and input variable selection are 

carried out using out signal correlation-based filtering, 

using linear correlation with the desired output and the 

time compensated signals as the filtering metric. In 

filter-based variable selection, the rule for variable 

inclusion or exclusion is given as 

 

𝑖 =  {
1,         𝑅 ≥ 𝑇
0, 𝑅 < 𝑇

, (2) 

 

where i is the logical iterator, R is the linear Pearson 

product-moment correlation coefficient and T is the 

manually selected threshold. In this study, the threshold 

was set heuristically to T = 0.25. Consequently, the 

filtered estimator is 

 

�̂� = X𝑏PLS + 𝜀, (3) 

 

where 𝑏PLS is the estimated parameter vector with the 

PLS algorithm, X is the input data matrix, �̂� is the 

estimated output and the 𝜀 is the residual term with 

N(0, 𝜎2). The PLS parameter estimation is performed 

for the filtered matrix, i.e. X[i=1] with the algorithm 

presented in de Jong (1993). The number of PLS 

components was selected using a grid search with cross-

validation, consequently resulting as 4 and 3 selected 

components for the models of ηG and ηH, respectively. 

The objective function in selection was based on k-fold 

sequential cross-validation. After testing different 

values of the k-fold, a 3-fold cross-validation was 

selected.  

The model performance was evaluated with the 

following figures of merit including R, RMSE (root 

mean squared error) and MAPE (mean absolute 

prediction error).  

3 Results and discussion 

3.1 Model Selection 

Using the presented model selection procedure, a 

feasible model was identified. The figures of merit for 

the model training and testing results for the two energy 

efficiencies are shown in Table 2. For the ηG, the figures 

of merit for the out of sample data set (test set) can be 

considered sufficient for process control purposes. The 

predictions can be considered to be within ±0.0028 

MJ/ton (2.8 kJ/ton) with 95.4% confidence. Similarly, 

for the final product component H, the model 

performance is comparable to the previous model with 

slightly higher correlation coefficient. The 95.4% 

confidence interval for energy efficiency model for 

component H was ±0.0032 MJ/ton (3.2 kJ/ton). In 

addition, it can be seen that the model’s testing set 

performance metrics are quite optimistic for the 

component H, which can be seen as a higher correlation 

coefficient and lower error values compared to the 

training set.  

Table 2. Figures of merit for the identified PLSR models. 

Criteria Training Testing 

Product G H G H 

R 0.86 0.88 0.85 0.89 

RMSE, kJ/ton 1.6 1.6 1.6 1.6 

MAPE, % 1.7 1.7 1.7 1.6 

3.2 Model applicability  

The test set estimations using the selected models for ηG 

and ηH are presented in Figure 1 and Figure 2, 

respectively, with corresponding confidence intervals of 

the selected estimators.  

According to Figures 1 and 2, the testing set shows 

decreased performance, and for some regions the output 

value seems to interpolate poorly. In data-driven 

modeling, this often could indicate overfitting the model 

during the training phase, which means that the model 

parameters are biased because of estimating the noise in 

the system rather than the true dependencies. Utilization 

of an overly complex model as the estimator is a 

common cause of this behavior. (Hastie et al., 2009)  

In the modeling case of this study, the lack of fit in 

the test set seems to be at least partially explained with 

the non-similar distributions of the training and testing 

input data sets, often referred as the covariate shift 

(Moreno-Torres et al., 2012). This issue is discussed in 

the following. 
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Figure 1. Measured and estimated energy efficiency for component G with corresponding confidence intervals. Only 

every 50 sample is plotted for the sake of clarity. 

 
Figure 2. Measured and estimated energy efficiency for component H with corresponding confidence intervals. Only 

every 50 sample is plotted for the sake of clarity. 
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The difference between the training and test sets was 

further analyzed using Euclidean histogram distance 

(Ma et al., 2010) and histogram intersection similarity 

(Swain and Ballard, 1991) and Kullback-Leibler (KL) 

divergence (Mathiassen et al., 2002) in sliding windows 

for each m inputs used in the PLSR model. Using these, 

a novel metric is presented and denoted as the Iα. The Iα 

is given here as 

𝐼𝛼 = ∑ 𝑏PLS,𝑗(𝛼𝐷𝑗 − 𝑠𝑗)

𝑚

𝑗=1

, (4) 

where 𝐷𝑗 = 𝐷𝑗(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡) is the Euclidean 

distance between the training and test set histograms for 

input j and 𝑠𝑗 = 𝑠𝑗(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡) is the similarity 

between the train and test set histograms for input j. It 

was found that the KL divergence provided practically 

the same information as the presented distance metric, 

thus it was intentionally left out from the definition of 

the index. However, the KL divergence was found also 

to give a qualitative indication of the data drift. The αj 

for an input variable is defined as the fraction of samples 

out of range in a test set window.  The global parameter 

α is the maximum of all αj’s. It can be seen from the Eq. 

(4) that the proposed metric highlights the variables with 

more significant effect on the input. In addition, the α 

thresholds the Euclidean histogram distance, and the 𝑠𝑗 

acts as a penalty if the train and the test set have non-

similar histograms. It should be noted that the higher 

index values Iα indicate a higher covariate shift, and thus 

higher histogram similarity needs to decrease the value 

of the proposed index. 

The applied metrics are illustrated together with the 

RMSE for component G in Figure 3. The visual 

inspection in the Figure 3 shows that in fact that the 

training set might not be representative, as some of the 

model inputs diverge from the training data set. It can be 

seen from the Figure 3 that it is apparent that the 

covariate shift correlates well with the observed 

modelling error with testing data. Thus, monitoring the 

input space could be at least partially used to aid in the 

decision-making concerning the need of soft sensor 

maintenance. De facto, in actual use this issue would 

have to be fixed with model adaptation (or model re-

training) to a more comprehensive training set. 

However, the recognition and tackling not only the 

covariate shift, but also the other type of dataset shifts 

such as the prior probability shift and the contextual 

shift (Moreno-Torres et al., 2012) in real-time demands 

further studies on model adaptation.  From these, the 

prior probability shift is the most of obvious to be dealt 

with, especially in the case of models with single output. 

 
Figure 3. Illustration on the possibility of monitoring the soft sensor’s covariate shift (Iα, red line) and its effect on 

the RMSE with testing data (black line). The illustration is computed with the sliding window size of 50 samples 

for the component G. 
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3.3 Practical Implications 

The results of the study give guidelines to soft sensor 

selection in monitoring of energy intensive production 

processes with large input delays. Monitoring of the 

energy efficiency provide basis for real-time 

optimization of the processes also with respect to energy 

consumption. Hence, the study contributes to life-cycle 

analysis theme of the multi-step chemical processes, and 

by that demonstrates how the soft sensors could be 

utilized to lower the carbon footprint of an industrial 

process. In order to comprehend the analysis from the 

process engineering point of view, some further 

considerations related to practical implementation to TE 

process are required. 

First of all, the surrogate model developed here 

utilizes a rather simple approach. Although a more 

sophisticated variable construction, delay estimation 

and variable selection methods may enhance the 

estimator performance, in industrial applications it is 

often beneficial to have a model structure in a 

representable format. In case of PLSR model, and with 

limited number of projections, this requirement can be 

met.  

Additionally, it is important to give insight on the 

explanatory variables used in the model. In the case 

presented, after the correlation-based filtering the subset 

of 18 and 14 variables for the two surrogate models were 

used in PLS model estimation. From these, the most 

important ones were found to be:  

• Component F, G and H mol-% in product stream, 

• Component D mol-% in purge stream, 

• Reactor temperature (⸰C), 

• Product separator underflow (m3/h), 

• Stripper underflow (m3/h), 

• Compressor power (W), 

• Condenser cooling water outlet temperature (⸰C). 

Based on the presented list, the liquid molar fraction 

measurements of the final product components (G, H) in 

the product stream, together with the by-product F are 

needed. In TE model, these are sampled with relative 

high frequency of 0.25 h and 0.25 h delay. The soft 

sensor approach utilized in this paper considered a 

maximum lag of 0.5 h, suggesting that the indirect 

energy efficiency estimation is strongly based to recent 

analysis results from the product composition. 

Similarly, the purge stream molar fraction of reactant D 

is assumed to be measured with interval of 0.1 h and 

delay of 0.1 h in TE model. These assumptions set high 

requirements for the online gas and liquid analyzers.  

As indicated by Konge et al. (2020), the steam cost 

in overall cost-efficiency of the TE process is relatively 

small. On the other hand, it might have more important 

effect to the energy efficiency. This cannot be directly 

seen from the most important variables selected to the 

energy efficiency model. However, the product 

separator underflow is used as an explanatory variable 

and this liquid stream is directed to the stripper, having 

impact to required steam consumption. Utilization of 

temperature measurements from several process points 

and the compressor work as explanatory variables also 

have natural connection to process energy efficiency. 

Finally, the surrogate model also uses the production 

rate (stripper underflow) as an input. Thus, the model 

incorporates most of the variables affecting to the 

energy efficiency by definition given in Eq. (1). 

Finally, it was highlighted in this work, and also in 

previous studies related to surrogate modeling of TE 

process (e.g. Sheta et al., 2019), that the selection of the 

training data deserves attention. Sheta et al. (2019) 

suggest approaches such as peak shaving and smoothing 

of intensive changes as pre-processing methods to avoid 

overfitting problems. However, as indicated in Section 

3.2, the implementations in real systems typically need 

to include also efficient model adaptation as all the 

process points are seldom available in the training data.  

Development of ensemble models can also help to 

reduce the estimator uncertainties and to overcome the 

challenges related to unseen process points (Hastie et 

al., 2009). In addition, gradual changes due to fouling 

and wear of equipment, or even process design changes 

(which could be expected if the training set is extended 

over very long time period) set challenges to any 

surrogate models. Hence, maintenance of the soft sensor 

to ensure its performance over time is in fact a very 

interesting and important topic to study. 

4 Conclusions 

In this work, an indirect energy efficiency estimator was 

developed for the Tennessee Eastman (TE) benchmark. 

For this aim, the TE benchmark was modified to be 

suited for generating the necessary data with a realistic 

simulation scheme. Based on the simulated data, a 

surrogate-model was selected using a sophisticated 

model selection scheme. The final model structure was 

the Partial Least-Squares (PLS) regression. With these, 

a reasonable model performance was obtained. By 

monitoring the histogram similarity metrics along with 

the test set estimation error, it was found that the 

applicability of the estimator could be partially limited 

because of the covariate shift. All and all, the data drift 

was identified to be an important factor that plausibly 

could complicate the use of soft sensors in industrial 

applications. In this simulation study, this was attributed 

to multivariable nature of the process and motivate the 

future research towards selection and maintenance of 

soft sensors. 
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