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Abstract 
We consider supervised learning problems, for which 

we need not only the accurate model, but also the model, 

that explains the relation between inputs and a target 

variable. There are modeling problems, when 

production experts can measure their confidence in the 

modeling results by modeling metrics, such as accuracy, 

but need an explanation for what was the reason of 

desirable or undesirable situation or system state in the 

past. In this study we utilize a combination of self-

organizing maps and multiple linear modeling to 

increase the interpretability and accuracy. We assume 

that the target variable can be explained differently by 

different patterns that characterizes inputs data. By 

solving clustering problem for subset of inputs, we have 

structured data and can relate each cluster to its 

representative or cluster profile, which explains the 

cluster. Based on that structure we build linear model for 

each cluster dataset, and coefficients of this model 

explain the influence of factors for particular inputs 

characteristics. To cut the number of inputs we use L1-

regularization for linear model. Proposed approach was 

tested on several industry related problems and 

implemented in application. 

Keywords:     explanation, self-organizing map, risk 

estimation, postprocessing 

1 Introduction 

Digital transformation makes it possible for industries to 

find answers on many questions in mathematical 

models. Machine learning algorithms, statistical 

analysis and visualization reveal dependencies between 

production efficiency and processes factors based on 

observed data. Mathematical models and their 

applications become a main part of support decision 

making platforms. Since the models are data-driven, 

production experts need to measure the adequacy of 

models, but there is no general way to provide this 

estimation. Nonlinear models could give a very high 

prediction rate and good generalization, but due to its 

complexity it is difficult, if even possible, to interpret 

the model. On the other hand, simple models can be 

interpretable, but in some cases give lower prediction 

rate, so one cannot be confident in modeling results and 

use the extracted from the model knowledge. In this

study we use a combination of clustering approach, such

as self-organizing map, and simple modeling

approaches proving that these combination makes the

final composite model more flexible but still

interpretable. Simpler model could be not good at

generalizing, because the relation between the inputs

and target variables cannot be identified with those

simple rules. Another reason of bad generalization is

when simple rules meet contradictions in data. But these

contradictions could disappear if these are related to

patterns in data.

We propose an approach that outperforms simple

modeling approaches but keeps its interpretability

benefits. This approach increases our confidence in

data-driven models and clarifies effects between the

target variable and inputs. Applying self-organizing

maps helps one to understand the main patterns in the

data and helps to see which pattern can be explained

with simple models and which cannot and requires

nonlinear models. Proposed approach discovers if the

main influential factors are different for different

patterns in data. This takes place in many cases, for

example: seasonal effects or different input materials

can lead to situations, where one inputs become more

influential on target variable over another. The goal of

this approach is to understand what one can do to

improve the situation and why. In research we apply

linear modeling with and without regularization, and

Kohonen’s self-organizing maps (SOM) (Kohonen,

1995). Linear models allow us to utilize the well-known

statistics, such as p-values and F-score. When we apply

𝑙1 and 𝑙2 regularization (Gareth et al., 2013; Kuhn 

and Johnson, 2016) and cross-validation, we reduce 
the number of variables without loss of generalization 

and prediction rate. Self-organizing maps returns 

clusters, which can be characterized by their profiles. 

Profiles can be determined with reference vectors, 

or average or median values by cluster.

Combination of unsupervised learning and

supervised learning can be met in different studies. In

some cases, this combination improves the prediction

metric. In (Lin et al., 2016) SOM is combined with

support vector machine algorithm to improve the

forecast of reservoir inflow during typhoon periods.
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The proposed approach has been tested on several

production data analysis problems and proved its

reliability in decision making and understanding the

causality between the effects appearing and the system

state or input material characteristics.

SOM provides interpretable visualizations. One can

see clusters and their properties: number of elements,

model prediction rate on train or test data, data pattern

that describes the cluster and the most influential

variables for that cluster.

An application solving the data analysis and

modeling problem with the proposed approach was

implemented in R (R Core Team, 2018) and R Shiny

(Chang et al., 2021) framework. It allows user to 

upload the dataset and set the clustering or learning 

parameters and build clusters and models. As a 

result, user sees statistics by cluster, modeling 

results by clusters and cluster profiles in interactive 

visualization made with “ggiraph” package (Gohel 

and Skintzos, 2020).

2 Modeling by Clusters

There are many modeling problems, when we are

interested not only in the model accuracy, but the in

model that explains what factors cause desirable

situation. At the same time, model needs to be accurate,

otherwise we cannot be confident in explanations that it

brings. Linear model, ridge regression and lasso (Gareth

et al., 2013; Kuhn and Johnson, 2016) regression 

give simple explanation on what factors have 

positive or negative effect on the target variable, but 

these modeling approaches have low accuracy if the 

relation between the inputs and outputs is nonlinear 

(Gareth et al., 2013). Flexible models need specific 

techniques to reveal the relation between inputs and 

output, which gives the relative importance of 

inputs, but leave behind the scenes the detailed 

explanation. Thus, the production expert cannot 

decide what condition leads to desirable or 

undesirable situation.

The main assumption of this study is that there are

contradictions in effects of factors on the target variable,

which make simple models inaccurate, and these

contradictions can be caused by different relation

between inputs and outputs for different patterns. The

proposed approach is illustrated on Figure 1.

We assume that clusters performed only on a subset

of input variable can already give us acceptable result.

For example, we can leave out all the process variables

and use only the characteristics of inputs materials. The

approach consists of three steps, which are given on

Figure 1 from the bottom to the top:

1 – We select variables that we will use in clustering

analysis.

2 – We provide clustering analysis and reveal patterns

in data.

3 – For each dataset related to pattern we solve

modeling problem separately.

 

 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118592 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

93

4 – We analyze the relation between the patterns in 

data and modeling results. 

 

Figure 1. From data to clusters and model for each 

cluster. 

As we mentioned above, linear model does not fit if 

the relation is nonlinear, but if nonlinearity caused by 

different patterns in data, we could solve modeling 

problem for each pattern. That is what one can see in 

Figure 1. If we use the whole dataset for training, we 

have a model, which does not give us the satisfactory 

accuracy level and thus, we cannot trust its coefficients 

as influence representation. But once we find clusters in 

the data and solve the modeling problem for each subset 

that is represented by a cluster, system predictability 

increases, and we can be more confident in explanations 

that these models provide. In that case we lessen the 

contradiction between the influence of different factors, 

which happens in different system state, according to the 

patterns found. 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑠},  𝑥𝑖 ∈ 𝑅𝑛, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑠}, 
be the observations and times, respectively, 𝑠 is a dataset 

size. Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑠} be the target variable. In 

this paper we consider regression problem and binary 

classification problem. When solving binary 

classification problem, we search for model 

∀𝑖 𝑦𝑖 ∈ {0, 1}, 𝑓𝑐(∙): 𝑅 → {0, 1},   
𝑚(∙): 𝑅𝑛 → 𝑅, 

∑[𝑦𝑖 = 𝑓𝑐(𝑚(𝑥𝑖))]

𝑠

𝑖=1

→ min, 
(1)

where 𝑓𝑐 is a function that maps the linear model 𝑚 

prediction. Without loss of generality, let classification 

function 𝑓𝑐 map model prediction to the 1st class, if the 

prediction value is smaller than 0.5. 

For regression problem we are interested in model 

that predicts the output accurately, 



∀𝑖 𝑦𝑖 ∈ 𝑅,  𝑚(∙): 𝑅𝑛 → 𝑅, 

∑(𝑦𝑖 − 𝑚(𝑥𝑖))
2

𝑠

𝑖=1

→ min. 
(2) 

When solving problems (1) and (2) we are interested in 

model, which can satisfy our expectations in 

interpretability. 

In general, one can solve any other supervised 

learning problem, but in this study, we focus on (1) and 

(2). Nevertheless, the developed analytical application 

allows solving multimodal classification problem. 

2.1 Clustering 

There are cases when the inputs can reflect different 

situations: different material types, different content of 

chemical elements, different shifts, seasons, etc. We 

expect to see that these factors would affect the relation 

between the inputs and outputs of the model. But these 

examples are not the only cases, there could be different 

patterns in the data that we need to reveal. Because of 

that we use clustering algorithms to find all the patterns 

in data.  

In this study we utilize self-organizing maps to find 

the patterns in data. We chose SOM, because it 

preserves the data structure and makes it possible to 

visualize the clustering results on two-dimensional plot. 

Before we train SOM, we center and scale the inputs and 

keep the scaling parameters to preprocess the new 

observations. We train SOM on input data only because 

we need to apply it to new observations and for new 

observations, we do not know the output value yet. 

It is important that clustering problem can be solved 

for a selection of inputs, which make our clusters more 

interpretable and allows using of the production experts 

experience. For example, the input data contain 

temperatures of machine tools and material analysis. 

Expert knows that temperatures is something that we 

cannot control and those change rapidly, but the material 

analysis changes once in two or three months and there 

could be some differences in how the process is going. 

In that part one can test different hypothesis on what 

variables should we select when do clustering. Let us 

denote  

𝐼 = {𝑖1
𝑐,  … ,  𝑖𝑞

𝑐}, (3) 

as the set of indices of variables, we select for the 

clustering of the data and 𝑞 is the number of selected 

variables. 

Once the clustering problem is solved, we have labels 

or clusters number 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑠}, so each 

observation has one and only one label 𝑥𝑖 ↔ 𝑐𝑖. Now we 

can split the dataset by clusters: 

�̃�𝑗 = {𝑥𝑖 ∈ 𝑋,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

�̃�𝑗 = {𝑡𝑖 ∈ 𝑇,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

�̃�𝑗 = {𝑦𝑖 ∈ 𝑌,  𝑖 = 1, … , 𝑠 ∶  𝑐𝑖 = 𝑙𝑗}, 

𝑗 = 1, … , 𝑛𝑐 , 

(4) 

where 𝑛𝑐 is number of clusters or patterns and 𝑙𝑗 is label 

of 𝑗-th cluster. 

SOM requires several parameters. We need to set the 

grid dimension or the number of neurons and their 

topology. Let 𝑔𝑣 be the number of neurons vertically 

and 𝑔ℎ be the number of neurons horizontally. The total 

number of neurons is 𝑔𝑣 ∙ 𝑔ℎ. Algorithm has the 

following parameters: number of times the whole 

dataset will be presented to the network and the radius 

of neighborhood. 

There is “kohonen” package in R (Wehrens and 

Kruisselbrink, 2018), which we use in this study, when 

solving the clustering problem. In numerical tests we 

used the default values for parameters and searched for 

the grid that is best for the dataset. In application it is 

possible to set the SOM algorithm parameters. 

2.2 Modeling 

In this part we do linear model for each of the subset of 

the dataset (2). First, we consider regression problem 

and linear models with regularization. To minimize the 

values of coefficients we use 𝑙2-regularization and to 

reduce the number of input variables we use 𝑙1-

regularization 

∑ ((�̃�𝑗)
𝑖

− 𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗))

2
𝑠𝑗

𝑖=1

+ 𝛼𝑃(𝜃𝑗)

= min(𝜃𝑗), 

𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗) =  ∑ 𝜃𝑘

𝑗
∙ ((�̃�𝑗)

𝑖
)

𝑘

𝑛

𝑘=1

+ 𝜃0
𝑗
, 

(5) 

𝑙1: 𝑃(𝜃) = ∑|𝜃𝑖
𝑗|

𝑛

𝑖=0

, 

𝑙2: 𝑃(𝜃) = ∑ 𝜃𝑖
𝑗2

𝑛

𝑖=0

, 

(6) 

 

where 𝑚𝑗 is the j-th linear model for �̃�𝑗 subset that 

corresponds to cluster 𝑙𝑗, (�̃�𝑗)
𝑖

∈ 𝑅𝑛 is the i-th vector of 

observations in j-th subset, and (𝑎0
𝑗
, 𝑎1

𝑗
, … , 𝑎𝑛

𝑗
 ) are the 

coefficients of j-th linear model and 𝛼 is parameter. 

In this study we also consider binary classification 

problem, for which both regularizations are applicable: 

∑ log (�̃� ((�̃�𝑗)
𝑖
, (�̃�𝑗)

𝑖
, 𝜃𝑗))

𝑠𝑗

𝑖=1

+ 𝛼𝑃(𝜃𝑗)

= max(𝜃𝑗), 

(7) 

 

�̃� ((�̃�𝑗)
𝑖
, (�̃�𝑗)

𝑖
, 𝜃𝑗)

= {
𝜎 (𝑚𝑗 ((�̃�𝑗)

𝑖
, 𝜃𝑗)) ,  (�̃�𝑗)

𝑖
= 0,

𝜎 (−𝑚𝑗 ((�̃�𝑗)
𝑖
, 𝜃𝑗)) , (�̃�𝑗)

𝑖
= 1,

 
(8) 

𝜎 (𝑚𝑗((�̃�𝑗)
𝑖
, 𝜃𝑗)) =

1

1 + 𝑒−𝑚𝑗((�̃�𝑗)
𝑖
,𝜃𝑗)

, (9) 

SIMS EUROSIM 2021

DOI: 10.3384/ecp2118592 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

94



When we solve the modeling problem, we split each

subset on training, validation, and test sets. Training and

validation subsets are used to determined 𝛼 parameter

via the grid search. We pick a trial 𝛼 value, train the

model on the training subset and then calculate the

criterion on validation subset and after we check all the

trial values, we pick the best 𝛼∗ value in a sense of

validation dataset criterion value. Then we use this 𝛼∗ to

train model on the union of the training and validation

dataset and calculate its accuracy on the testing set.

We use “glmnet” R package (Friedman et al., 
2016), where lasso, ridge and elastic net 

regressions are implemented.

2.3 Visualization

Once we have solved the modeling problem for each

cluster, it is possible to reveal the statistics of it. First,

one can observe the criterion value calculated for the

testing set of that cluster and additionally criterion value

based on training and validation set. If the model is

linear, we can see the p-values and F static. Second, if

we are satisfied with the accuracy of the model, we can

find the most influential variables by the corresponding

coefficients of the linear model and find out which

coefficient cause negative or positive effect on the target

variable. Third, we can observe the cluster description

or cluster profile by its reference vector, vector of

medians or mean values of its observations. This profile

gives us information about what specifies this cluster. It

could be high or low values of the variable.

Visualization of the results includes 3 plots: one with

the SOM clusters 2-d plot, another one with selected

cluster profile and the last one with coefficients of the

linear model built for this cluster.

2.4 Predicting New Observations

When we receive the new observations to make

predictions, we need to recognize to which cluster these

observations belong to and then use the corresponding

model to make a prediction.

Each cluster is represented by its reference vector:

𝑉 = {𝑣1,  … ,  𝑣𝑛𝑐
}, (10)

where 𝑣𝑘 ∈ 𝑅𝑞, since we selected 𝑞 variables for

clustering (3).

Let us denote 𝑥𝑛𝑒𝑤 ∈ 𝑅𝑛 as new observation and its

selected variables (3) for clustering projection is

denoted by 𝑥𝑛𝑒𝑤
𝑐 ∈ 𝑅𝑞. Now we compare this projection 

to the cluster reference vectors and determine which 

cluster is the closest: 

𝑖𝑐 = arg min
𝑖

‖𝑥𝑛𝑒𝑤
𝑐 − 𝑣𝑖‖ (11) 

Once we determine the cluster to which projection 

𝑥𝑛𝑒𝑤
𝑐  belongs, we can make the prediction using the 

model for specific cluster 𝑖𝑐: 

𝑦𝑛𝑒𝑤 = 𝑚𝑖𝑐
(𝑥𝑛𝑒𝑤). (12) 

Criterion (11) is not the only option to determine the 

cluster, but this question is out of scope in this study. 

We can also see if there is no cluster close to the new 

point and realize that this kind of inputs combination is 

new to us. 

3 Experimental Results 

We applied approach to find the most influential factors 

of unwanted effects in a production line. To prevent 

leakage of commercial information, we rename the 

variables, and skip the analytical results that relates to 

the problem domain. 

We have a dataset with 61 input variables and solve 

binary classification problem. Our first class is “good” 

production state, and our second class is “bad” one. 

Previously we cleaned the dataset and since observation 

rate is different for some variables, we modified it to the 

one we need. We made the standard normalization of 

the input data because approaches (5)-(6) and (7)-(9) 

and SOM requires that. When calculating regression or 

logistic regression with 𝑙1 and 𝑙2 regularization we split 

the train dataset on train and validation parts and keep 

20% of data for validation. Then we use uniform grid 

on 𝐺 = 𝐺 = [−5, 10] with 1000 points and try these 

values as exponential degrees for 𝛼 in (5)-(6) and (7)-

(9), in other words ∀𝑝 ∈ 𝐺 ⇒ 𝛼 = 𝑒𝑝. Then we look for 

the best parameter by error on validation dataset and use 

it to train model on all the train data and after that check 

it on test dataset. 

The next step was to determine the factors we use as 

the main ones for clustering. Since in the dataset we 

have sets of variables of different nature, we used one 

of those. Our choice was discussed with production 

experts. It is very important to receive a feedback from 

the production experts or business when selecting the 

inputs for clustering problem. Variables for clustering 

will be the first ones the production analyst or decision 

maker will use, when one needs to make a decision. It 

does not mean that these variables should be available 

in advance, but it should be available soon enough, so 

the decision maker will have explanation in time or not 

too late. 

Once we selected variables (3), we solve the 

clustering problem and group the data according to the 

clustering labels (4). In this study we consider different 

number of clusters. We examined different 

combinations of clusters on horizontal and vertical axis: 

(𝑔𝑣
𝑖 , 𝑔ℎ

𝑖 ), ∀𝑖: 1 ≤ 𝑔𝑣
𝑖 , 𝑔ℎ

𝑖 ≤ 1, 𝑔𝑣
𝑖 ≤ 𝑔ℎ

𝑖  and 𝑔ℎ
𝑖 = 1 ⇔

𝑔𝑣
𝑖 ≠ 1, which means we try the following 

combinations: 1 × 2, 1 × 3, … , 1 × 5, … , 2 × 2, 2 ×
3, … ,5 × 5. For each of these parameters pair we solve 

the clustering problem and for each clustering problem 

solution, we produce the datasets and solve modeling 

problem.  

When we have the combined clustering and models 

statistics, we can compare the clustering parameters by 

the total statistics and choose the best settings for 

considered problem. Let us compare overall train and 
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test ratings for different combinations of clusters on 

horizontal and vertical axis. The summary is given in 

Table 1. In this summary we calculate error rate mean 

value weighted by number of elements per cluster. 

Table 1. Train and Test Error Rate by Number of Clusters 

Model Train Accuracy Test Accuracy 

No clusters 0.7833 0.7864 

1x2 0.8324 0.7517 

1x3 0.8371 0.7695 

1x4 0.8629 0.7511 

1x5 0.8675 0.8041 

2x2 0.8582 0.7586 

2x3 0.8985 0.8060 

2x4 0.9300 0.8387 

2x5 0.9599 0.8793 

3x3 0.9432 0.8267 

3x4 0.9913 0.9116 

3x5 1.0000 0.9205 

4x4 1.0000 0.8988 

4x5 1.0000 0.9178 

5x5 1.0000 0.9030 

 

One can see that there are many combinations that 

outperforms approach without clustering and modeling 

by groups of data. One can also see that there are a few 

combinations which have high prediction rate on test 

data. Let us consider combination 3 × 5 as it has the best 

accuracy rate on test data. It is important to mention that 

3 × 5 combination developed a cluster, which consists 

only of “good” class cases, so that its actual accuracy 

rate is higher. This must be considered when one chose 

the clustering parameters. 

In this study we use the “kohonen” R package 

(Wehrens and Kruisselbrink, 2018) and make 

visualization with help of “ggplot2” R package 

(Wickham, 2016). 

First, we can visualize clusters and color them 

according to the number of “bad” observations. In 

Figure 2 we can see the distribution of “bad” 

observations and their localization in particular clusters. 

One can use this information to reveal the relation 

between the clustering inputs values and pattern these 

values represent to the target variable. The same is 

possible for continuous output, for which we can use 

mean or median value. 

Additionally, we can visualize the characteristics of 

each cluster by its statistics for specific variable or their 

combinations. For example, we can visualize the 

average sum of specific components by clusters, or we 

can see the distribution for a variable among clusters. 

The general profile or characteristics of the cluster will 

be described below. 

 
 

 

Figure 2. Percent of “bad” cases per cluster. 

Second, we can visualize the error on training data for 

each model. In general, this plot can show us if there are 

some patterns for which we cannot apply the model we 

chose, or the data does not allow us to reveal the relation 

between the inputs and outputs. 

Third, we can visualize accuracy on the testing data 

for each model. This plot is given in Figure 3. 

 

  

Figure 3. Accuracy on testing data per cluster. 

Fourth, we can visualize the precision on the testing 

data for each model. This plot is given in Figure 4. 
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Figure 4. Precision on testing data per cluster. 

The final two plots reveal what pattern can we be 

confident in, when predict the target variable or make 

any conclusion about relation between inputs and 

outputs. If the model metric on the test data is low, it 

means that we cannot be confident in any explanations 

given by the model that is built on the model of this 

cluster. For example, one can see that cluster 10 has 

lower accuracy and precision, comparing to other 

clusters.  

Generally, we can add different statistical 

characteristics visualizations by clusters. 

Now for each cluster one can see its profile and the 

most influential variables. In application we developed, 

it is possible to interactively choose the cluster of 

interest and observe its profile and linear model 

coefficients with help of R Shiny and “ggiraph” R 

package. Let us pick cluster “1”, which is in left bottom 

corner in Figures 2-5. An example of cluster profile is 

given in Figure 5, and model’s coefficients for that 

cluster is given in Figure 6. 

 

 

Figure 5. Cluster profile: cluster reference vector. 

On profile figure we see the scaled data: 0 means 

average value for each variable and values above 0 

correspond to cases, where these variables were greater 

than their average. If the value is smaller than 0, we 

know that this variable usually takes value that is 

smaller than average. As one can see this cluster can be 

described by 14th variable, because this variable is 

sufficiently smaller the mean value. One can also 

observe that variables 3, 5-7 are also smaller than the 

mean value. Expert can name this cluster according to 

its profile and variables nature. 

Each cluster can be described by its characteristics. 

We can use mean, median values or any other metrics 

that help decision maker understand what each pattern 

represents. In this study we used reference vectors (10), 

since we utilize SOM. Reference vectors show values 

that characterize the cluster in a way, that if there is a 

new observation, we will compare the reference vector 

with that observation to make a decision (11) on what 

cluster does this observation belongs to (12). 

 

Figure 6. Linear model coefficients for selected cluster. 

As one can see, lasso-regression keeps only 3 from 

61 variables. Variables selected in model that 

corresponds to 1st cluster can be interpreted 

straightforward: increase of 𝐱𝟑 or 𝐱𝟐 lead to negative 

consequences and increase of 𝐱𝟏 lead to positive ones. 

Since we applied regularization we cannot calculate the 

𝒑 −value for any of the inputs coefficients the same way 

as one can do it for linear models without regularization. 

Nevertheless, one can apply linear modeling without 

regularization as the step 3, where we solve modeling 

problems for each data in cluster.  

4 Conclusion 

When solving modeling problem for business or 

production we are commonly interested in 

interpretability of the model. Interpretability lets 

decision makers and production experts understand the 

mechanics of the model prediction making. Sometimes 

this is necessary to validate the model, to be confident 

in it or to understand the process better. Data-driven 

modeling provides different view on the interaction 

between the inputs and outputs, which could reveal the 

unknown causality. Better understanding of the process 

is necessary, when one is looking for actions to improve 
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the process performance, to avoid unwanted states, and 

lessen production costs. 

Proposed approach outperformed modeling without 

clustering and revealed the patterns that relates to the 

“bad” cases. We can observe it comparing error rate on 

train and test in Table 1 for model in the first row, which 

is built without clustering and any combined model. We 

can also observe that the model accuracy on train data is 

increasing with increase of clusters number. At the same 

time model accuracy on test data increase to some 

number of clusters. Because of that it is important to 

investigate what is the best combination of cluster 

numbers. 

Powerful computational and visualization libraries in 

R along with R Shiny framework allows implementing 

analytical system, which can solve the combined 

clustering and modeling problem, reveal the 

dependencies and pattern and helps looking for actions 

to improve the process, when new observations appear. 
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