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Abstract 
The applicability of Artificial Neural Networks (ANNs) 

to represent excess properties is discussed. The excess 

molar volume 𝑉𝐸 and excess free energy of activation 

for viscous flow Δ𝐺𝐸∗ were calculated from measured 

density and viscosity at different monoethanol amine 

(MEA) concentrations and temperatures. Different 

ANNs with multiple inputs and a single hidden layer 

were trained, validated and tested to represent 𝑉𝐸 and 

Δ𝐺𝐸∗. Developed ANN models show good accuracies in 

data fitting by giving R2 as 0.99 and 0.98 for 𝑉𝐸 and 

Δ𝐺𝐸∗ respectively for the test data. The calculated 

average absolute relative deviation (AARD) for 𝑉𝐸 and 

Δ𝐺𝐸∗ are 1.5 % and 1.2 % respectively for the test data 

that give better predictions for the density and viscosity 

using a Redlich and Kister polynomial for the 

regression. The density and viscosity models based on 

ANN for 𝑉𝐸 and Δ𝐺𝐸∗ give high accuracies, which is an 

advantage of many aspects in engineering applications.  
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1 Introduction 

Physical properties like density and viscosity of aqueous 

amine mixtures are useful in the design and simulation 

of amine-based post-combustion CO2 capture processes. 

Density and viscosity appear in most of the correlations 

proposed to calculate mass transfer coefficients and 

interfacial area between liquid and gas phases. Various 

approaches have been proposed to develop correlations 

to represent measured density and viscosity for solvents 

such as pure, aqueous, and CO2 loaded aqueous amine 

mixtures (Hartono et al. 2014; Weiland et al. 1998). 

The applications of ANN (Artificial Neural Network) 

in post-combustion CO2 capture radiates into various 

aspects of the field. Sipöcz et al. (2011) developed an 

ANN model for a CO2 capture plant to evaluate the 

amount of CO2 captures, specific duty and rich loading 

in the solvent through the inputs of temperature, flue gas 

flow rate, CO2 mass fraction at the inlet flue gas, solvent 

lean loading, solvent circulation rate and removal 

efficiency. The ANN is one hidden-layer feed-forward 

network with a back-propagation learning algorithm. 

The ANN approach has been used to represent the 

physicochemical properties of amine solvents for post-

combustion CO2 capture. Hamzehie et al. (2014) 

discussed the prediction of CO2 solubility in aqueous 

amine mixtures using ANN models with two hidden 

layers. The inputs for the network were established as in 

theoretical and semi-empirical models as temperature, 

CO2 pressure, overall solute’s concentration and type of 

solution (apparent molecular weight). The mass transfer 

coefficient was predicted through an ANN model by 

considering various input parameters gas and liquid 

flow rates, CO2 partial pressure, liquid concentration, 

cyclic capacity and physical properties such as density 

viscosity and diffusion coefficient of CO2 as illustrated 

by Fu et al. (2013). Several approaches were reported in 

literature that describe the implementation of ANN 

methodology to represent physical properties like 

density and viscosity of aqueous amine solvents 

(Pouryousefi et al. 2016; Haratipour et al. 2017; Garg et 

al. 2015). A previous study of Karunarathne et al. 

(2020(a)) examined the applicability of ANNs for the 

predictions of density and viscosity of CO2 loaded 

alkanolamine + H2O mixtures in which mole fractions 

of amines and CO2 in the mixture and temperature were 

inputs for the model while density and viscosity were 

the outputs.  

The excess properties like excess molar volume and 

excess free energy of activation for viscous flow can be 

fitted to empirical correlations to represent density and 

viscosity of liquid mixtures. This work presents ANN-

based correlations for excess properties to represent the 

density and viscosity of aqueous monoethanol amine 

(MEA) mixtures. The accuracy of the ANN-based 

correlations was evaluated by comparing the predictions 

with measured data other empirical correlations.  

2 Material and Method 

2.1 Excess Properties 

The excess properties for molar volume and viscosity 

can be calculated from measured densities and 

viscosities of pure and aqueous amine mixtures as 
shown in (1) and (2). It is possible to fit a Redlich and 

Kister type polynomial (Redlich and Kister 1948) as 
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given in (3) to represent excess molar volume and 

viscosity to develop correlations for the density and 

viscosity of aqueous amine mixtures (Han et al. 2012; 

Hartono et al. 2014; Karunarathne et al. 2020(b)).  

 

𝑉𝐸 = 𝑉 − (∑ 𝑥𝑖𝑉𝑖

𝑖=2

𝑖=1

) (1) 

 

𝜂𝐸 = 𝜂 − (∑ 𝑥𝑖𝜂𝑖

𝑖=2

𝑖=1

) (2) 

 

𝑌𝐸 = 𝑥1𝑥2 (∑ 𝐴𝑖(𝑥1 − 𝑥2)𝑖

𝑖=𝑛

𝑖=0

) (3) 

 

where 𝑥𝑖 is the mole fraction of the components in the 

mixture. 𝑉, 𝑉𝑖, and 𝑉𝐸 are molar volume of the mixture, 

molar volume of the pure components and excess molar 

volume of the mixture respectively. 𝜂, 𝜂𝑖 and 𝜂𝐸 are 

viscosity of the mixture, viscosity of the pure 

components and excess viscosity of the mixture 

respectively. 𝑌𝐸 and 𝐴 are excess property and 

coefficients respectively in the Redlich and Kister 

polynomial.  

The excess molar volume of different aqueous MEA 

mixtures was calculated from measured densities as 

given in (4).  

 

𝑉𝐸 =
𝑥1𝑀1 + 𝑥2𝑀2

𝜌
− ∑

𝑥𝑖𝑀𝑖

𝜌𝑖

𝑖=2

𝑖=1

 (4) 

 

where 𝑥𝑖 𝜌, 𝜌𝑖 and 𝑀𝑖 are mole fraction of the 

components in the mixture, density of the mixture, 

density of the pure components and molecular weights 

of the pure components. Subscript i = 1 for MEA and i 

= 2 for H2O. 

The excess molar volume 𝑉𝐸 arises due to the 

intermolecular interactions between the molecules 

present in the mixture and size and shape of the 

molecules. Positive 𝑉𝐸 reveals the presence of weak 

interactions or dispersion forces and negative 𝑉𝐸 

indicates the strong specific interactions between unlike 

molecules. Further, negative 𝑉𝐸 also suggests that 

molecules are efficiently packed due to the size and 

shape differences among the constituent molecules 

(Mahajan and Mirgane 2013; Qi and Wang 2009; 

Letcher and Baxter 1989).   

Eyring’s viscosity model (5) provides a theoretical 

insight into the viscosity of liquid by describing the arise 

of fluid friction due to the molecular jump over a 

potential energy barrier (Bird et al. 2002; Eyring 1936). 

The free energy of activation for viscous flow Δ𝐺∗ can 

be calculated from measured density and viscosity data. 

Semi-empirical and empirical models can be proposed 

to fit the calculated Δ𝐺∗. For a binary mixture, the 

excess free energy of activation for viscous flow Δ𝐺𝐸∗ 

is described as given in (6). The sign of Δ𝐺𝐸∗ reveals the 

nature of intermolecular interactions among the 

molecules in the mixture. The positive Δ𝐺𝐸∗ indicates 

the presence of strong specific interactions between 

unlike molecules while negative Δ𝐺𝐸∗ signifies weak 

intermolecular interactions like dispersion forces in the 

mixture (Meyer et al. 1971; Kinart et al. 2002; 

Ćwiklińska and Kinart 2011; Aminabhavi et al. 1994).  

Eyring’s viscosity model was adopted to calculate the 

excess free energy of activation for viscous flow as 

shown in (6) from measured dynamic viscosities and 

densities at different MEA mole fractions and 

temperatures. 

 

𝜂 =
ℎ𝑁𝐴

𝑉
𝑒𝑥𝑝 (

Δ𝐺∗

𝑅𝑇
) (5) 

Δ𝐺𝐸∗

𝑅𝑇
= 𝑙𝑛(𝜂𝑉) − ∑ 𝑥𝑖𝑙𝑛(𝜂𝑖𝑉𝑖)

𝑖=2

𝑖=1

 (6) 

 

where Δ𝐺∗, Δ𝐺𝐸∗, ℎ and 𝑁𝐴 are free energy of 

activation for viscous flow, excess free energy of 

activation for viscous flow, Planck’s constant and 

Avogadro’s number respectively.  

 

2.2 Density and Viscosity Measurements 

The density of MEA + H2O mixtures at different MEA 

concentrations (30-100 mass% of MEA) and 

temperatures (293.15 K-363.15 K) was measured using 

a density meter DMA 4500 from Anton Paar (Graz, 

Austria). The viscosity of MEA + H2O mixtures at 

different MEA concentrations (30-100 mass% of MEA) 

and temperatures (293.15 K-363.15 K) was measured 

using a double-gap concentric rheometer Physica MCR 

101 from Anton Paar (pressure cell XL DG35.12/PR; 

measuring cell serial number 8046220) (Graz, Austria). 

The measured data with associated uncertainties for 

both density and viscosity measurements are discussed 

in Karunarathne et al. (2020(b)).  

 

2.3 ANN Network Training and Activation 

Function 

2.3.1 Network Training 

For the ANN models, the mole fraction of the 

components in the mixture and temperature were 

considered as the inputs to the network. All the networks 

are comprised of one hidden layer and multiple neurons.  

A data set with 72 data points were divided into 70%, 

15% and 15% randomly for the training, validation and 

testing. Data sets were then scaled in the range of (-1, 1) 

as shown in (7). The optimum number of neurons for the 
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network was decided by examining the cost function of 

Mean Squared Error (MSE) as given in (8) for the 

learning algorithm of Bayesian Regularization (BR) for 

thirty neurons. The BR training algorithm regularizes 

ANN model parameters to reduce the complexity of the 

model, which helps to avoid overfitting. Figure 1 

illustrates the schematic of the ANN for the excess free 

energy of activation for viscous flow.  

 

 

𝑌 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) [
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
] + 𝑌𝑚𝑖𝑛 (7) 

 

where 𝑌𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛 are +1 and -1 respectively. 𝑋 is 

the input or output variable. 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are 

maximum and minimum of variable 𝑋. 

 

𝑀𝑆𝐸 =
1

2𝑁
∑ {(𝑌𝑖

𝐸 − 𝑌𝑖
𝐶)

2
+ 𝜆𝑊2}

𝑁

𝑖=1

 (8) 

 

where N, 𝑌𝑖
𝐸, 𝑌𝑖

𝐶, 𝜆 and W refer to the number of data 

points, the measured property, calculated property, 

regularization parameter and weight parameter vector, 

respectively. 

 

 
Figure 1: A schematic of feed forward artificial neural 

network with one hidden layer. 

 

2.3.2 Activation Function 

The input for the activation function is the sum of 

weighted inputs (the input from each independent 

variable multiplied by an adjustable connection weight) 

with added hidden layer bias as described in (9) 

(Rocabruno-Valdés et al. 2015). For the hidden layer, 

the activation function is a hyperbolic tangent (𝜏) as 

given in (10). The output of the ANN is linearly related 
(𝜓) as given in (11) with the weighted output from the 

hidden layer and output layer bias.  

 

𝜃𝑠 = 𝐼𝑊(𝑠,1)𝐼𝑛1 + 𝐼𝑊(𝑠,2)𝐼𝑛2 + ⋯

+ 𝐼𝑊(𝑠,𝑘)𝐼𝑛𝑘 + 𝑏𝑠
(1)

 
(9) 

 

where 𝐼𝑛, 𝜃𝑠, 𝐼𝑊, and 𝑏𝑠
(1)

 are the inputs to the 

network, inputs to the hidden neurons, weight between 

network input and the hidden neurons and bias term to 

hidden neurons, respectively. The subscript 𝑠 and 𝑘 are 

for number of hidden neurons and number of inputs, 

respectively. 

 

𝑓 = 𝜏(𝜃𝑠) =
2

1 + 𝑒𝑥𝑝(−2𝜃𝑠)
− 1 (10) 

 

𝑔 = 𝜓(𝐿𝑊 · 𝑓 + 𝑏(2)) (11) 

 

where 𝐿𝑊 and 𝑏(2) are the input weights and bias in 

the output layer, respectively. 

 

The ANN-based models were evaluated using 

average absolute relative deviation (AARD) as given in 

(12). 

 

𝐴𝐴𝑅𝐷 (%) =
100%

𝑁
∑ |

𝑌𝑖
𝐸 − 𝑌𝑖

𝐶

𝑌𝑖
𝐸 |

𝑁

𝑖=1

 (12) 

 

where N, 𝑌𝑖
𝐸 and 𝑌𝑖

𝐶 refer to the number of data 

points, the measured property and calculated property, 

respectively. 

 

3 Results and Discussion 

This section discusses the performance of ANN in 

excess molar volume 𝑉𝐸 and excess free energy of 

activation for viscous flow Δ𝐺𝐸∗ predictions for the 

considered MEA + H2O mixtures.  

 

3.1 Excess Molar Volume (𝑽𝑬) From ANN 

Based Models 

The calculated 𝑉𝐸 from (4) was used for the train, 

validate and test a feed forward back propagation ANN. 

For the MEA + H2O mixtures, 𝑉𝐸 < 0 for the 

considered MEA concentrations and temperatures 

(Karunarathne et al. 2020(b)). The accuracy of model 

prediction was analyzed through calculated AARD 

between calculated 𝑉𝐸 and ANN is given in Table 1 for 

the training, validation and test data sets. Simulation 

provided a minimum MSE at 25 neurons. The optimum 

number of neurons of the network was chosen as 7 since 

it gives a reasonable low value for the MSE of calculated 

over 30 neurons in the hidden layer. Figures 2 and 3 

illustrate the accuracy of the fit between ANN 

predictions and the calculated 𝑉𝐸. According to Figure 

2, 𝑉𝐸 calculated from measured properties are fitted 

with good accuracy into the ANN. Most of the deviation 

of the ANN predictions for 𝑉𝐸 is within 2% and only 

one data point reported a deviation close to 6% as 
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illustrated in Figure 3. The developed Redlich and 

Kister type polynomial was able to fit data with an 

accuracy of 2.47% AARD and it is higher than 1.5%, 

which is from the ANN model for the test data set as 

given in Table 1. A comparison of AARD from ANN 

models and Redlich and Kister type polynomials for 

excess properties are given in Table 2. This indicates 

that the ANN model has a better fit for 𝑉𝐸 . 

 

3.2 Excess Free Energy of Activation for 

Viscous Flow 𝚫𝑮𝑬∗ From ANN Based 

Models 

For the Δ𝐺𝐸∗, calculated property from (6) was used for 

the train, validate and test a feed forward back 

propagation ANN. The Δ𝐺𝐸∗> 0 for the MEA + H2O 

mixtures at considered MEA concentrations and 

temperatures. The minimum MSE was found with 26

neurons in the hidden layer and the optimum number of

neurons was considered as 7 that gives a reasonable R2

and AARD in the data fit. Equation (12) was

adopted to calculate AARD to analyze accuracy

between calculated Δ𝐺𝐸∗ from (6) and ANN. Table 1

summarized the R2 and AARD for different data sets

reported in Table 1. Figures 4 and 5 show how good the

fitting for Δ𝐺𝐸∗ between predictions from the ANN

model and calculation from measured properties. Figure

5 shows that the majority of the data are within a

deviation of 3% and only three data points are beyond

this limit. The Redlich and Kister type polynomial for

Δ𝐺𝐸∗ was able to fit data with 1.9% AARD, which

indicates that the developed ANN model gives a better

fit for the data.

 

 

Figure 2. Comparison of correlated 𝑉𝐸 with calculated 𝑉𝐸 for MEA + H2O mixtures. ANN: Training data, ‘○’; 

Validation data, ‘●’; Test data, ‘●’. 

 

 

Table 1. Performance of trained ANNs for 𝑉𝐸 and ∆𝐺𝐸∗. 

 

Excess Property 

No. of 

Neurons in the 
Hidden Layer 

Training Data  Validation Data Test Data 

AARD% R2 AARD% R2 AARD% R2 

𝑉𝐸 (m3·mol-1) 7 0.2 0.999 0.4 0.999 1.5 0.999 

𝛥𝐺𝐸∗(J·mol-1) 7 0.5 0.999 0.8 0.999 1.2 0.988 
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Figure 3. Percentage deviation of correlated 𝑉𝐸 from calculated 𝑉𝐸 for MEA + H2O mixtures. ANN: Training data, ‘

○’; Validation data, ‘●’; Test data, ‘●’. 

 

 

 

 

Figure 4. Comparison of correlated ∆𝐺𝐸∗ with calculated ∆𝐺𝐸∗ for MEA + H2O mixtures. ANN: Training data, ‘○’; 

Validation data, ‘●’; Test data, ‘●’. 

 

Table 2. Accuracies of the data fitting for 𝑉𝐸 and ∆𝐺𝐸∗ from ANN models and Redlich and Kister type polynomials. 

 

Excess Property 
AARD% 

ANN Redlich and Kister 

𝑉𝐸 (m3·mol-1) 1.5 2.47 

𝛥𝐺𝐸∗(J·mol-1) 1.2 1.9 
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Figure 5. Percentage deviation of correlated ∆𝐺𝐸∗ from calculated ∆𝐺𝐸∗ for MEA + H2O mixtures. ANN: Training 

data, ‘○’; Validation data, ‘●’; Test data, ‘●’. 

 

 

Literature provides accuracies for the density and 

viscosity correlations based on Redlich and Kister 

polynomial. Han et al. (2012) discussed a density 

correlation based on Redlich and Kister type polynomial 

for MEA + H2O mixtures at different MEA 

concentrations and temperatures. The correlation was 

able to represent measured density with an accuracy of 

AARD 0.042 %. Hartono et al. (2014) used a simplified 

Redlich and Kister type polynomial for both density and 

viscosity of MEA + H2O mixtures at different MEA 

concentrations and temperatures. Hartono’s correlations 

were able to fit measured data with an accuracy of 

AARD 0.036 % and 3.5 % for density and viscosity 

respectively. The developed ANN models in this study 

for 𝑉𝐸 and Δ𝐺𝐸∗were used to calculate density and 

viscosity from (4) and (6). The calculated physical 

properties show a good accuracy compared to the 

measured data with AARD 0.018 % and 0.6 % for 

density and viscosity that is better than the correlations 

reported based on Redlich and Kister type polynomials 

in literature.  

4 Conclusion 

The excess properties of excess molar property and 

excess free energy of activation for viscous flows were 

determined from measured densities and viscosities for 

MEA + H2O mixtures at different MEA concentrations 

and temperatures. ANN models were trained to fit 

calculated excess properties and used to predict density 

and viscosity of the mixtures.  

The proposed ANN model for the excess molar 

volume 𝑉𝐸 was able to fit the data with acceptable 
accuracy. The calculated AARDs for different data sets 

of training, validation and test are 0.2, 0.4 and 1.5 % 

respectively. The ANN model proposed for the excess 

free energy of activation for viscous flow 𝛥𝐺𝐸∗showed 

AARDs for different data sets of training, validation and 

test are 0.5, 0.8 and 1.2 % respectively. 

The models were used to predict density and viscosity 

at different MEA concentrations and temperatures. 

Results showed a good agreement with measured 

densities and viscosities. The accuracy for density 

prediction was 0.018 % AARD and for prediction of 

viscosity 0.06 % AARD that is higher than the 

accuracies based on Redlich and Kister polynomials. 

Accordingly, ANN approach to predict excess 

properties and physical properties could be used to 

enhance the accuracy of data fitting. The developed 

models are useful in the design of process equipment 

and process modelling for the CO2 capture processes. 

Further, this approach can be extended to the mixtures 

with more than two components. 
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