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Abstract
A local regularity signal can be estimated from a vibra-
tion measurement with the help of the continuous wavelet
transform (CWT). The resulting local regularity signal
contains a lot of diagnostic information about different
faults states of a machine. It is also typically a sparse sig-
nal and thus not well suited for frequency analysis using
the discrete Fourier transform (DFT). In this paper, the fre-
quency analysis of the local regularity signal is performed
using the Lomb-Scargle periodogram. Another possibility
is to use the methods of compressed sensing. Vibration
measurements from different fault states from test rigs are
utilized in validating the proposed method and compar-
ing it with other methods. The induced fault conditions
include a bearing inner ring defect and misalignment of
a claw clutch. The results are compared to more tradi-
tional spectra calculated directly from the vibration mea-
surement, such as the spectrum of the squared envelope.
Keywords: Hölder regularity, continuous wavelet trans-
form, sparse signals, Lomb-Scargle periodogram, com-
pressed sensing, envelope analysis

1 Introduction
When the CWT of a signal is calculated using a real-
valued wavelet, its absolute values form continuous ridges
which converge towards the smaller scales. These mod-
ulus maxima ridges of the estimated CWT reveal the lo-
cations of irregularities in the signal and from their rate
of decay, pointwise Hölder exponents of the irregularities
can also be read (Mallat and Hwang, 1992). If we don’t
consider fractal signals, then there are typically only a fi-
nite amount of irregularities in a signal and thus only a
finite amount of modulus maxima ridges in the CWT. The
resulting local regularity signal, i.e. a signal which shows
the estimated Hölder regularities or constants related to
the sizes of the ridges and their locations, is thus a sparse
signal. When these local regularity signals are calculated
from vibration measurements of machines, they may con-
tain useful diagnostic information. They have been shown
to be useful for diagnosing for example gear tooth cracks
and completely lost gear teeth (Loutridis and Trochidis,
2004), local bearing defects (Kotila et al., 2010) and mis-

alignment of a claw clutch and bearing lubrication prob-
lems (Nissilä and Laurila, 2019). In (Miao and Makis,
2007) a feature vector calculated from the wavelet mod-
ulus maxima ridges is fed to a hidden Markov model for
fault classification. Multifractal features extracted from
vibration signals are used in bearing diagnostics in (Du et
al., 2014).

Wavelet-based methods for extracting weak transients
from vibration signals have been successfully applied with
bearing faults (Wang et al., 2015) and gear faults (Fan et
al., 2015). Wavelet transform was also used for detecting
angular misalignment in (Saari et al., 2015). There are
also several studies where some kind of sparse representa-
tions in some basis are sought and these sparse decompo-
sitions also turn out to be useful for gear fault (Zhang et
al., 2021; Li et al., 2018) and bearing fault diagnostics (Li
et al., 2019; Chen et al., 2017; He et al., 2016).

In machine diagnostics of rotating or reciprocating ma-
chines, frequency analysis of measured vibration signals
is typically utilized. Methods based on the DFT are eas-
ily available, since the measurements are typically equi-
spaced in time. When equispaced measurements are not
available, different methods for frequency analysis are
needed. This is often the case in astronomical time se-
ries and for that reason Lomb and Scargle developed a
method that is now called the Lomb-Scargle periodogram
(Lomb, 1976; Scargle, 1982). In this study, we calculate
these spectra from signals generated using local regular-
ity analysis and they are compared to the spectra of the
squared envelope calculated directly from the acceleration
measurements. Envelope analysis is a benchmark method
in machine diagnostics for diagnosing bearing faults and
other faults which cause cyclostationary vibration signa-
tures (Randall et al., 2001).

2 Materials and methods
2.1 Measurements
In this paper, two fault states with six different levels of
severity are used for comparing the proposed signal pro-
cessing methods. The first fault state is a local inner ring
fault in a roller bearing. The test rig manufactured by SPM
Instrument is shown in Figure 1. The three bearings at the
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Figure 1. The bearing test rig.

Figure 2. The misalignment test rig.

top support the axle that is driven by a chain drive. The
inner ring fault is located in the middle bearing and it is a
simple groove that is cut into the inner race. The middle
bearing housing can be tightened using a screw and this
method gives the six different levels of load. The measure-
ments that we use are recorded using the accelerometer 2
seen in Figure 1 and it is mounted to the bearing housing
using a magnet. Sampling frequency is 25.6 kHz and 10 s
long measurements from each load level are used.

The test rig used for misalignment measurements is
shown in Figure 2. Coupling misalignment in the hori-
zontal direction was induced by moving the motor while
keeping the vertical and angular alignment constant. Hor-
izontal measurements from bearing 1 are utilized in this
study and the accelerometer was screwed directly into the
bearing housing. Sampling frequency is 50 kHz and signal
length is 15 s for each misalignment state. The test rig is
presented in more detail in (Lahdelma and Laurila, 2012;
Lahdelma et al., 2011).

In both measurements, the accelerometer type was
Wilcoxon Research 726 with a linear (±5 %) frequency
range from 2 Hz to 10 kHz.

2.2 Signal processing
The spectrum of the discrete signal xxx = (x0, . . . ,xN−1)

T

of length T = ∆t ·N is defined using the discrete Fourier
transform (DFT)

F{xxx}k = Xk =
1
N

N−1

∑
n=0

xne−i2πkn/N , (1)

and the inverse transform (IDFT) returns the signal at the
sample points (Briggs and Henson, 1995)

F−1{XXX}n = xn =
N−1

∑
k=0

Xkei2πkn/N . (2)

The cyclic convolution of two sampled signals is

(xxx∗ yyy)n =
N−1

∑
l=0

xl yn−l , (3)

and its DFT is (Briggs and Henson, 1995)

F{(xxx∗ yyy)}k = NXkYk. (4)

For a discrete time random signal Xn, we define the
squared envelope (SE) with the expected values E

[
|Xn|2

]
and the squared envelope spectrum (SES) by

SES{Xn}( fc) = lim
M→∞

1
2M+1

M

∑
n=−M

E
[
|Xn|2

]
e−i2π fcn.

(5)
In (Dandawate and Giannakis, 1995) it has been proved
that under some assumptions, a simple DFT of the squared
samples

SES{Xn}
(

k
N

)
≈ 1

N

N−1

∑
n=0

∣∣xn
∣∣2e−i2πkn/N (6)

converges in the mean-square sense to the SES at the
cyclic frequency fc = k/N as N→ ∞.

Let us define informally, that a wavelet is a brief oscil-
lation. We denote the wavelet by ψ and we want to dilate
it by s > 0 but retain its L1 norm

ψs(t) =
1
s

ψ

( t
s

)
. (7)

The continuous wavelet transform (CWT) of a continuous
time signal x is

Wx(s, t) = (x∗ψs)(t)

=
1
s

∫
∞

−∞

x(τ)ψ
(

t− τ

s

)
dτ. (8)

Here t is the point of interest in the signal and s is the
positive scale that tells how much the wavelet is dilated.

The wavelet that we have chosen for this study is the
second derivative of a central B-spline (Unser and Blu,
2000) and its DFT is

Bk =
1.83

N

(
i2πk

N

)2 ∣∣∣∣sin(2πk/N)

2πk/N

∣∣∣∣5 ,
BN/2 =

1.83
N

π
2 cos(π)

∣∣∣∣sin(π)
π

∣∣∣∣5 = 0,

(9)

where −N/2 < k < N/2. The negative frequencies cor-
respond to N/2 < k < N in our definition of the DFT.
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The constant is chosen so that the wavelet’s l1 norm
‖F−1{BBB}‖1 is roughly equal to 1.

The discrete estimate of the CWT at scale s is de-
noted by Wxxxs,n. To calculate its DFT, we first window the
measured signal xxx with a smooth window function called
the Planck-taper window www (McKechan et al., 2010), i.e.
compute xnwn, calculate its DFT F{xnwn}k and then es-
timate the DFT of the wavelet transform using (4)

F{Wxxxs,n}k = NF{xnwn}kBsk. (10)

Finally, we obtain Wxxxs,n at the desired scales using the
IDFT.

Let µ ≥ 0. A function x is pointwise µ-Hölder contin-
uous at t0 if

|x(t0 +h)−Pm(h)| ≤C|h|µ , (11)

for small values of |h| and Pm is a polynomial of degree
m≤ µ .

When traversing a CWT through the scales, a series
of connected local maxima or minima are often observed
(Mallat, 2009). These are wavelet transform modulus
maxima ridges (WTMM ridges). In (Mallat and Hwang,
1992), it has been proved that if there are no such ridges at
the fine scales on some interval, then x is uniformly Hölder
continuous on that interval. Conversely, they proved un-
der some assumptions that if there exists a constant C and
a scale s0 such that all the modulus maxima of Wx(s, t)
belong to the cone

|t− t0|<Cs, (12)

then x is µ-Hölder at t0 if and only if

|Wx(s, t)| ≤ Asµ , (13)

at each modulus maxima inside the cone (12). This result
means, that if one can recognize the WTMM ridges of
isolated irregularities, then their Hölder exponents can be
estimated using logarithms and a least squares line fit to

log(|Wx(s, t)|)≤ log(A)+µ log(s). (14)

The constant A is related to the height of the ridge, and
will also be useful.

The Lomb-Scargle periodogram estimates the power
spectral density (PSD) at the frequencies f of the signal
xxx which has been nonuniformly sampled at the points tn

PLS{xxx}( f ) =

(
∑n xn cos

(
2π f (tn− τ)

))2

2∑n cos2
(
2π f (tn− τ)

)
+

(
∑n xn sin

(
2π f (tn− τ)

))2

2∑n sin2 (2π f (tn− τ)
) ,

(15)

where the delay τ is chosen for each frequency f by

τ =
1

4π f
tan−1

(
∑n sin(4π f tn)
∑n cos(4π f tn)

)
. (16)

The discrete cosine transform (DCT) according to
(Ahmed et al., 1974) is defined by

DCT{xxx}0 =

√
2

N

N−1

∑
n=0

xn,

DCT{xxx}k =
2
N

N−1

∑
n=0

xn cos
(2n+1)kπ

2N
, k = 1, ...,N−1.

(17)
When searching for a sparse representation of a discrete

signal xxx = (x0, . . . ,xN−1)
T in some basis, the following

minimization problem is addressed

min‖vvv‖0, such that ‖xxx−Θvvv‖2 < ε. (18)

The l0 pseudo-norm is simply the number of nonzero com-
ponents of the vector. Many solution algorithms replace it
with the l1 norm. In this paper, the vector vvv is the sparse
DCT of xxx and the matrix Θ represents the inverse trans-
form and the restriction to using only the sparse signal
measurement points. Only those rows which correspond
to the sparse local regularity signal are nonzero. To make
the problem more tractable, we also limit our attention to
only a small portion of the DCT spectrum, and thus only
columns of Θ up to some desired maximum frequency
are included. The sparse solution in the DCT spectrum
is searched using the orthogonal matching pursuit (OMP)
algorithm (Pati et al., 1993; Mallat, 2009). The DCT is
favored in this sparse approximation problem instead of
the DFT because it only has one coefficient for each fre-
quency, i.e. no negative frequencies.

3 Results and discussion
3.1 Acceleration measurements and their

squared envelope spectra, bearing fault
Calculations were performed with MATLAB R2020b.
Samples from the acceleration measurements of the six
different load levels in the bearing test are shown in Fig-
ure 3. Case 0 is the smallest load level and Case 5 is the
largest. It is important to notice, that the shocks caused
by the fault are lowest in Case 1 and then start to increase
again when the load level is further increased. The rota-
tional frequency of the shaft is roughly 18.6 - 18.2 Hz de-
pending on the load level. As this is also the rotational fre-
quency of the faulty bearing inner race, the shocks caused
by the fault are amplified once per revolution of the axle,
i.e. whenever the fault passes the loading region. When
the fault is passing the loading region, several shocks be-
tween the fault and rollers occur and these become more
visible when the load level increases. The frequency of
these shocks (ballpass frequency, inner ring, or BPFI) is
roughly 140 - 147 Hz depending on the rotational fre-
quency of the shaft.
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Figure 3. Acceleration measurements from the bearing test rig and their squared envelope spectra.
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Figure 4. Acceleration measurements from the misalignment test rig and their squared envelope spectra.
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The SES of these load cases in Figure 3 are calculated
from 10 s long signals and they show us that the strong
amplitude modulation is visible as peaks at the shaft speed
and its multiples in all load cases. From Case 3 onwards,
the BPFI and its sidebands spaced shaft speed apart be-
come clearly visible as a distinct pattern, although faint
signs of this pattern already exist in Cases 0 and 2.

3.2 Acceleration measurements and their
squared envelope spectra, misalignment

Samples from the acceleration measurements of the six
different misalignment states are shown in Figure 4. Case
0 is the no misalignment state and in the following cases
the misalignment increases in 0.1 mm increments. Shaft
speed is roughly 8 Hz and it is clear, that in Case 1
and 2 there are shocks which repeat mainly at this fre-
quency. From Case 3 onwards, the shocks become more
pronounced and they repeat 4 times in every revolution of
the shaft, i.e. at the frequency 32 Hz. In Case 5 it is also
noticeable that the 4 impacts per revolution are unique and
they repeat in a similar fashion. Especially one of them
is much bigger in amplitude than the others. The claw
clutch located between the motor and bearing 1 has a 4-
tooth flexible element which explains these phenomena.

The SES of the different misalignment cases calculated
from 15 s long signals are also shown in Figure 4. Shaft
speed (8 Hz) and its multiples dominate the spectra from
Case 1 onwards. From Case 3 onwards, 32 Hz and its
multiples have the largest amplitudes. In these cases, it
is also possible to interpret the other multiples of 8 Hz
as sidebands of 32 Hz and its multiples. This matches our
observations from the time domain signals, mainly that the
shocks which occur at 1/32 s intervals are also amplitude
modulated by the shaft speed especially in Case 5.

3.3 Local regularity signals and their L-S peri-
odograms and DCT spectra, bearing fault

The CWT of the bearing measurements are estimated at
the scales s = 1.5,1.6, . . . ,5.9,6, their WTMM ridges are
detected and irregularities whose constants A are above 1
are saved. The Hölder exponents and constants A from the
bearing measurements are shown in Figure 5. Also here
we can see that the vibration is smoothest in Case 1. The
Hölder exponents reach quite large negative values. Even
in Cases 0 and 1 there are a couple of irregularities with
exponents that are less than -3. Such large negative values
were also observed in (Nissilä and Laurila, 2019; Kotila et
al., 2010) in cases of dry bearing and local bearing faults.
We also observe that the amount of irregularities increases
with the load level and their constants A get bigger.

For frequency analysis, it was observed that the con-
stants A are more suitable than the Hölder exponents. Fig-
ure 6 shows the L-S periodograms of the constants A from
all of the load cases. In Case 1 the only recognizable fre-
quency is the axle speed. In Case 0 its multiples are visi-
ble and also BPFI with a couple of sidebands spaced axle
speed apart. This structure is more emphasized in Case 2

and from Case 3 onwards the axle speed has the biggest
amplitude followed with the BPFI. There are also numer-
ous sidebands spaced axle speed apart around BPFI and
its multiple. The load level is quite easy to read of from
the increasing amplitudes and when compared to the SE
spectra in Figure 3, the BPFI is more easily recognized in
Cases 0 and 2.

The DCT spectra of constants A in Figure 6 are
searched using sparse solutions with 60, 30, 100, 100, 100
and 100 components for the Cases 0 to 5 and for the fre-
quencies shown. In these spectra, we can also observe the
BPFI in Cases 0 and 2 and it becomes more distinctive in
Cases 3, 4, and 5. The increase in the amplitude of the
BPFI with fault severity is not as big as in the L-S spectra.

3.4 Local regularity signals and their L-S peri-
odograms and DCT spectra, misalignment

The CWT of the misalignment measurements are esti-
mated at the scales s = 1.5,1.6, . . . ,5.9,6, their WTMM
ridges are detected and irregularities whose constants A
are above 0.05 are saved. The Hölder exponents and con-
stants A from the misalignment measurements are shown
in Figure 7. The Hölder exponents are mainly positive and
we see that the number of irregularities and also their con-
stants A increase with the severity of the fault. The ampli-
tudes of the constants A also seem to reflect the periodicity
of the shocks caused by the fault.

Also for this fault state, the constants A were better
suited for sparse frequency analysis than the Hölder ex-
ponents. Figure 8 shows the L-S periodograms of the con-
stants A from all of the fault cases. The amount of irregu-
larities was so small in Case 0, that the estimated spectrum
is almost white noise. In Case 1 there are many multiples
of the shaft speed (8 Hz) and 8 times the shaft speed has
the biggest amplitude. In Case 2 we see that 2 and 11 times
the shaft speed are the largest. From Case 3 onwards, four
times the shaft speed (32 Hz) is the dominant frequency
and it has significant multiples. They also have small side-
bands mainly 8 Hz apart. The frequency contents of these
spectra are very similar to the SE spectra in Figure 4. The
main difference is that the frequency 32 Hz and its multi-
ples are much more prevalent from Case 3 onwards. We
can thus confirm, that the diagnostic capability is roughly
the same compared to the SES, but possibly the specific
nature of the 4-tooth elastic spider element becomes more
pronounced when using the L-S spectra of constants A.

The DCT spectra of constants A in Figure 8 are
searched using 10, 30, 200, 200, 200 and 200-sparse solu-
tions for the Cases 0 to 5 and for the frequencies shown.
It was necessary to decrease the sparsity to obtain spectra
where the fault frequency 32 Hz and its multiples become
most dominant. When compared to the L-S spectra, it is
again observed that the increase in the amplitude of the
fault frequency between the cases is not as big. Fault fre-
quency multiples also tend to increase with the severity
of the fault, but there is some variation. In Case 1, the
frequency 64 Hz has the biggest amplitude.
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Figure 5. Hölder exponents and constants A of the local irregularities from the bearing test rig acceleration measurements.
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Figure 6. Lomb-Scargle periodograms and absolute values of discrete cosine transforms of the constants A from the bearing test
rig acceleration measurements.
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Figure 7. Hölder exponents and constants A of the local irregularities from the misalignment test rig acceleration measurements.
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Figure 8. Lomb-Scargle periodograms and absolute values of discrete cosine transforms of the constants A from the misalignment
test rig acceleration measurements
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4 Conclusions
Local regularity analysis in the context of vibration moni-
toring has been studied for a couple of decades, but mainly
as a tool in time domain analysis. The spectral analysis of
local irregularities is not a simple task because of their
sparse nature. However, the spectra of the constants A of
the local irregularities carries at least as much diagnos-
tic information as the squared envelope spectra calculated
directly from acceleration signals. All of the tested meth-
ods contain different tunable parameters. For SES, these
are mainly the bandpass filter’s lower and upper limits.
For the local regularity analysis, they are the choice of
wavelet, the computed scales and the lower limit on how
small constants A are taken into the analysis. The compu-
tation of the L-S spectrum of constants A is quite straight-
forward, but when its sparse DCT spectrum is estimated
instead, the optimization algorithm and its parameters be-
come tunable parameters as well. Because these param-
eters are so different for these methods, it is not easy to
compare them fairly

For the examples in this paper, 10 and 15 s long signals
were used for the estimation of the SES and only 2 s long
signals were used for the local regularity analysis. Be-
cause of the result (6), it is advantageous to use long sig-
nals to estimate the SES. The calculation of the SES is also
so simple, that the computational cost is still quite low. In
contrast, it is computationally more costly to calculate the
local regularity estimation and its sparse spectral analysis
for long signals. But we have also demonstrated, that even
only 2 s long signals are long enough for good frequency
analysis results for both of the examples in this paper.

It is easy to set the lower limit on the constants A to
such a level, that in the healthy condition the amount of ir-
regularities is negligible and the spectrum is mostly white
noise. This means that changes in the load or health of
the machine become easily distinguishable. Especially the
Lomb-Scargle periodograms of constants A were found to
be very good at detecting and highlighting the fault fre-
quencies.
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