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Abstract
Resiliency requires manufacturing system adaptability
to internal and external changes, such as quick responses
to customer needs, supply chain disruptions, and
markets changes, while still controlling costs and
quality. Sustainability requires simultaneous
consideration of the economic, environmental, and
social implications associated with the production and
delivery of goods. Due to increasing complexity, the
engineering of a production system is a knowledge-
intensive process. In this paper, a summary of system
adaptation methods are shown, and a holistic
methodology for the assembly equipment and system
modeling and evaluation is explained. The aim here is
to bring resiliency and sustainability considerations into
the early decision-making process. The methodology is
based on estimations on system performance, using
discrete event simulation run results, or other process
modeling methods, and the use of Key Performance
Indicators (KPI), such as Overall Equipment Efficiency
(OEE), connected to cost parameters and environmental
aspects analysis. Overall, it is a tool developed through
multiple projects for design specification reviews and
improvements, trade-off analysis, and investments
justification.
Keywords: resilient assembly systems, sustainability,
modeling and simulation, decision support

1 Introduction
Manufacturing has to cope with a continuously
increasing variety of products, change of volumes,
shortening product life cycles, and various disturbances.
There has been a shift to the product personalization,
customer and market responsive resilient
manufacturing. Advanced manufacturing faces
challenges: digitization, the shift towards more
environmentally sustainable production and transition
from Industry 4.0 towards Industry 5.0, and a
sustainable, human-centric and resilient European
industry (De Nul et al., 2021).

Sustainability is an increasingly important driver.
Sustainable Manufacturing has commonly used the
following definition (US Department of Commerce,
2007): “The creation of manufactured products that use

processes that minimize negative environmental
impacts, conserve energy and natural resources, are
safe for employees, communities, and consumers and
are economically sound”.

Resiliency is usually defined as the ability of a system
to recover from an undesired state and to a desired state.
A list of resiliency attributes and their impacts on
manufacturing is provided in (Kusiak, 2019; 2020). 
They include energy, materials, components, physical 
assets and processes, transport, supply 
chain, communications, logistics, efficiency, 
productivity, capacity, dependability, quality, 
compatibility, sustainability, workforce, and societal 
values. These attributes can be expressed in different 
forms, metrics, and variables, some of which 
are measurable. Identification and definition of 
these variables is important for understanding the 
nature of manufacturing resiliency and sustainability.

Assembly is one of the last processes within a product
realization, a manufacturing operation in which the
components and subassemblies are integrated and
joined together to get the final product. Resiliency
requires system adaptability to internal and external
disruptions and changes, e.g., machine setups and job
rescheduling for quick responses to customer needs or
missing material due to supply chain disturbances.
There is a need for the holistic evaluation and decision
support methodology in the engineering phase of
production and assembly systems.

1.1 Aims
This paper briefly shows how to increase an assembly
system resiliency, adaptability to changes in products,
and production volumes. Solution is an agile,
interoperable, reconfigurable modular system and
processes with smart tools, technologies, digitalization,
and empowered human operators.

This paper describes holistic methodology for
assembly equipment and system evaluation, for design
specification reviews and improvements, trade-off
analysis, and investments justification. The aim is to
bring resiliency and sustainability aspects to the early
decision-making process: identify attributes,
parameters, visualize, model, simulate, and calculate, in
other words use advanced analytics techniques and use
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the created information to improve and make better
decisions - “resilience and sustainability-by-design”.

1.2 Sustainable manufacturing
The World Commission on Environment and
Development (1987) defined “Sustainable development
is development that meets the needs of the present
without compromising the ability of future generations
to meet their own needs.” This elaborated the meaning
of sustainability and presented it in three dimensions,
i.e., Environmental, Social, and Economic
responsibilities, commonly known as the triple bottom
line concept (Figure 1).
 

 
Figure 1.  Triple bottom Line (TBL) and Competitive
Resilient Sustainable Manufacturing.

The general principle of sustainable manufacturing is
to reduce the intensity of materials use, energy
consumption, emissions, and the creation of unwanted
by-products while maintaining, or improving, the value
of products to society and to organizations. Enhancing
sustainability performance of the production process is
an important contribution to developing a stronger and
cleaner economy.

1.3 Resilient and Agile Manufacturing
Resilient Manufacturing is defined as the ability of a
manufacturing system to efficiently mitigate any
external disruptions, either derived from the supply
chain of the company or resulted from the volatility of
the market demand. Further, the response of the system
to these volatile changes must be as rapid as possible in
order for the company to maintain their competitive
advantage in the market landscape (Mourtzis et al., 2021;
Kusiak, 2019).

Resilient manufacturing has similarities to agile and
reconfigurable manufacturing. The goal of agile
manufacturing is to combine the organizations, people
and, technology into an integrated and coordinated
whole (Dove 1992; Kidd 1994; Heilala and Voho, 
2001). Agility is defined as “the capability of 
surviving and prospering in a competitive 
environment of continuous and unpredictable change 
by reacting quickly and effectively to changing 
markets, driven by customer-designed products and 
services”. Agile manufacturing utilizes effective 
interoperable systems, process tools,

modular reconfigurable systems, human resources, and
training to enable manufacturing systems and networks
to respond quickly to customer needs and markets
changes while still controlling costs and quality 
(Dove, 1992).

1.4 Requirements and solutions
Flexibility requirements can be classified to static
flexibility, where reaction time is typically connected to
the planned product life-cycle phases, e.g., production
volume changes, new variants, or products in the same
system. In dynamic flexibility, reaction time is very
short due to customization, lot size one, assembly-to-
order, disturbances, machine breaks, repair work, rush
orders, and demand fluctuations. Solutions can be
physical adaptation on hardware, equipment level or
logical, adaptation with software, change of programs,
re-planning, re-routing etc. as shown in Table 1.

Table 1. Flexibility solutions adapted from (Heilala and
Voho, 2001)

logical “programs”   

s or 

 Control of tasks and 

Use of information 

Change of control 

Human intelligence 

Sorting and routing 

flow 
 
Technical solutions concepts, e.g., re-configurability

at hardware and software defines the capability window
of the system (Table 1). System capacity, production
volume, can be adapted by increasing work time, e.g.,
more shifts, increased level of automation, or by adding
more resources. Flexibility also depends on logistics and
material flow. In a modern supply chain, production
network and adaptation can also be done at different
organizational levels, e.g., re-routing and re-scheduling
can include external suppliers of the network.
Requirements for the factory automation are shown by
Dotoli et al. (2019) and requirements for the smart
factory system by Ambkhot et al. (2018) and Kusiak
(2019). Challenges for the Cyber Physical Production
Systems (CPPS), requirements for manufacturing and
key success factors for next generation manufacturing
are shown by Panetto et al. (2019). Findings are similar
to (Heilala and Voho, 2001) earlier, with a note 
that technology has evolved due to the 
introduction of Industry 4.0, Industrial Internet of 
Things (IIoT).
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Static flexibility,
physical “hardware”

Dynamic flexibility, 
logical “programs”   

 Layout physical 
modifications 

 Level of automation 
 Re-configurability, 

re-utilization 
 Modularity, 

expandability 
 Scalable 
 Exchange of system 

modules or 
submodules 

 Control of tasks and 
resource settings 

 Use of information 
technology 

 Change of control 
programs, routines 

 Robotics, flexible 
automation, 

 Human intelligence 
and skills  

 Sorting and routing 
of material and order 
flow 

 



Drivers for resilient sustainable manufacturing can be
listed as follows:

- Increase operational efficiency by reducing costs
and waste;

- Respond to or reach new customers and increase
competitive advantage;

- Build long-term business viability and success;
- Protect and strengthen brand and reputation and

build public trust;
- Respond to regulatory constraints and

opportunities;
- Provide a healthy workplace and empower the

workforce; and
- Minimal use of natural resources while reducing

environmental impact.

2 Design, modeling and evaluation
Resiliency and agility are about the system and process
adaptation to the planned changes and unplanned
disturbances. The design of an adaptable manufacturing
system involves a number of interrelated subjects, such
as tooling strategy, material-handling methods, system
size, process and material flow configuration, flexibility
needed for future engineering changes, production
methods, capacity adjustment, and production floor
layout strategy. Sustainable manufacturing system
design takes into account the social, economic, and
ecological constraints as well.

For analyzing environmental sustainability earlier in
the product lifecycle, Brundage et al. (2016) suggest use
of the SIMA reference model. SIMA, Systems
Integration of Manufacturing Applications, reference
architecture, developed at NIST (Barkmeyer et al.,
1996), addresses product design engineering,
manufacturing engineering, production systems
engineering, and production activities corresponding to
the four top-level activities: (A1) Design Product, (A2)
Engineer Manufacture of Product, (A3) Engineer
Production System, and (A4) Develop Products (Figure 
2).

 

 
Figure 2. SIMA activities reference model adapted from
(Barkmeyer et al., 1996).

SIMA provides the structure of the product
realization process. This paper is focused on the A3

Engineering of Production System, specifically to sub
phases (A33) Design Production System and (A34)
Model and Evaluate System. Production systems
encompass processes, activities, and includes the
resources and controls for carrying out the processes.
Process design defines what is being performed in the
system. The system design phase emphasis is on details
of how, where, and when the process is performed
(Phase A33 in Figure 2). In this phase, requirements,
needs, strategies, market forecast and product structure,
bill of material, production, and auxiliary process are
known.

Based on requirements and potential solution
designs, life-cycle scenarios are modeled and evaluated
(Phase A34 in Figure 2). This can be an iterative
process, as shown in Figure 3. The aim is justification
of investment into potentially more expensive flexible
equipment having a higher re-use value and longer life-
time, better adaptation to changes, and/or brings other
value, e.g., higher quality rate, and human and
environmental aspects.

 

 
Figure 3. Methodology overview.

2.1 Define requirements and needs
The starting point is strategies, requirements, and

needs, e.g., system lifetime scenarios, current and future
product mix, and volume estimations. Modular structure
of the production system enables use of the unit
manufacturing process (UMP) model, as shown in
Figure 4.

Product and process information, product structure,
bill of material (BOM), production, and auxiliary
processes are parameters to the system design. Each of
the manufacturing process unit has planned input and
output, resources, product and process information,  
see Figure 4.

In the definition phase, the cost parameters related to
inputs are as follows: energy, materials and
consumables, and resources: equipment, tools, fixtures,
and human operators are identified. The amount of
inputs, resource usage, and outputs can be calculated
using static process modeling data or using dynamic
simulation run results, as shown in the following
chapters in this paper.
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Figure 4. At system- and each module-level information
(adapted from ASTM E3012 standard; Mani et al. 2016).

2.2 Solution modeling
There are several methods for manufacturing system
modeling: analytic, symbolic, and models capturing the
dynamics of the systems.

Analytic models, such as mathematical formulas,
queue formulas, and linear programming, can give a
quick answer. Some are able to give an optimum
solution without going through trial and error. Their
disadvantages include simplified assumptions that are
often unable to account for random behaviors and, thus,
a simplified solution to complicated problems.

Symbolic models, such as process flow diagrams,
flowcharting, and Integrated DEFinition (IDEF), are
suitable for communication, easy to understand, and
quick to develop. The focus on the processes in the
system are not aimed to resolve resource issues and
operational problems too early. The disadvantages
include lack of details, little or no quantitative measure
of system elements or description of elements, activities,
and relationships, and failure to capture the system
dynamics. Symbolic models are static models.

Factory simulation measures the effects of process
variability and interdependencies on overall system
performance. A simulation creates an artificial history
of the system. The disadvantages are that models can be
difficult to construct – model building can be time-
consuming and challenging.

In principle, a combination of the above-mentioned
methods should aid engineers in speeding up the design
process and improve decision making (Paju et al., 
2010). Analytic models in spreadsheets are commonly 
used by engineers and can be connected to symbolic, 
static and factory simulation models. Simulation 
models can read and write to external software, e.g., 
spreadsheets.

2.2.1 Manufacturing system modeling
Value Stream Mapping (VSM) is a simple-to-use
symbolic process-modeling tool (see Figure 5). It

specifies the activities, cycle times, down-times, and 
delays, and identifies bottlenecks and non-value-added 
activities in the production or in the logistics. A snapshot 
of the process activities in production may be created 
based on average data. Conventional VSM can be 
created for one product or product family with a pen and 
paper, although there are numerous VSM software tools. 
Combining VSM or similar process modeling to 
spreadsheets, an engineer can make an estimation of 
production mix and volumes.  

VSM and environmental analysis have merged 
together in some applications. The US Environmental 
Protection Agency (EPA) has introduced the Lean and 
Environment toolkit, which offers practical techniques 
and strategies for environmentally protective lean 
decision making (EPA 2007). 

 

Figure 5. Example of VSM model adapted from (Paju et 
al., 2010).

 
Discrete Event Simulation (DES), a factory

simulation, allows the experimentation and validation of
different products, processes, and manufacturing system
configurations (Mourtzis et al., 2018). The 
simulation model is the virtual image of the planned 
real system. Discrete event/material flow/factory 
simulation is used in the design phase to evaluate 
concepts and optimize system solutions before 
investments and strategic decisions are made.

The common aim in simulation studies is to identify
problem areas, and to quantify or optimize production
system performance, such as throughput under average
and peak loads, the utilization of resources, labor and
machinery, staffing requirements, work shifts,
bottlenecks, choke points, queuing at work locations,
queuing caused by material handling devices and
systems, the effectiveness of the scheduling system, the
routing of material, the work in process, and storage
needs.

The modular system structure can be implemented to
layout planning and modeling systems. For example, in
the assembly system layout configuration, model
building, using 3D pre-defined and parametric sub-
module merging, enables fast scenario creation (Heilala
et al., 1998; 2007; 2008a). In some cases, a 
standardized, parametric simulation submodule, 
catalogue equipment item can be shared on the 
internet, e.g., Visual Components public web 
eCatalog (Visual Components
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2021). There are many other factory simulation tools in 
the market, supporting submodule merging.  

 

 
Figure 6. Component-based simulation adapted from
(Heilala et al., 2008a).

Modeling modularity is feasible on workstation and
at sub-module, e.g. material feeding, jigs, fixtures and
tool level as shown in Figure 6. Parametric modeling
enables fast model changes. Environmental aspects can
also be included in the production simulation analysis,
as shown in later in Figure 9 . The environmental aspect
analysis with DES or VSM adds the complexity in the
input data collection since more data is needed. VSM
model parameters and DES simulation run results can
be further analyzed in spreadsheet tools, e.g., excel.

2.3 Evaluation and analytics
Modeling for analytics needs a resource, bill of material
and product route data, process, order, production
schedule, volume, mix, and data for system availability,
set-ups, planned maintenance, reliability, machine
breaks, and estimated production quality rate data, e.g.,
yield, rejects, scrap and rework. Use of the UMP model
(see Figure 4) enables structure for data collection for
each manufacturing unit, and these units can be modeled
with VSM or DES, including connection between those
units.

The output of analytics is equipment operation data
and the percentages of machine statuses (on, off, stand
by, under repair), thus allowing the amount of energy
needed to be calculated. Using capacity data, we are able
to calculate factors such as the piece count and material
used during operations. DES shows the dynamics of the
system. In Value Stream Mapping (VSM) and combined
spreadsheet calculation, production volume data is
deterministic, based on static, average data.

2.3.1 Cost and efficiency aspects analytics
Looking at system, equipment, or service purchase price
is not enough. Life Cycle Cost (LCC) or Total Cost of
Ownership (TCO) is the purchase price of a product or
service plus the costs of operation throughout its life
cycle. Cost of ownership (COO), as defined by SEMI
standards, goes deeper (SEMI E35, SEMI E10, SEMI
E79), looking also on profitability, COO of good units.

COO depends on the production throughput rate,
equipment acquisition cost, equipment reliability,
throughput, yield, and equipment utilization, see 
Figures 7 and 8.

The basic COO is given by the following equation.
COO per good unit equals all costs divided by total
number of good products during the lifetime of the
equipment

 
where
FC = Fixed costs (amortized for the period under

consideration), Acquisition, installation, training, etc.
VC = Operating costs (variable or recurring costs),

factory interface, management, maintenance, control,
materials, energy, labor costs, etc.

YC = Yield loss costs, scrap, rework,
L = Life time of equipment
THP = Throughput rate (nominal)
U = Utilization
Y = Yield
 

 
Figure 7. Life cycle cost (LCC), time-based matrix.  

Yield loss cost is a measure of the value of units lost 
through bad quality (e.g., misprocessing, defects) and is 
broken out separately to demonstrate the importance of 
yield to both the numerator and denominator. The cost 
of lost yield increases, if the component travels forward 
in the processes before detecting the error. Some cost 
factors are more difficult than others to accurately 
determine in the concept phase.  

Figure 8. OEE time classification and six big losses. 
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The number of good products depends on reliability,
availability, and maintainability (RAM) and utilization
of equipment in a manufacturing environment. OEE
(Overall Equipment Efficiency/Effectiveness) is an all-
inclusive metric of equipment productivity, i.e., it is
based on reliability, (Mean Time Between Failures-
MTBF), maintainability (Mean Time To Repair-
MTTR), utilization (availability), throughput, and yield.

All of the above factors are grouped into the
following three sub-metrics of equipment efficiency.

1. Availability
2. Performance efficiency
3. Rate of quality
The three sub-metrics and OEE are mathematically

related as follows: OEE  % = Availability x Performance
Efficiency x Rate of Quality x 100

OEE is a systematic way to evaluate production
losses, normally used as an equipment key performance
indicator (KPI).  It helps to identify the actual time the
system is producing good units, and at the same time it
identifies and evaluates the OEE losses, like
setups/adjustments, breakdowns, idling/minor
stoppages, reduced speed, defects/rework (see Figure
8). In production systems, typically the focus is on the
bottleneck machine. In the case of high mix, low volume
production, the bottleneck location varies depending on
customer orders and workload.

In the case of the DES model, with detailed input
data, including data on MTBF, MTTR, cycle time
variations, and material flow disturbances, it is possible
to define the OEE based on simulation run results. In the
case of using the VSM model and spreadsheet analytics,
engineers can define the estimated OEE values
themselves, by identifying six big losses shown in
Figure 8.

In the design review or system sales negotiation
phases, it is an advantage to identify potential OEE
losses together with the customer, equipment or system
user. Thus, there will be fewer surprises during the
system utilization phase.

2.3.2 Environmental aspects analytics
VSM and DES are commonly used for manufacturing
system analysis and development as shown earlier.
Normally, these methods show selected production
efficiency key performance indicators. At the same
time, both methods create information about the
production parameters needed for the calculation and
analysis of environmental aspects (see Figure 9.).

Both VSM and DES can provide bookkeeping of
production volume, number of products manufactured,
cycle time, utilization, and equipment running time
(Paju et al., 2010).

Adding environmental data to process and equipment
descriptions and planned production rate creates
understanding of energy usage, greenhouse gas (GHG)
emissions, usage of hazardous materials, waste,
emissions, and so on. Usage can be shown per product,

resource or process based on piece count or time period. 
This enables engineers to focus on the most harmful 
processes and optimize them.  
 

 
Figure 9. Environmental data connection to production 
resources, process, and product data.     

An example of the categorization of sustainability 
performance indicators in manufacturing are shown in 
Figure 10. For air emission, e.g., carbon footprint 
analysis, the type and amount of material in kg, or 
energy usage in kWh, is just the starting point. There is 
a need to know the source of the raw material. 
Regarding energy, the CO2 emission using fossil fuels 
is much higher compared to renewal energy sources, 
e.g., water, wind, or solar energy.  

 
Figure 10. Typical manufacturing sustainability
performance indicator adapted from (Beltrami et al.,
2021).

With the BOM, environmental data from cradle to the
factory gate can be taken from the public LCI data sets,
e.g., European Reference Life Cycle Database (ELCD3)
(European Commission LCI 2018), or by using
commercial data bases.

2.4 Improve decision making
Simulation studies, modeling parameters, input data,
and run results, or other modeling methods combined
with other relevant information, do provide data for
analytics. Decision makers, managers, and development
engineers are interested in planned system cost
efficiency, investment and operating costs, productivity,
throughput, utilization, availability, quality rate,
flexibility, and all sustainability performance aspects.

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185180 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

185



Social sustainability is measuring working
conditions, occupational health, and safety.
Environmental sustainability is measuring resource
consumption, emissions, and waste. Beltrami et al.
(2021) show the linkage of industry 4.0 technology and
sustainability performance indicators, see Figure 10.
The global standards for sustainability reporting (GRI
2020) are one source for defining sustainability
indicators.

Environmental aspects are getting more important
due to increasing regulation, and they are useful in
marketing, in creation of brand, and reputation of the
company. Evaluation can be an iterative process,
managers and engineers can edit models, and model
parameters for optimization, as well as for risk
management (Figure 3).

3 Discussion
The presented methodology has evolved during a series
of research projects starting in the mid-1990s. The
human-friendly agile assembly system concept and
modeling methods for modular assembly equipment
started in the late 1990s (Heilala and Montonen, 
1998; Heilala and Voho, 2001). The cost 
aspect with performance analytics were introduced 
in the early 2000s, starting with spreadsheet 
analytics, later some integration to commercial 
simulation software (Heilala et al., 2007; 2008a). 
The development initiated from systems end-user 
flexibility needs as well as on assembly system 
vendor ongoing development efforts. Later, the 
environmental aspects were added, starting with 
energy consumption and the eco-engineering
process during the 2010s (Heilala et al., 2008b; Lind 
et al., 2009; Paju et al., 2010). This also shows 
how industrial needs have change, from cost-
efficiency-dominant decision making to all 
sustainability aspects.

The presented methodology usage is not limited to
assembly system evaluation, as shown in (Heilala et 
al., 2007; 2008a; 2008b); in general, the 
presented principle can be adapted to advanced 
manufacturing systems development and 
investment evaluation. Managers and engineers 
can justify investments to adaptive, human- and 
environmentally friendly technologies, equipment, 
and processes. For example, COO analyzes the cost 
of ergonomics solutions, the physical and cognitive 
level of automation, and with the OEE evaluation of 
impact to productivity, benefits of investments can be 
estimated. It should be noted that in both COO and 
OEE analyses in spreadsheet tools, it could be for 
relative comparison, i.e., before versus after change or 
between competitive solutions. Using these metrics as 
relative measures, the modeler is not required to build 
the perfect model or obtain all possible data. In one 
case, analysis and modeling with normal office tools
and advanced spreadsheet calculation were sufficient,
e.g., the study on Augmented Reality usage in assembly,

shown in (Sääski et al., 2008). In that particular case,
laboratory test set-up provided input data for analysis.

This presented methodology is not yet an integrated
tool package. It is merely a conceptual methodology.
Parts of methodology have been tested in the past in
industrial-driven projects, and the results are published.
The presented COO and OEE are based on SEMI
standards SEMI E35-0305, SEMI E10-0304, and SEMI
E79-0304, and these standards have been updated. The
next steps would be to adapt to evolving
standardization: e.g., ISO - International Organization
for Standardization (https://www.iso.org/home.html),
SEMI - the global trade association of electronics
manufacturing supply chain  (https://www.semi.org/en),
VDMA - Association of mechanical and plan engineers
(https://www.vdma.org/), VDI – The Association of
German Engineers (https://www.vdi.de/en/home),
ASTM International (https://www.astm.org/), see 
also (Mani et al., 2016)  -  just to mention 
some standardization bodies working on 
relevant standardization.

4 Conclusions
A resilient system needs agility, re-configurability at
various levels, resource and process modularity, re-
usability, digitalization, and human and environmental
friendliness. One challenge for the manufacturing
industry is justification for such equipment, system, or
service. The presented methodology is an attempt to
improve the decision-making process with modeling
and simulation. Currently, the presented methodology is
a combination of dynamic analytics, e.g., the use of
Discrete Event Simulation (DES) if feasible, combined
with selected static modeling and calculation methods in
a spreadsheet. Decomposition of aspects under study is
the key in analytics.

All sustainability aspects are covered. Social
sustainability, human safety, well-being, ergonomics
solutions, and related investments, e.g., adjustable
worktables, collaborative automation, both physical and
cognitive technologies for enhancement, and
augmenting human worker performance can be
estimated. Economic sustainability, profitability, and
efficiency connect the cost parameters of technology,
process, or services and evaluate the impact on
productivity. Environmental sustainability is looking at
environmental impacts as well resource efficiency.

From a cost point of view, the purchase cost of
equipment is not enough: evaluate all cost items, fixed
and recurring costs, cost of poor quality, cost related to
potential upgrades during life-cycle scenarios of the
system. The presented cost calculation, Cost of
Ownership (COO), also provides data for commonly
used investment evaluation methods, and discounted
cash flow techniques: Net Present Value (NPV) and
Internal Rate of Return (IRR), see Figure 7.
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From the production performance point of view,
nominal system capacity and throughput are not enough:
evaluate disruptive events, such as machine testing, set-
ups, planned and unplanned maintenance, quality
failures, missing parts, operators, or orders. These
events, six big losses (see Figure 8), could lead to full
or partial loss of production in the system. Therefore,
gaining a fundamental understanding and evaluation of
these events and associated impacts on system
performance in the design phase will have a significant
impact on the economic sustainability.

Environmental aspects can be estimated based on
simulation run results or by using (VSM) methodology
and spreadsheet calculations for equipment operation
hours and the number of products (see Figure 9).
Adding environmental data to process and equipment
descriptions creates understanding of the energy usage
pattern and related CO2 emissions, usage of hazardous
materials, chemicals, estimates of the amounts of waste,
bi-products, etc. The methodology is not a full Life
Cycle Assessment (LCA) but provides data for doing the
LCA.

Manufacturing is moving away from the dominating
economic paradigm of "maximum gain with minimum
capital investment" towards a more sustainable
paradigm of "maximum added value using minimal
resources and carbon neutrality".

The presented methodology is versatile, a solution-
relative comparison without a perfect model, even with
normal office tools. Symbolic models, even just with
pen and paper, improve communications between
stakeholders. Use of dynamic simulation models
increases the accuracy of analytics as well complexity
in model building.

The presented methodology measures selected
resilience and sustainability aspects, to the organization
over the planned life cycle of a piece of production
equipment - not absolute accurate values in the concept
creation phase - but data for comparison. The analytics
is as good as input data is; input of false information
does not produce the right results. The user should make
a risk assessment of results, e.g., use of min, max, and
optimal data values in calculation and simulations. The
challenges are on getting reliable data in the conceptual
phase.
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