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Abstract 

About 65 % of the carbon dioxide emissions from a 

modern cement kiln system are generated through 

calcination (decarbonation). The calcium carbonate in 

the limestone is the primary source of CO₂, and the rest 

comes from fuel combustion. This gives a calciner exit 

gas consisting of N2, O2, CO₂, and H₂O, the CO₂ 

constituting up to 30 % of the mixture. In the future, 

electric power will have to come from renewable 

energy. Electrification of the calciner, i.e., replacing fuel 

combustion with electrically generated heat, will 

eliminate the fuel combustion exhaust gases. The 

calciner exit gas will then be pure CO₂ and removes the 

need for a separate CO₂ capture plant. Such a process 

may require a new type of calcination reactor, different 

from the currently used reactors in most cement kiln 

systems. In the current work, an electrically heated drop-

tube reactor (DTR) is used to calcine the meal. The DTR 

may replace the traditional entrainment calciner. 

Essential characteristics in developing a DTR include 

the particle size distribution (PSD), particle settling 

velocity, operational temperature of the tube wall, and 

velocity of the product gas. A PSD ranging from 0.2 to 

180 µm, where most particles have a diameter < 30 µm, 

was investigated. Also, to assess the effect of clustering, 

an effective particle diameter of 500 µm was evaluated. 

Two different DTR designs were compared, 1) co-

current flow of gas and particles, 2) counter-current flow 

of gas and particles. The dimensions of a calcination 

reactor were calculated using simulations in Python 3.8. 

The tube diameter was selected as the key parameter to 

see how the overall design of the reactor was influenced.  

Keywords:     Drop tube reactor, electrification, CO2 
capture, calcination, Python 3.8 

1 Introduction 

Concrete is one of the most used construction materials 

in the world. The key additive in concrete is cement, and 

about 4.1 billion tonnes of cement are produced globally 

every year, resulting in a global anthropogenic CO₂ 

emission of up to 8 % (Andrew, 2018). Hence, strategies 

such as improving the energy efficiency of existing 

cement plants and using lower carbon fuels and green 

electricity to decarbonize the raw meal should be 
implemented (Norcem, 2021). 

Producing cement clinkers has two significant 

sources of CO₂ emission: calcination of the raw 

materials and fuel combustion. Calcination is a 

thermally driven chemical reaction where the calcium 

carbonate (CaCO₃) in the limestone will decompose and 

form lime (CaO) and CO₂: 𝐶𝑎𝐶𝑂3 + ℎ𝑒𝑎𝑡 → 𝐶𝑎𝑂 +
𝐶𝑂₂. The decarbonation of raw meal accounts for about 

65 % of the CO₂ emissions in a modern cement kiln 

system, while fuel combustion accounts for about 35 % 

(Tokheim et al., 2019).  

Modern calciners are based on raw meal particles 

being entrained by hot combustion gases, which at the 

same time provide the required heat transfer to the 

particles. However, expecting a greener future, the 

cement clinker production process will have to be 

powered by electricity generated by renewable energy 

sources. Implementing green electricity to power the 

calciner instead of fossil fuels can prove to be an 

efficient way to reduce CO₂ emissions: The CO₂ 

produced from the standard fuel combustion is 

eliminated, and the CO₂ produced from the calcination 

process is pure, which removes the need for a separate 

CO₂ capture facility.  

Different reactors may be applied in a process where 

the heat is transferred indirectly to the meal, for example 

rotary calciners (Tokheim et al., 2019), fluidized bed 

calciners (Samani et al., 2020), or drop tube calciners. 

Calcination by indirect heat transfer in drop tube 

calciners has been tested in the Leilac project (Leilac, 

2021), but in that project, fuel combustion is the source 

of energy used for calcination (Hills et al., 2017; 

Hodgson et al., 2018). 

In this work, we study indirect heat transfer in an 

electrified drop tube reactor and address the following 

key questions: 

• What is the settling velocity of the particles? 

• How will the CO₂ from the calcination reaction 

impact the particle flow in the reactor? 

• What factors are decisive for the tube diameter 

and length? 

The purpose of this study is to investigate, through 

modeling and simulation, how variable design 

parameters and operational settings will impact the 

industrial calcination in an electrified DTR. Two 

different designs are considered; co-flow and counter-

flow of meal and gas.  

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185279 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

279



2 Method 

To design an electrically heated DTR in order to calcine 

the raw meal, the particle settling process and the heat 

transfer from the heated tube wall to the particles in the 

reactor are modelled. A modified shrinking core model 

(SCM) is used to study the kinetics of the calcination 

reaction. The reaction rate coefficient of the reaction, 

which is dependent on the equilibrium pressure and the 

partial pressure of CO₂, is modelled. The models are 

implemented in Python 3.8 for simulation purposes to 

investigate how different particle sizes, wall 

temperatures, and fluid velocities will impact the system 

design.  

3 Process description 

The upper part of Figure 1 shows a typical modern 

cement kiln system. The raw meal is preheated in two 

preheaters before being calcined in the calciner. The 

precalcined meal is then sent to a rotary kiln, where the 

meal is fully calcined and cement clinker is produced. 

Finally, the clinker is cooled in a clinker cooler.  

 

 

Figure 1. A regular cement kiln system with two 

preheater strings (top) and a system equipped with an 

electrified calciner (bottom) (Tokheim et al., 2019). 

The lower part of Figure 1 shows a system where the 

fuel-fired calciner has been replaced by an electrified 
calciner. The fuel in the calciner fuel has now been 

replaced by heat provided from electrical energy. The 

combustion air is no longer required, so this air stream 

and the hot rotary kiln exit gas are both routed to the 

preheater, where the sensible heat can be utilized. 

Hence, the only gas component in the exit gas stream 

from the calciner is CO2 coming from the 

decarbonation. The red-colored process units in 

Figure 1 are considered in the present study. 

Figure 2 shows a process flow diagram of a DTR (i.e., 

the electrically heated calciner) and adjacent units such 

as a de-dusting cyclone, a heat exchanger, and a fan. 

The preheated raw meal enters the top of the reactor 

at a temperature of about 650 °C. As the particles 

continuously fall through the reactor, the heat generated 

from electricity will heat the particles to a calcination 

temperature of about 900 °C. During the calcination of 

the particles, CO₂ is produced. A fan is implemented to 

force the normally buoyant gas down through the 

bottom of the DTR, as shown in Figure 2. A de-dusting 

cyclone is implemented to separate the particles and exit 

gas. Heat exchangers cool down the pure CO₂ gas before 

it is sent to storage or further processing. The calcined 

meal is sent to the rotary kiln. In this study, two different 

DTR designs are compared; co-current flow of gas and 

particles (shown in Figure 2), and counter-current flow 

of gas and particles. In the latter concept, the CO2 will 

exit at the top of the DTR instead of at the bottom, but 

otherwise the flow diagram will be the same.  

 

Figure 2. Process flow diagram of DTR and adjacent 

units. 

Implementing the DTR in an existing cement kiln 

system is expected to have a relatively small 

constructional impact: 1) Replacement of the existing 

entrainment calciner with the DTR, 2) Installation of de-

dusting cyclone(s), 3) installation of heat exchanger(s) 

for utilization of sensible heat in the hot CO2 and 4) 

installation of a fan to pull the CO2 out of the calciner 

and send it to a CO2 processing unit (required for storage 

and transport). 

The DTR itself will have to be implemented in the 

form of a number of parallel tubes, each processing a 

fraction of the preheated meal. 
Figure 3 shows the cumulative particle size 

distribution of a typical raw meal, collected from 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185279 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

280



Norcem AS Brevik. The diameter ranges from 0.2 to 

180 µm. 

 

Figure 3. Cumulative frequency of particles with a size 

range of 0.2-180µm in diameter. 

Table 1. Design basis values. 

Parameter Unit Value 

Feed rate of raw meal t/h 207 

Fraction of calcium 
carbonate in raw meal 

kg/kg 0.776 

Calcination degree % 94 

Reference temperature K 298 

The temperature of the 
preheated meal 

K 931 

Calcination temperature K 1173 

Wall temperature K 1323 

Overall heat transfer 
coefficient 

W/(m²K) 250 

Enthalpy of calcination MJ/kgCO2 -3.6 

Enthalpy of other meal-
related reactions 

MJ/kgCO2 0.3 

Electricity-to-heat efficiency % 98 

Emissivity  - 0.9 

Gravitational acceleration m/s2 9.807 

Particle diameter µm 0.2-180, 
500 

Dynamic viscosity CO₂ Pa s 4.65·10-5 

Density CaCO₃ kg/m³ 2711 

Density CaO kg/m³ 1520 

Gas velocity m/s 0.1-2.0, 
0.5 

Partial pressure of CO₂ atm 1 

Specific heat capacity CaCO₃ 
at 931 K, constant pressure 

J/mol K 134 

Specific heat capacity CaCO₃ 
at 1173 K, constant pressure 

J/mol K 140 

 

Table 1 is a list of design basis values used in the

simulations. The input values are the same as used in a

previous study, in which a rotary calciner was used in an

electrified calcination process (Tokheim et al., 2019).

4 Modelling 

The DTR must be dimensioned in such a way that 

efficient calcination of the raw meal occurs. Thus, the 

settling velocity of particles, reaction kinetics, mass and 

energy balances, heat transfer, and design dimensions 

have been modelled. 

4.1 Particle settling velocity 

The settling velocity of the particles inside the DTR is 

modelled as a function of particle diameter. The 

following simplifications have been made: 

• Initial particle acceleration period neglected 

• No impact from particle-wall interactions 

• Direct transition from laminar to turbulent flow 

regime (neglecting the transition region) 

• No interaction between particles 

For small particles, the settling is laminar, and the 

settling velocity can then be calculated using 

Equation 1, where 𝑔 [m/s²] is the gravitational constant, 

𝐷𝑝 [m] is the particle diameter, 𝜇 [Pa·s] is the dynamic 

viscosity and 𝜌𝑝 and 𝜌𝑔𝑎𝑠 are the densities [kg/m³] of 

the particle and the gas, respectively (Zevenhoven and 

Kilpinen, 2001): 

𝑣𝑡 =
𝑔 ∙ 𝐷𝑝

2 ∙ (𝜌𝑝 − 𝜌𝑔𝑎𝑠)

18 ∙ 𝜇
 (1) 

Equation 2 is used to confirm that the Reynolds 

number, 𝑅𝑒𝐷, indicates laminar settling. If 𝑅𝑒𝐷 < ~1, 

the flow is in the Stokes regime and regarded as laminar. 

𝑅𝑒𝐷 =
𝜌𝑔𝑎𝑠 · 𝑣𝑡 · 𝐷𝑝

µ
 (2) 

However, if the Reynolds number from Equation 2 is 

found to be larger than ~1, this indicates that the settling 

is turbulent. Then the Archimedes number is calculated 

according to Equation 3, whereas an empirical Reynolds 

number is calculated from Equation 4, and, finally, 

Equation 5 is utilized to determine the settling velocity 

in the turbulent flow regime:  

𝐴𝑟 =
𝜌𝑔𝑎𝑠 ∙ (𝜌𝑝 − 𝜌𝑔𝑎𝑠) ∙ 𝑔 ∙ 𝐷𝑝

3

𝜇2
 (3) 

𝑅𝑒 = 0.1334 ∙ 𝐴𝑟0.7016 (4) 

𝑣𝑡,𝑡𝑢𝑟𝑏 =
𝑅𝑒 ∙ 𝜇

𝜌𝑔𝑎𝑠 ∙ 𝐷𝑝

 (5) 

As the calcination reaction occurs within the DTR, 

the particles are gradually decarbonated, a process that 

changes the density of the particles. Thus, to compensate 

for the velocity of the calcined (𝑣94%,𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑) and 

uncalcined (𝑣𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑) particles, Equation 6 is used as 

a representative average value.  

𝑣𝑚𝑖𝑑 =
𝑣𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 + 𝑣94%,𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑

2
 (6) 

The effective settling velocity for both designs is 

calculated by Equation 7 (co-current) and Equation 8 

(counter-current). 

𝑣𝑒𝑓𝑓,𝑡,𝑐𝑜 = 𝑣𝑚𝑖𝑑 + 𝑢𝑚 (7) 
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𝑣𝑒𝑓𝑓,𝑡,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑣𝑚𝑖𝑑 − 𝑢𝑚 (8) 

 

Figure 4 shows the calculated effective settling 

velocity of the particles. The green and the yellow 

curves represent the counter-current design, whereas the 

blue and red lines give the effective settling velocity for 

the co-current design. These calculations are done with 

a constant gas velocity of 0.5 m/s (cf. Table 1), and for 

the counter-current case, the effective velocity is 

negative for particles smaller than 226 µm.  

 

Figure 4. Settling velocity for the counter-current and co-

current flow designs as a function of particle diameter. 

Including laminar and turbulent flow regimes. 

In the calculations shown above, it was assumed that the 

particles do not interact with each other. However, due 

to the high solids loading in the system, it is likely that 

the particles will interact with each other and form 

clusters that effectively behave as bigger particles. This 

means that the actual settling velocity may be 

significantly higher than the values calculated above. 

Hence, in the simulations in Section 5, a larger effective 

particle diameter was used.  

4.2 Reaction kinetics 

The shrinking core model (SCM) describes the changes 

in a particle when a chemical reaction occurs, assuming 

that the particle size remains unchanged whereas the 

reaction front will gradually move towards the center of 

the particle, so that the unreacted core gradually shrinks, 

from a diameter equal to the particle diameter, to zero. 

To calculate the conversion factor of the particles, the 

correlations and results from (Milne et al., 1990) have 

been used. The calcination conversion factor is 

calculated by Equation 9, where 𝑘𝑟 [m0.6/s] is the 

reaction rate coefficient, 𝑑0 [m0.6] is the initial diameter 

of the particle and 𝑡𝑐𝑎𝑙 [s] is the calcination time. 

𝑋 = 1 − (1 −
𝑘𝑟

𝑑0
0.6 · 𝑡𝑐𝑎𝑙)

3

 (9) 

The reaction rate coefficient is determined by 

implementing the equilibrium pressure, 𝑃∗ [atm], and 

partial pressure of CO₂ inside the reactor, 𝑃𝐶𝑂2 [atm]. 

These are given by Equations 10 and Equation 11, 

respectively (Stanmore and Gilot, 2005). 

𝑘𝑟 = 𝐴 · exp (
−𝐸

𝑅 · 𝑇
) · (𝑃∗ − 𝑃𝐶𝑂2) (10) 

𝑃∗ = 4.192 · 109 · exp (
−20474

𝑇
) (11) 

In this study, where CO2 is the only gas in contact 

with the meal, and the system is operating at ambient 

pressure, the partial pressure of CO₂ is assumed to be 

equal to 1 atm. 𝑇 [K] is the calcination temperature, 

which is set to 1173 K in this study. In Equation 10, the 

pre-exponential factor 𝐴 is 0.012 mol/(m²·s·kPa), and 

the activation energy 𝐸 is 33.47 kJ/mol. 

4.3 Mass and energy balance 

A mass and energy balance for the DTR at steady-state 

conditions was conducted, assuming no heat loss to the 

surroundings.  

The mass balance was used to determine the mass 

flow rate of produced CO₂ from calcination, given by 

Equation 12, where �̇�𝑝ℎ𝑚,𝑖𝑛 [t/h] is the inlet feed rate of 

preheated meal (cf. Table 1), �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 [t/h] is the mass 

flow rate of produced CO₂, and �̇�𝑚𝑒𝑎𝑙,𝑐𝑎𝑙 [t/h] is the 

mass flow rate of calcined meal. 

�̇�𝑝ℎ𝑚,𝑖𝑛 = �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 + �̇�𝑚𝑒𝑎𝑙,𝑐𝑎𝑙  (12) 

Equation 13 is used to calculate the amount of 

produced CO₂ assuming 100 % conversion from CaCO₃ 

to CaO and CO₂, where 𝑤𝐶𝑂2,𝑝ℎ𝑚 is the weight fraction 

of CO₂ in the CaCO₃. To find the mass flow rate of 

produced CO₂ at 94 % calcination degree (𝑋), Equation 

14 is used (cf. Table 1). 

�̇�𝐶𝑂2,𝑝ℎ𝑚,100% = 𝑤𝐶𝑂2,𝑝ℎ𝑚�̇�𝑝ℎ𝑚,𝑖𝑛 (13) 

�̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 =  �̇�𝐶𝑂2,𝑝ℎ𝑚,100% 𝑋 (14) 

By dividing the DTR into two section – one 

preheating and one calcination section – the amount of 

heat required to process the meal was determined. 

Equation 15 is the energy balance for the preheating 

section, where 𝐸𝑒𝑙,𝑝ℎ [MW] is the energy supplied into 

the system to preheat the raw meal to calcination 

temperature. 𝐶𝑝,𝑝ℎ𝑚 [J/mol K] is the specific heat 

capacity of the preheated meal (cf. Table 1). 

𝐸𝑒𝑙,𝑝ℎ = �̇�𝑝ℎ𝑚 · 𝐶𝑝,𝑝ℎ𝑚 · (𝑇𝑐𝑎𝑙 − 𝑇𝑝ℎ𝑚) (15) 

Equation 16 is the energy balance for the calcination 

section based on how much energy must be supplied to 

the reactor for the reactions to occur. The mass flow rate 

of CO₂ is calculated based on the mass balance (cf. 

Equation 13 and 14), and 𝐻𝑐𝑎𝑙 and  𝐻𝑜𝑡ℎ𝑒𝑟 are the 

enthalpies of reaction for calcination and other meal 

related reactions, respectively (cf. Table 1).  
𝐸𝑒𝑙,𝑐𝑎𝑙 = �̇�𝐶𝑂2,𝑝𝑟𝑜𝑑 · (𝐻𝑐𝑎𝑙 + 𝐻𝑜𝑡ℎ𝑒𝑟) (16) 

4.4 Radiation heat transfer 

The particles are heated by conduction, convection, and 

radiation heat transfer. However, at the high temperature 

prevailing in the calciner, radiation heat transfer is much 

more significant than the two other mechanisms. Thus, 
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radiation is here assumed to be the only acting heat 

transfer mechanism. 

CO₂ is a polyatomic gas and will absorb some of the 

radiation, contributing to a reduced effect of the 

radiation heat flux. The effect of the absorption was 

investigated and found not to significantly affect the 

radiation heat flux. Hence, the main effect is the direct 

radiation from the hot wall to the particles, and this is 

the mechanism used in the model. 

For radiation heat transfer from the hot wall at 

temperature 𝑇𝑤𝑎𝑙𝑙 [K] to the particles at temperature 𝑇 

[K], Equation 17 can be applied to estimate the radiation 

heat flux, where 𝜀 is the wall emissivity and 𝜎 is the 

Stefan-Boltzmann constant (5.67·10-8 
𝑊

𝑚2𝐾4) (Incropera 

et al., 2017). 

𝑞𝑟𝑎𝑑
′′ = 𝜀 · 𝜎 · (𝑇𝑤𝑎𝑙𝑙

4 − 𝑇4) (17) 

4.5 DTR design 

To effectively process the raw meal to the desired 

calcination degree, the diameter and heat of the reactor 

tube have been determined. The diameter of a 

cylindrical tube is found by Equation 18. 

𝐷 = √
4 · 𝐴𝑐𝑟𝑜𝑠𝑠

𝜋
 (18) 

Here, the cross-sectional area, 𝐴𝑐𝑟𝑜𝑠𝑠 [m²], is given 

by Equation 19, where �̇� [m³/s] is the volumetric flow 

rate of fluid, and 𝑢𝑚 [m/s] is the fluid velocity chosen 

based on the settling velocity of the particles. 

𝐴𝑐𝑟𝑜𝑠𝑠 =
�̇�

𝑢𝑚

 (19) 

The necessary heat transfer area of the reactor tube 

can be determined based on the energy balance and the 

radiation heat flux calculations, given by Equation 20. 

𝐴ℎ𝑒𝑎𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡 =
𝑄𝑝𝑟𝑒ℎ𝑒𝑎𝑡

𝑞𝑝𝑟𝑒ℎ𝑒𝑎𝑡
′′  

𝐴ℎ𝑒𝑎𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝑄𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑞𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛
′′  

(20) 

Based on the energy required for heating the raw meal 

to the calcination temperature, the height of the section 

can be determined with Equation 21. 

ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝐴ℎ𝑒𝑎𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔

𝜋 · 𝐷
 (21) 

The necessary height of the calcination section is 

found by Equation 22, based on the required residence 

time of the particles (cf. Figure 5), and the effective 

particle settling velocity (cf. Figure 4).  

ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑒𝑠 · 𝑣𝑒𝑓𝑓.𝑡  (22) 

Further, the total height can be found by Equation 23 

by adding the preheating section height (ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

and the calcination section height (ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛). 

ℎ𝑡 = ℎ𝑡,𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + ℎ𝑡,𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (23) 

4.6 Simulations 

The models described above were implemented in 

Python 3.8. Both system designs – co-current and 

counter-current – are highly dependent on the tube 

diameter. Thus, the diameter was selected as a key 

parameter to vary in the determination of the DTR 

design.  

By having a counter-current flow of gas and particles, 

the buoyant CO₂ gas may be problematic regarding 

smaller particles. The particles processed in the co-

current flow of gas and particles will have an increased 

effective settling velocity. Thus, the height of the DTR 

is expected to increase accordingly. However, this 

design is not impaired by the CO₂ gas, which is forced 

to flow downwards with the particles. 

5 Results and discussion 

Figure 5 shows the calcination degree as a function of 

time and effective particle size. The smaller particles in 

the PSD have a short calcination time, meaning that 

complete conversion from CaCO₃ to CaO will happen 

rapidly. Given a calcination time, some of the larger 

particles may, however, not achieve the desired 

calcination degree. 

  

Figure 5. Calcination degree (conversion) as a function of 

time particle size. The calcination temperature is 1173 K. 

Each curve represents a given calcination time. 

 

Figure 6 shows the gas velocity and the required number 

of tubes as a function of the tube diameter. The gas 

velocity should be low in order to reduce the number of 

particles being forced out of the reactor by friction 

(relevant for the counter-current concept). 

For the co-current flow of gas and particles, the 

effective settling velocity increases with increased fluid 

velocity. Thus, to reduce the height of the tube, the gas 

velocity should be minimized. 
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Figure 6. Gas velocity and number of tubes as a function 

of tube diameter (counter-current flow). 

 

Figure 7 illustrates the reaction process and shows the 

heat necessary to preheat the raw meal to the calcination 

temperature, and the calcination reaction assuming 94 % 

conversion to CaO from CaCO₃ in the DTR. A feed rate 

of 207 t/h generates about 66 t/h CO₂ from the reaction, 

and about 141 t/h of calcined meal is produced. 

 

Figure 7. Shows the results from the mass and energy

balances listed in Section 4.3.

 

Figure 8 shows the heat flux with varying temperature. 

The temperature is varied in the range 1200 – 1500 K, 

and the green cross marks the flux when operating at 

1323 K, which results in a flux of 60 kW/m2. Increasing 

the temperature will decrease the required height as then 

the heat flux increases. However, it may be difficult to 

find materials that can operate at very high temperatures 

for a long period of time. A wall temperature of 1323 K 

(1050 °C) may be a suitable trade-off between heat 

transfer efficiency and material availability. 

 

Figure 8. Radiation heat flux as a function of wall 

temperature.  

 

The upper part of Figure 9 shows the required number 

of tubes as a function of the diameter. The calculations 

are based on a constant feed rate of 207 t/h, a residence 

time of 20 s, a constant gas velocity of 0.5 m/s, effective 

particle diameter of 500 µm, and wall temperature of 

1323 K (cf. Table 1.).  

The lower part of the figure shows the tube height (cf. 

Equation 23), where the slight increase in height comes 

from the preheating part of the tube, which increases 

because of fewer processing tubes.  

Based on Figure 9, several combinations of diameter, 

height and number of tubes can be used, depending on 

the requirements and specifications on the system where 

it should be installed. However, a relatively small 

diameter is necessary to ensure efficient heat transfer. 

A viable option may be to use 15 processing tubes 

with a diameter of 2.6 m and a height of 37.6 m, each 

processing a feed of 13.8 t/h. However, it could be that 

the heat transfer will be impaired with such a big 

diameter, and another option could be 40 tubes with a 

diameter of 1.6 m and a height of 37.5 m, each tube 

processing 5.3 t/h. If fewer operating DTRs were to be 

used, the diameter would greatly increase. The 

efficiency of heat transfer would decrease since the heat 

may not reach the particles furthest away from the tube 

wall (the heat source). 

   
Figure 9. Number of tubes and height necessary to 

process the raw meal (co-current) as a function of the 

tube diameter.  

 

Figure 10 shows the number of tubes and the tube height 

as a function of the tube diameter (counter-current 

design) for the same conditions as in Figure 9. The most 

significant difference between Figure 9 and Figure 10 is 

the tube height due to the effective particle settling 

velocity (cf. Equations 7 and 8).  
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Figure 10. Number of tubes and height necessary to 

process the raw meal (counter-current) as a function of 

the tube diameter.   

 

As mentioned before, the difference between the co-

current and counter-current design is the impact of the 

gas velocity on the particles settling velocity. One major 

consideration when choosing the preferred design is the 

available area for the installation of the system. If height 

is a limiting factor at the site where the DTR is to be 

installed, the counter-current design should be 

considered.  

6 Conclusion 

Two concepts were investigated for calcination of raw 

meal in a drop tube reactor, 1) co-current flow of 

particles and gas, 2) counter-current flow of particles 

and gas.  

The settling velocity is dependent on the particle size. 

Small raw meal particles with a low settling velocity 

will be affected by the buoyant CO₂ gas for the counter-

current design if the fluid velocity is 0.5 m/s. This is not 

the case for the co-current design. However, the required 

height of the tube increases as a result of the increased 

settling velocity of the particles.  

Due to the high loading of solids in the system, it is 

likely that the particles will interact with each other and 

form clusters that effectively behave as bigger particles. 

The settling velocity is a function of the particle size, 

and about 1.2 m/s is achieved for particles with an 

effective size of 500 µm. Using a gas velocity of 0.5 m/s, 

the effective settling velocity of the particles was 

accordingly found to be 1.7 m/s and 0.7 m/s for the co-

current and counter-current designs, respectively.  

Simulations show that operating with a high fluid 

velocity decreases the diameter of the reactor tube. 

Larger tube diameters will likely impair the heat 

transfer. 

Both designs are influenced by decreasing the tube 

diameter. The particles in the co-current design will 

achieve a higher effective settling velocity, increasing 

the height of each reactor tube. The particles in the 

counter-current design will achieve a reduced effective 

settling velocity, increasing the residence time of the 

particles and reducing the necessary tube height. 

However, small particles (with a settling velocity less 

than the fluid velocity) may be entrained by the buoyant 

CO₂ gas and exit at the top of the reactor. 

Mass and energy balances were used to determine 

how much heat is required to preheat and calcine the 

meal, and how much CO₂ is produced during calcination 

of CaCO₃. About 80 MW in total is required for both 

processes when calcining a feed rate of 207 t/h. The 

process results in about 66 t/h produced CO₂ and 141 t/h 

calcined meal. 

Increasing the number of processing tubes and 

dividing the total feed rate of raw meal between the 

tubes decreases the diameter while ensuring the correct 

fluid velocity of the gas.  

The decisive factor for the tube diameter is the fluid 

velocity. To achieve an acceptable gas velocity and 

maintain a high heat transfer coefficient, a relatively 

high number of processing tubes is required.  

Which design (co- or counter-current) and what 

configuration of the system with regards to diameter, 

height and number of operating tubes are heavily 

dependent on the system where the DTR is to be 

installed. However, if the PSD consist of small particles 

and the buoyant CO₂ is a problem, then the co-current 

design should be used. The proposed dimensions by 

calculations and simulations to ensure efficient heat 

transfer can be 40 DTRs, each with a diameter of 1.6 m 

and a height of 37.5 m. 

The counter-current flow of gas and particles is 

impaired if clustering of particles does not occur. For a 

case with no interaction between the particles, a 

minimum effective diameter of 226 µm is required to 

avoid particles rising with the buoyant CO₂ gas when 

operating with a gas velocity of 0.5 m/s in a counter-

current design. If the installation of the DTR system is 

heavily dependent on minimizing the height of tubes 

because of height limitations, the counter-current design 

should be used. Considering the same number of 

operating DTRs and the same diameter as for the co-

current design, the height may then be reduced to 17.5 

meters. 

In order to numerically verify the results, future work 

could include CFD simulations of the flow process.  
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