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Abstract 
The calciner has a significant role in the production of 

cement. It is the most energy-intensive process unit in 

the production process. Most modern calciners are 

entrainment-based, i.e., a hot gas pneumatically conveys 

the particles through the calciner. A fluidized bed is an 

alternative to the entrainment calciner, which may be of 

special interest if the calcination process is to be 

electrified, so that the raw meal is mainly calcined by 

heat transfer from a hot surface and not by direct contact 

with hot combustion gases. The fine particle size of the 

raw meal, however, makes it a challenge to fluidize. 

This study looks into an alternative solution in which the 

cement raw meal is mixed with coarse sand particles to 

enhance the fluidization behavior. 

Experiments are first conducted to fluidize pure 

cement raw meal (fine particles) and sand (coarse 

particles) separately. Then they are mixed at fine/coarse 

mass ratios of 25%/75% and 50%/50%.  

Simulations are then performed, using a commercial 

CPFD software (Barracuda ®, version 20.0.0), to 

replicate the results from the experiments. 

The experimental results indicate that it is technically 

feasible to fluidize cement raw meal by mixing it with 

coarse inert particles at the mentioned fine/coarse mass 

ratios. Stable fluidization was observed at a superficial 

gas velocity of 0.3 m/s. The pressure drop results from 

simulations and experiments matched quite well at both 

mixing ratios. Hence, the CPFD simulations may be 

used as an aid in the design of a potential full-scale 

calciner applying this concept.  

Keywords: Fluidization, Cement, Binary particles, 

Calcination, Electrification 

1 Introduction 

Around 7% of the global CO2 emissions are from the 

cement industry (IEA, 2020). In modern cement plants, 

the CO2 comes from the decarbonation of the calcium 

carbonate in the raw meal (about 70 %) and from the 

fuel combustion (about 30 %). Reducing the CO2 

emissions from such plants can be done by post-

combustion capture of the CO2 in the exhaust gas from 

the plant. However, calcination by electrification of the 

calciner will generate a pure gas CO2, which makes it 

possible to significantly reduce the CO2 emissions 

without building a separate capture plant, provided the 

electricity is produced from a renewable energy source. 

This method can reduce around 70 % of the CO2 

emissions from a modern cement plant (Tokheim et al., 
2019). 

Most modern calciners operate in the entrainment 

mode where the raw meal is entrained by the 

combustion flue gases while providing heat for 

calcination reaction (Becker et al., 2016). It may be 

possible to electrify the entrainment calciner by 

inserting heating rods. However, the main challenge 

with this concept is the potential heat loss from a large 

amount of recycling gas required for raw meal 

entrainment (Jacob and Tokheim, 2021).  

An alternative solution to this concept is a fluidized 

bed calciner, which will operate at a lower velocity and 

will require much less recycle gas. Moreover, a high 

heat transfer coefficient and a uniform temperature 

distribution due to good mixing in the system are 

additional advantages (Kunii and Levenspiel, 1991). 

However, due to the small particle size in a traditional 

cement raw meal, it may not be feasible to fluidize the 

particles properly (Samani, 2020).  

A raw meal typically has a particle size distribution 

in the range 0.5 – 250 µm, where 70-80% of the particles 

fall in the range of the Geldart C particle size class. 

Geldart C particles are difficult to fluidize due to their 

cohesive nature (Geldart, 1973). A previous 

investigation demonstrated this challenge as rat hole 

formation in the bed was observed (Samani et al., 2020). 

Mixing the cement raw meal with coarse particles 

could be an alternative way of fluidizing these particles 

(Samani et al., 2020). This concept of mixing cement 

raw meal with coarse inert particles is called “Powder-

Particle Fluidized Bed (PPFB)” (Kato et al., 1991). The 

PPFB concept was demonstrated experimentally at a 

limestone feeding rate of 15 g/hr and a superficial gas 

velocity of 0.45 m/s. The static bed height of coarse 

particles was varied in the range 0.1 – 0.2 m. The 

experiment was done in a column with a diameter of 

0.03 m and a height of 0.65 m (Tashimo et al., 1999). 

This study aims to investigate the feasibility of 

fluidizing a binary mixture by mixing fine cement raw 

meal and coarse sand particles at a mass ratio that may 

be appropriate for a full-scale process. The feasibility is 

tested experimentally with a cold-flow lab-scale 
fluidized bed at different mass ratios. Computational 

particle and fluid dynamics (CPFD) simulations are 
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further performed with the commercial software 

Barracuda ®, version 20.0.0, to check if the results from 

the experiments can be replicated through computer 

simulations. The intention is to use the results from this 

study to design a full-scale calciner.  

2 Experimental Method 

The experimental setup, the particle characteristics, and 

the experimental procedure are described below. 

2.1 Experimental setup 

The experiments were conducted in a lab-scale fluidized 

bed. The lab-scale fluidized bed is a cylindrical tube 

made of Lexan plastic. The internal diameter and the 

height of the tube are 0.085 and 1.4 m, respectively. The 

tube has nine pressure transmitters placed along its axial 

direction, and a LabVIEW® programme records the 

pressure readings. The experimental setup is shown in 

Figure 1. 

 

Figure 1: Experimental setup 

The distance between PT1 and PT2 is 7 cm, and the 

other transmitters have an equal spacing of 10 cm, as 

shown in Figure 1. The particles are fluidized with air at 

ambient conditions. The mass flow rate of the air is 

controlled with a flowmeter. 

The air distributor, made of a highly porous sintered 

stainless steel (Siperm R20®, Tridelta Siperm GmbH), 

is placed between the fluidizing air and particles. The 

porosity of the distributor is 37-42 %.  

The pressure drop from the air distributor (∆𝑃𝑑) was 

measured at different gas velocities by passing air 

through the distributor without any presence of 

particles. The pressure drop versus air velocity was then 

fitted to a non-linear equation. The experimental result 

of pressure drop and the prediction from the non-linear 

equation are shown in Figure 2. 

 

Figure 2: Fitting pressure drop across the distributor to 

second order velocity function. 

2.2 Particle characteristics 

A regular cement raw meal from a local Norwegian 

cement plant was used as fines in the experiment. The 

fine particles had a size distribution between 0.5 and 250 

µm, and almost 80 % of the particles were below 30 µm. 

Sand with a particle size between 100 and 600 µm was 

used as the coarse particles in the experiment. 

Four different mass fractions of fines were used in the 

experiments; 0, 25, 50 and 100 %. The total mass of fine 

and coarse particles was 900 g in all experimental cases. 

An overview of the experimental cases and the particle 

properties is shown in Table 1. 

Table 1: Experimental cases and particle properties 

Parameters 
100% 
fines 

50% 
fines 

25% 
fines 

0% 
fines 

Mass of raw meal [kg] 0.9 0.45 0.225 0 

Mass of sand [kg] 0 0.45 0.675 0.9 

Average particle 
density [kg/m³] 

2897 2774 2712 2650 

Bed Height [cm] 15.2 11.7 10.4 10.2 

Bulk density [kg/m³] 1053 1368 1540 1570 

Void fraction [-] 0.64 0.51 0.43 0.41 

 

Laser diffraction with a HELOS (RODOS dry 

dispersion) particle size analyzer was used to measure 

the particle size distribution (PSD) for each case. The 

resulting distribution is shown in Figure 3. 
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Figure 3: Cumulative particle size distribution (PSD) 

plot for the experimental cases 

2.3 Experimental procedure 

The particles were carefully weighed and poured into 

the column. The bed height in each case was noted down 

(cf. Table 1).  

The air velocity was then increased in steps to 

different levels. By experience it was found that the 

system reached a pseudo-steady state within 160 

seconds at a certain level. Hence, for each step, the 

velocity was held constant for 200 seconds. The 

pressure measurements between 160 and 200 s were 

used to determine the mean pressure and pressure 

fluctuations at the pseudo-steady state conditions. A 

high standard deviation in these fluctuations may 

indicate a bubbling behavior in the bed (Jaiswal et al., 

2018). 

3 Modelling methods 

Monte-Carlo simulations were used to numerically 

determine the PSD of the mixtures. Computational 

particle and fluid dynamics (CPFD) modelling was used 

to simulate the particle behaviour in the bed, applying a 

suitable drag model. These models, as well as the 

simulation setup, are described below.  

3.1 Monte-Carlo simulations to analyze PSD 

A Monte-Carlo simulation may be used to analyze the 

particle size distribution (PSD). According to the law of 

large numbers, as the sample size increases, the 

distribution of the sampled particles tends to have its 

original distribution. Samples may be generated from 

the distribution using various algorithms. In this study, 

a modified version of the inverse sampling algorithm is 

used: 

1. Generate a random number between 0 and 1 from a 

uniform distribution. This number represents the 

cumulative probability (y-axis) in Figure 3. 

2. At the randomly generated cumulative probability, 

read the value of diameter (𝑑𝑝) by linear 

interpolation. This value of 𝑑𝑝 is the generated 

sample. 

3. Repeat step 1 and step 2 to get the required number 

of samples (10,000 in our case). 

The histogram of the generated sample may, however, 

not be smooth enough to make inferences. Kernel 

density estimation (KDE) is a non-parametric method 

to estimate the probability density from random 

variates. It is used for data smoothening where 

inferences about the data must be made. The KDE 

algorithm implemented in the Seaborn package of 

Python 3.8 was used to smoothen the distribution. This 

method is useful for predicting the probability density 

of the mixture if the probability density of pure 

components is known. The prediction test is also 

simulated in this study. 

3.2 CPFD method 

Computational particle and fluid dynamics (CPFD) is a 

method to simulate gas-solids multiphase flow. This 

method is based on Eulerian-Lagrangian coupling, and 

it uses a unique concept called the multiphase-particle-

in-cell (MP-PIC) method (Andrews and O’Rourke, 

1996). The MP-PIC method solves the gas phase 

equation by the Eulerian approach and the solid phase 

equations by the Lagrangian approach. This approach 

makes it quite similar to the traditional discrete element 

method (DEM). However, some differences, such as the 

particle-to-particle force calculations and the 

assumption of numerical particles, make the CPFD 

method much more computationally efficient than the 

traditional DEM method for an industrial system 

(Snider, 2007). 

The simulations were performed at the experimental 

conditions to study the physics of particles in each case. 

The volume-averaged continuity and momentum 

equation for a two-phase incompressible flow is (Snider 

2007), 

𝛿𝜃𝑓

𝛿𝑡
+ ∇ ∙ (𝜃𝑓𝑢𝑓) = 0 (1) 

𝛿(𝜃𝑓𝑢𝑓)

𝛿𝑡
+ ∇ ∙ (𝜃𝑓𝑢𝑓𝑢𝑓) = 

−1

𝜌𝑓
∇𝑝 −

1

𝜌𝑓
𝐹 + 𝜃𝑓𝑔 +

1

𝜌𝑓
∇ ∙ τ 

(2) 

Here, 𝜃𝑓 is the fluid volume fraction, 𝑢𝑓 is the fluid 

velocity, 𝜌𝑓 is the fluid density, 𝑝 is the fluid pressure, 

τ is the fluid stress tensor, 𝑔 is the gravitational constant, 

and 𝐹 is the momentum exchange rate per volume 

between fluid and the particles. 

The acceleration in the particles can be further 

modelled by (Snider, 2007), 
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𝛿𝑢𝑝

𝛿𝑡
= 𝐷(𝑢𝑓 − 𝑢𝑝) −

1

𝜌𝑝
∇𝑝 + 𝑔 −

1

𝜃𝑝𝜌𝑝
∇𝜏𝑝

+ 𝐹𝑆 
(3) 

Here, 𝑢𝑝 is the particle velocity, 𝜌𝑝 is particle density, 

𝐷 is the interphase drag function, 𝜃𝑝 is the particle void 

fraction, 𝜏𝑝 is the particle normal stress and 𝐹𝑆 is the 

particle friction. 

The particle-to-particle forces are modelled with the 

normal stress of particle (𝜏𝑝), and this is given by 

(Snider 2001), 

𝜏𝑝 =
𝑃𝑠𝜃𝑝

𝛽

𝑚𝑎𝑥[𝜃𝑐𝑝 − 𝜃𝑝, 𝜀(1 − 𝜃𝑝)]
 (4) 

Here the constant 𝑃𝑠 has a unit of pressure, 𝜃𝑐𝑝 is 

particle void fraction at close packing, 𝛽 is a constant 

with a recommended value between 2 and 5, 𝜀 is a very 

small number activated when particle void fraction 

comes very close to its close pack limit. 

The blended acceleration model (BAM) is an extra 

option implemented in Barracuda to account for the 

fluidization behavior of particles of different size. The 

particles with different size have a lower relative motion 

due to sustained particle contacts. BAM is used to 

simulate this phenomenon, and without BAM, the 

segregation of particles in simulations may be higher 

than in reality. 

Particle to wall interaction modelling in Barracuda is 

controlled mainly by three variables; normal-to-wall 

momentum retention (𝑟𝑁), tangent-to-wall momentum 

retention (𝑟𝑇) and diffuse bounce index (𝑑𝑏𝑖).  
A schematic of a particle colliding with a wall with 

initial velocity (𝑢𝑛) and attaining a final velocity (𝑢𝑛+1) 

is shown in Figure 4. 

 

Figure 4: Schematic of particle collision with the wall 

The diffuse bounce index (𝑑𝑏𝑖) defines the degree of 

scattering of particles after the collision (cf. Figure 4). 

This parameter applies to a rough wall, which is usually 

present in an industrial system. The normal-to-wall 

momentum retention (𝑟𝑁) is the fraction of the normal 

component of particle momentum retained after a 

collision with wall. The tangent-to-wall momentum 

retention (𝑟𝑇) is the fraction of tangential component of 
particle momentum retained after a collision with wall.  

The choice of values for the parameters discussed in 

this section varies in the literature. The values used in 

this study are shown in Table 2. 

Table 2: Particle interaction parameters used in this 

study 

Particle-to-particle 

interaction 

Particle-to-wall 

interaction 

Parameter Value Parameter Value 

𝑷𝒔 1 𝑟𝑁 0.4 

𝜷 3 𝑟𝑇 0.95 

𝜺 10-8 𝑑𝑏𝑖 2 

3.3 Drag modelling 

The interphase drag function (𝐷) is used to model 

particle acceleration. There are many models available 

for drag modelling.  

The Ergun drag model defines this function as 

(Beetstra et al., 2007), 

𝐷 = 0.5 (
𝑐1𝜃𝑝

𝜃𝑓𝑅𝑒
+ 𝑐𝑜)

𝜌𝑓(𝑢𝑓 − 𝑢𝑝)

𝑟𝑝𝜌𝑝
 (5) 

Here, 𝑐𝑜 and 𝑐1 are model coefficients and 

recommended value for 𝑐𝑜 is 2 and for 𝑐1 is 180 

(Beetstra et al., 2007). This model was developed using 

data for a dense bed. 

The Wen-Yu drag model was developed based on 

fluid void fraction and single-particle drag (Wen and 

Yu, 1966). The drag coefficient is defined as, 

𝐶𝑑 =

{
 
 

 
 

24

𝑅𝑒
𝜃𝑓
𝑛𝑜            𝑅𝑒 < 0.5

24

𝑅𝑒
𝜃𝑓
𝑛𝑜(𝑐𝑜 + 𝑐1𝑅𝑒

𝑛1) 0.5 ≤ 𝑅𝑒 ≤ 1000

𝑐2𝜃𝑓
𝑛𝑜                   𝑅𝑒 > 1000

 (6) 

Here, the drag coefficient (𝐶𝑑) is related to the 

interphase drag function by, 

𝐷 =
3

8
𝐶𝑑
𝜌𝑓(𝑢𝑓 − 𝑢𝑝)

𝑟𝑝𝜌𝑝
 (7) 

The Wen-Yu drag model is more appropriate for dilute 

flows, while the Ergun drag model is more appropriate 

for dense flows. Using a blend may capture the best of 

both drag models. The blended model is given by, 

𝐷 =

{
 
 

 
 

𝐷1           𝜃𝑝 < 0.75𝜃𝐶𝑃
(𝐷2 − 𝐷1)(𝜃𝑝 − 0.75 𝜃𝑐𝑝)

0.85𝜃𝑐𝑝 − 0.75𝜃𝑐𝑝
+ 𝐷1  0.75𝜃𝑐𝑝 ≤ 𝜃𝑝 ≤ 0.85𝜃𝑐𝑝

𝐷2  𝜃𝑝 > 0.85𝜃𝐶𝑃

 (8) 

Here, 𝐷1 is the drag function from the Wen-Yu equation 

and 𝐷2 is the drag function from the Ergun equation.  

In this study, the blended model was used for the 

coarse particles and the mixture cases, whereas the 

Wen-Yu model was used for the fine cement raw meal.  

3.4 Simulation setup 

The simulations were set up to match the experimental 

conditions. A three-dimensional geometry of the tube 
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was developed with an internal diameter of 0.085 and a 

height of 1.4 m. A uniform grid with a total of 17600 

(10×10×176) cells in the tube was created. The pressure 

sensors were placed at the height of 4.2 cm and 14.2 

from the bottom to replicate the PT2 and PT3 sensors. 

The resulting mesh and the pressure monitoring points 

are shown in Figure 5. 

 

Figure 5: Mesh used in the simulations and pressure 

probe to monitor results 

The simulation results are presented after simulating 

for 30 seconds in each case as it was found that a 

pseudo-steady state was reached after 30 seconds of 

simulations. 

4 Results and Discussions 

4.1 Monte-Carlo simulation results 

The PSDs from the Monte-Carlo simulations are given 

in Figure 6. Results from mixing pure particles are given 

in Figure 7. The results indicate that Monte-Carlo 

sampling is an efficient algorithm to estimate the 

particle size distribution of mixed powders. 

 

Figure 6: Probability distribution of the particles 

 

Figure 7: Sampling from measured PSD vs estimated 

PSD by sampling from pure powders 

4.2 Pure particle results 

A corrected pressure drop between PT1 and PT2 (cf. 

Figure 1) was calculated by subtracting the pressure 

drop over the distributor from the measured pressure 

drop between point 1 and 2 (cf. Figure 2). The corrected 

bed pressure drop between PT1 and PT2 (excluding 

distributor pressure drop), ∆𝑃12, is shown in Figure 8. 

The standard deviation of the pressure drop (𝜎𝑃) is 

plotted as a band and also as a separate dotted line. 

 

Figure 8: Pressure drop profile for pure particle 

fluidization 

The minimum fluidization velocity (𝑈𝑚𝑓) for the 

pure coarse particles is at a superficial gas velocity of 

0.06 m/s. The minimum fluidizing velocity (𝑈𝑚𝑓) of the 

fine particles could not be measured accurately as the 

disturbances in the bed started at the lowest superficial 

gas velocity of 0.01 m/s. Both coarse and fine particles 

had similar pressure drop readings at the fluidizing 
conditions because the weight of both particles is the 

same. The pressure drop fluctuations for coarse particles 

are high when the velocity is high. In contrast, for the 
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fine cement raw meal, the fluctuations were low. These 

results indicate an excellent fluidization behavior of the 

sand particles and poor fluidization behavior of the fine 

cement raw meal. This inference is also consistent with 

visual observation of the bed. 

The corrected bed pressure drop between PT1 and 

PT2 (excluding distributor pressure drop), ∆𝑃12, is not 

directly comparable to the simulation results as pressure 

point 1 in the experiment is not present in the simulation 

model. So, the experimental pressure drop between 

sensor PT2 and PT3 (∆𝑃23) is compared against the 

simulation results for pure particles in Figure 9. 

  

Figure 9: Pressure drop profile comparison of 

experiments and simulations for pure particles 

The results for the coarse particles show that the 

measured and simulated pressure drop match quite well. 

In the experiments, a pressure drop peak corresponding 

to the minimum fluidization velocity is observed. In the 

simulation, however, the peak is predicted at a lower 

velocity. This peak may not be the minimum 

fluidization velocity as the pressure drop keeps 

increasing almost at the same gradient after the peak. 

The simulated pressure drop curve starts to flatten out at 

a velocity higher than the minimum fluidization velocity 

predicted from experiment. Thus, the minimum 

fluidization velocity value predicted from the simulation 

is higher than the experimental value. The coarse 

particles have a wide size distribution (cf. Figure 3), 

which means an interaction between particles of 

different sizes is expected. Some of the interaction 

effects are neglected in the CPFD model and could be a 

reason for the deviation. This effect may be modelled 

with the BAM feature (cf. Section 3.2). However, for 

this work, the current results are considered good 

enough for further analysis.  

The results for the fine particles show that the 

pressure drop is under-predicted in all the cases. In a real 

system, the particles tend to agglomerate, and this 

increases the pressure drop in the system. This 

agglomeration effect may be the reason for the deviation 

as it is not modelled in this study. Still, the results are

considered good enough for further study.

4.3 Experimental results of binary particle

The pressure drop (∆𝑃12) results from fluidizing binary

particles were estimated in the same way as in Section

4.2. The results are shown in Figure 10.

 

 

Figure 10: Pressure drop profile for mixed particles 

The minimum fluidizing velocity (𝑈𝑚𝑓) could not be 

accurately determined as the disturbances started at the 

lowest velocity (0.01 m/s) in both cases of binary 

particle fluidization. A low minimum fluidizing velocity 

for a binary mixture may be expected for a large particle 

size ratio (Rao and Curtis, 2011). A large particle size 

ratio is present in this study, as the Sauter mean diameter 

of the fine cement raw meal is 5µm and that for the 

coarse sand is 226 µm. Sharp peaks in the pressure drop 

are observed when the binary particles are fluidized. 

One explanation for the sharp peaks is the phenomenon 

of entrapment. According to this phenomenon, if some 

of the fine particles in the top layer are entrapped by the 

coarse particles, at a sufficiently high gas velocity, the 

fines may gain enough momentum to break through the 

bed, causing pressure drop peaks (Rao and Curtis, 

2011). 

The primary outcome of this study is the fluidization 

conditions of the binary particles. The pressure drop 

fluctuations had a relatively high standard deviation in 

both cases of binary mixing. This observation may 

indicate good bubbling behavior. However, the visual 

observation showed a better bubbling behavior for the 

case with a 25%/75% fine/coarse mass ratio. This 

mixing ratio may be good for operating the fluidized bed 

calciner. However, additional studies on the segregation 

pattern should be done to determine if the fine cement 

raw meal particles may be removed easily from the 

binary mixture. 
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4.4 Simulation of binary particles 

A comparison of pressure drop readings in experiments 

and simulations is shown in Figure 11.  

  

Figure 11: Pressure drop profile comparison of 

experiment and simulations for mixed particles 

The deviations in the pressure drop profile may be 

due to the deviations in the pure component (discussed 

in Section 4.2). Additional deviations may be due to 

segregation effects in the mixed state. However, the 

pressure drop results are in the same range. Thus, the 

results may be useful for additional simulations of a full-

scale calciner. 

Simulation results are shown in Figure 12 and Figure 

13. The results are displayed at different superficial gas 

velocities (𝑈𝑜) after 30 seconds of simulation (system 

reached a pseudo-steady state). The fine particles are 

displayed in green color and coarse particles are 

displayed in red color. 

 

 

Figure 12: Simulation results from 25% fines at 

different superficial gas velocities (𝑼𝒐) (Green = Fines, 

Red = Coarse) 

 

Figure 13: Simulation results from 50% fines at 

different superficial gas velocities (𝑼𝒐) (Green = Fines, 

Red = Coarse) 

The snapshots of simulation results shows that the 

fine particle rises in the column as the superficial gas 

velocity is increased. At superficial gas velocity of 

around 0.25 m/s, the fine particles are entrained up to 

the total column length. The fine particles are further 

entrained outside the column at this gas velocity. These 

results may be useful while designing a full-scale 

calciner. 

5 Conclusion 

Fluidizing fine cement raw meal (fines) by mixing with 

sand (coarse) particles appears to be technically 

feasible. The standard deviation of the pressure 

fluctuation is a good measure to determine the 

fluidization conditions. The pure coarse particles had 

the best fluidizing quality, as expected, while the pure 

fine particles did not fluidize. For the binary mixtures,  

stable fluidization was observed with a superficial gas 

velocity higher than 0.25 m/s at fine/coarse mass ratios 

of 25%/75% and 50%/50%. 

Visually, the fluidization quality was better with a 

fine/coarse mass ratio of 25%/75%. This condition may 

be used to operate a fluidized bed calciner by mixing 

cement raw meal and inert coarse particles. 

Simulations were performed to replicate the results 

from the experiments. The results showed some 

deviations in pressure drop predictions. However, 

results were not too far off, so simulations may be 

applied to a scaled-up version of the calciner.  

In practice, some other factors such as segregation, 

separation efficiency, effect on capacity and energy with 

25 % fines, should be addressed in further studies. 

Considering these effects, an appropriate height should 

be selected to remove the fines from the top of the bed. 

Alternatively, a classifier (Jayarathna et. al., 2019) may 

be placed downstream to separate the fines and the 

coarse particles. These factors may be included in later 

studies of a scaled-up version of the calciner. 
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