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Abstract 

As a part of the new sustainable aluminum production 

process under study, alumina chlorination plays a 

crucial role. The relevant process is an exothermic 

reaction in a fluidized bed reactor. The solid alumina 

reacts with chlorine and carbon monoxide and produces 

aluminum chloride and carbon dioxide as the main 

products. Then carbon dioxide can be separated 

efficiently. The optimum temperature for the alumina 

chlorination is 700℃. The reactor’s temperature should 

be kept in the range of 650-850℃ (most preferably 

700℃) because below that temperature range, the 

reaction rate drops, and above that range, the alumina 

(which usually is γ-alumina) transfers to other alumina 

types, which is not desirable for the purpose.  

Extending other simulation studies by authors on 

alumina chlorination in an isothermal condition, the 

CPFD method has been utilized to thermal study and 

simulate the overall heat transfer of the system, 

including convective fluid to the wall, fluid to particle, 

and radiation heat transfer. Radial and axial heat transfer 

coefficient profiles at different levels show that almost 

all the heat should be transferred in the lower half of the 

reactor, making the design more challenging. At the 

steady-state, the range for the fluid temperature inside 

the reactor has been recorded 700-780℃. 

Keywords: Heat transfer, fluidized bed reactor, alumina 

chlorination, exothermic reaction, Barracuda, 
radiation, thermal simulation, CPFD simulation 

1 Introduction  

The Hall-Héroult process used almost exclusively in the 

aluminum industry suffers from relatively high heat loss 

from the electrolytic cells and increased CO2 emissions 

from the anodes, even though manufacturers have 

gradually improved their production processes (Kovács 

et al., 2020). In 2001, Jomar Thonstad, professor of 

Electrochemistry at the Norwegian university of science 

and technology (NTNU), and his colleagues, in their 

book (Thonstad, 2001), mentioned that “the Hall-

Héroult process remains the only modern method of 

producing aluminum today, having withstood many 

attempts to replace it. No other mechanism seems to be 

threatening it for the next twenty years or so,” and it has 

been 20 years now.  

Alternative aluminum processing strategies have 

been under intense investigation due to the 

comparatively high energy usage and carbon footprint 

associated with anode consumption (Thonstad, 2001). 

In continuation of this, in 1973, an innovative process 

was introduced by Alcoa Corporation, and it had several 

advantages compared to the commonly used method 

(Hall-Héroult) at that time (National Fuels and Energy 

Conservation Act, S. 2176, 1973). Alcoa's process is 

based on the chlorination of processed aluminum oxide 

in a fluidized bed. The chlorination process has the 

advantages of being more compact and operating at a 

lower temperature than the Hall-Héroult process, 

normally 700°C as well as less carbon footprint. 

During the last decades, fluidized bed reactors (FBR) 

have been used in a wide range of applications in the 

industry due to the inherited uniform thermal 

distribution through the reactor, high heat and mass 

transfer, and flexibility in operation in large-scale 

applications (Zhang & Wei, 2017). In a fluidized bed, 

solid particles are suspended by a stream of fluid that 

flows upward, causing the solid suspension to move 

fluidly (Alagha & Szentannai, 2020). Fluidized bed 

technology has become widely employed in power 

generation due to its superior mixing and heat transport 

characteristics (Basu, 2006; Scala, 2013), chemical 

(Kunii & Levenspiel, 1991; Yang, 2003), 

pharmaceutical industries (Almendros-Ibáñez et al., 

2019; Miller et al., 2018), etc.  

Heat transfer occurs either spontaneously or 

intentionally in many gas fluidized bed applications. 

Heat transfer may occur between the solid and gas 

phases, the two-phase mixture, a solid surface, or both 

(Yang, 2003). The fluidized chlorination of alumina, for 

example, is a process in which alumina particles are 

fluidized by an equimolar mixture of carbon monoxide 

and chlorine at 700 ℃. The exothermic chlorination of 

alumina at the particle surface raises particle 

temperature, which leads to natural heat transfer from 

the heated particles to the fluidizing gas mixture 

(Barahmand et al., 2021b). To keep the bed's overall 

energy balance (the reactor temperature should be kept 

around 700 ℃), heat must be transferred from the 

particle to the gas medium and then to a cooling surface, 
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such as heat exchanger tubes, reactor jacket, or any other 

cooling apparatus. 

In the FBR, several heat transfer mechanisms could be 

identified, such as fluid convection, solid particle 

conduction or convection, and radiation (Nauman, 

2001). Thermal diffusion (heat conduction), convection, 

and radiation are the three primary modes of heat 

transfer. These mechanisms may exist simultaneously, 

or one of them may predominate under particular 

circumstances (Fan & Zhu, 1998). These conduction 

and convection modes are similar to their fluid-based 

counterparts in terms of momentum transfer. Thermal 

radiation, a type of energy transport via electromagnetic 

waves, is regulated by a distinct set of principles and can 

even occur in a perfect vacuum. It should also be noted 

that due to the similarities of their governing equations, 

mass transfer and heat transfer (without radiation) may 

be compared. 

Intraparticle heat transport is dominated by 

conductive heat transfer. Conductive heat transfer is 

essential for fluid heat transfer at low Reynolds number 

flow conditions (Tsotsas, 2019). In addition to heat 

conduction, thermal convection enhances heat transfer 

from a thermal surface exposed to a flowing fluid 

(Garcia-Gutierrez et al., 2020). In a bubbling fluidized 

bed, the convective heat transfer mechanism occupies 

the total heat transfer flux (Qiu et al., 2016). Natural 

convection in a gas-solid system is generally negligible, 

even though thermal convection generally comprises 

forced and natural convection (Fan & Zhu, 1998). In a 

thermally radiative condition, absorption, reflection, 

refraction, and diffraction have happened for an element 

in the system.  Not only can the element transmit 

incoming radiative heat fluxes but also emits its 

radiative heat flux (Fan & Zhu, 1998). Gray bodies can 

represent most solid materials in gas-solid fluxes, 

including particles and pipe walls. The term scattering 

can describe several modes of radiative energy 

transmission (Filla et al., 1996). 

In thermal studies, solids not only alter the size as a 

result of pyrolysis, but the rates of reactions and fluid 

temperatures can also be affected by solid surface areas, 

solid material types, and discrete solid temperatures 

(Snider et al., 2011). The particle phase can be modeled 

in a variety of ways utilizing discrete computational 

particles or components. Only a small number of 

particles can be calculated using the direct numerical 

solution and Lattice Boltzmann computations. The 

CPFD approach to simulating a reactive thermal fluid-

solid flow is reported in the current manuscript. The 

multi-phase-particle-in-cell (MP-PIC) technique is used 

in the CPFD numerical methodology to calculate dense 

particle flows (Snider, 2001). The MP-PIC technique is 

a hybrid numerical approach that solves the fluid phase 

                                                 
1 This terms is positive when the heat leaves the control 

volume and includes all heat transport mechanisms 

with an Eulerian computational grid and models the 

solids with Lagrangian computational particles (Snider 

et al., 2011). 

The current simulation work aims to study heat 

transfer between reactive materials in an industrial FBR 

reactor (dedicated for alumina chlorination) and its wall. 

To maintain the pseudo-steady-state, the heat produced 

from exothermic reactions should be transferred outside 

the reactor (cooling). Further investigations are done on 

temperature gradient and its variations through the 

height of the reactor. 

2  Energy balance 

A flow reactor's thermal energy balance can be written 

in a reasonably general way as below, 

𝑑𝑈

𝑑𝑡
= �̇�𝑖 −  �̇�𝑒 + �̇�𝑓 + �̇�𝑉 + �̇�𝑟 + �̇�𝑇 (1) 

where, 
𝑑𝑈

𝑑𝑡
 is the accumulation of energy, �̇�𝑖 and  �̇�𝑒 are 

convective enthalpy of input and output streams, 

respectively, �̇�𝑟 is the heat generated by the reaction, �̇�𝑇 

is the heat transferred to the environment1 (radiation, 

convection, and conduction), �̇�𝑉 is added work 

associated with the volume change, and �̇�𝑓 ≥ 0 is the 

friction work.  

By neglecting volume and friction work, equation (1) 

can be simplified as,  

𝑑𝑈

𝑑𝑡
= �̇�𝑖 −  �̇�𝑒 − �̇�𝑟 − �̇�𝑇 (2) 

 

In thermodynamics, one of several energy expressions 

is enthalpy H, which simply is defined as (Lie, 2019), 

𝐻 ≜ 𝑈 + 𝑃𝑉 (3) 

 

Working on the left-hand side of equation (2) results, 

𝑈 = 𝐻 − 𝑃𝑉 ⇒
𝑑𝑈

𝑑𝑡
=

𝑑(𝐻 − 𝑃𝑉)

𝑑𝑡

=
𝑑𝐻

𝑑𝑡
− 𝑃

𝑑𝑉

𝑑𝑡
− 𝑉

𝑑𝑃

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
 

𝐻 = 𝑚�̂� ⇒
𝑑𝐻

𝑑𝑡
=

𝑑(𝑚�̂�)

𝑑𝑡
= 𝑚

𝑑�̂�

𝑑𝑡
+ �̂�

𝑑𝑚

𝑑𝑡
= 𝑚

𝑑�̂�

𝑑𝑡
 

 

𝑑𝑈

𝑑𝑡
=

𝑑

𝑑𝑡
(�̂�𝑉) (4) 

 

In the same manner, by simplification of the right-hand 

side, the thermal energy balance is turned to,  

𝑑

𝑑𝑡
(�̂�𝑉�̂�) = �̇�𝑖𝑛𝜌𝑖𝑛�̂�𝑖𝑛 − �̇�𝑜𝑢𝑡𝜌𝑜𝑢𝑡�̂�𝑜𝑢𝑡

+ �̂�𝐴𝑉∆�̂�𝑟+ �̇�𝑟 − �̇�𝑇 

(5) 

 

This is an integral balance that can be applied to the 

whole system. The enthalpies are defined relative to a 
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reference temperature (𝑇𝑟𝑒𝑓). The temperature would 

commonly be used to replace the enthalpy expressions. 

𝐻 = ∫ 𝐶𝑝

𝑇

𝑇𝑟𝑒𝑓

 (6) 

Where, 𝐶𝑝 is the average specific heat capacity for the 

entire reactant mixture. Taking the thermodynamics 

convenient into account, for exothermic reactions 

∆𝐻𝑟 < 0. The heat-generation expression refers to the 

net effect of all reactions where there are several 

reactions. As a consequence, the ∆𝐻𝑟𝑟 expression is an 

implicit summation of all 𝑚 potential reactions 

(Nauman, 2001): 

∆𝐻𝑟𝑟 = ∑ (∆𝐻𝑟)𝑖(𝑟)𝑖

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

= ∑(∆𝐻𝑟)𝑖(𝑟)𝑖

𝑚

𝑖=1

 (7) 

3 Heat Transfer Mechanisms 

Barracuda® can quantify temperature gradients 

within the model due to initial particle and fluid 

temperatures, boundary state temperatures, thermal 

walls, or chemical reactions. In the computational 

particle fluid dynamics (CPFD) simulation, the 

following mechanisms can be studied by Barracuda® 

(Barracuda User Manual, 2021): the convective fluid-

to-wall heat transfer, which includes lean-phase and 

dense-phase heat transfer, fluid-to-particle heat transfer, 

and radiation, including P-1 model for thermal radiation 

and Wall to particle radiation. 

3.1 Convective fluid-to-wall heat transfer  

The sum of the coefficients for a lean and dense phase 

in the fluidized bed is often used to indicate the effective 

heat transfer coefficients as below (Yang, 2003), 

 

ℎ𝑓𝑤 = ℎ𝑙 + 𝑓𝑑ℎ𝑑 (8) 

𝑓𝑑 = 1 − 𝑒−10(𝜃𝑝/𝜃𝑐𝑝) (9) 

where, hfw is the local fluid-wall heat transfer 

coefficient, hl is a combination of contributions from a 

lean gas phase heat transfer coefficient, θcp is the close 

pack value fraction, θp is the particle volume fraction at 

the wall, and a dense particle phase’s coefficient, hd. The 

fluid-to-wall heat transfer coefficient is weighted by the 

function fd , which is the fraction of contact time by the 

dense particle phase. The time fraction of dense phase 

contact, fd is a function of the particle volume fraction at 

the wall. 

For the heat transfer in a lean phase, the general form 

of heat transfer coefficient is, 

ℎ𝑙 = ((𝑐0𝑅𝑒𝐿
𝑛1𝑃𝑟𝑛2 + 𝑐1)

𝑘𝑓

𝐿
+ 𝑐2) (10) 

where, 𝑐0, 𝑐1, 𝑐2, 𝑛1, and 𝑛2 are adjustable model 

parameters, 𝑘𝑓 is the thermal conductivity of the 

fluid,  L is the cell length, and 𝑅𝑒𝐿 is the Reynolds 

number,  and 𝑃𝑟 is the Prandtl number (Bergman et al., 

2011). 

In these simulations, the following default lean phase 

heat transfer coefficient, based on the correlation of 

Douglas and Churchill (Yang, 2003), has been used. 

(c0 = 0.46,  c1 = 3.66,  c2 = 0.0,  n1 = 0.5,  and n2 = 0.33) 

 

In the dense phase, the general form of the heat transfer 

coefficient is as below,  

ℎ𝑑 = (𝑐0𝑅𝑒𝐿
𝑛1)

𝑘𝑓

𝑑𝑝
 (11) 

where, 𝑑𝑝 is the particle diameter.  

Similarly, the following default dense phase heat 

transfer coefficients (Yang, 2003) have been used in the 

simulation. 

(c0 = 0.525,  n1 = 0.75) 

3.2 Fluid-to-particle heat transfer 

The fluid-to-particle heat transfer coefficient is used to 

describe heat transmission between the fluid and particle 

phases.  

ℎ𝑙 = ((𝑐0𝑅𝑒𝑝
𝑛1𝑃𝑟0.33 + 𝑐1)

𝑘𝑓

𝑑𝑝
+ 𝑐2) (12) 

where, the Reynolds number and Prandtl number are 

defined as, 

𝑅𝑒𝐿 =
𝜌𝑓|𝑈𝑓 − 𝑈𝑝|𝑑𝑝

𝜇𝑓
      ,        𝑃𝑟 =

𝜇𝑓𝑐𝑝,𝑓

𝑘𝑓
 (13) 

where, 𝑈𝑓 is the fluid velocity, 𝑈𝑝 is the particle 

velocity, 𝜌𝑓 is the fluid density, 𝜇𝑓 is the fluid’s dynamic 

viscosity, and 𝑐𝑝,𝑓 is the fluid heat capacity. 

In a fluidized bed, when the Reynolds number is less 

than 20, the Nusselt number for a single sphere is 

typically higher than the particle Nusselt number. A 

single sphere in a quiescent fluid has a Nup = 2, 

representing the limit of conductive heat transfer. On the 

other hand, the bubbling phenomena cause the observed 

magnitude of Nup to be less than 2 in a fluidized bed. 

Low Reynolds numbers correspond to tiny particle beds 

(small 𝑑𝑝 and 𝑈𝑝) with entrained particles clouding the 

bubbles. This reduces the efficiency of particle-gas 

interaction below the assumed plug flow level, resulting 

in lower Nup values. As particle diameter rises (coarse 

particle beds), the "bubbles" become less cloudy, and 

gas-particle interaction improves. 

Barracuda® uses a correlation for fluid-to-particle heat 

transfer coefficient dependent on McAdams' correlation 

to capture fluid-to-particle heat transfer in a fluidized 

bed (Fan & Zhu, 1998). 

(c0 = 0.37,  c1 = 0.1,  c2 = 0.0,  and n1 = 0.6) 
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3.3 Radiation model 

3.3.1 P-1 radiation model: 

This model, which is the simplest case of the more 

general P-N model (ANSYS FLUENT User Guide, 

2021), addresses the heat transfer, where thermal 

radiation between particles, particles and fluid, particles 

and thermal walls, and fluid and thermal walls are taken 

into account. In the P-1 radiation model, the incident 

radiation transfer equation is:    

∇ ∙ (𝛤∇𝐺) + 4(𝑎𝑛2𝜎𝑇4 + 𝐸𝑝) − (𝑎 − 𝑎𝑝)𝐺 = 0  (14) 

where, 𝛤 is the diffuse radiation coefficient, 𝐺 is the 

incident radiation to be solved, 𝑎  is the absorption 

coefficient of the fluid mixture, 𝑛 is the refractive index 

of the fluid mixture, 𝜎 is the Stefan-Boltzmann constant, 

𝑇 is the fluid temperature in units of K, 𝐸𝑝 is equivalent 

emission of the particles, and 𝑎𝑝 is the equivalent 

particle absorption coefficient. 

By defining a thermal boundary condition, the 

Marshak boundary condition (Elshin et al., 2018) is used 

for the radiative heat flux at the thermal wall (𝑞𝑤) as the 

following: 

−𝑞𝑤 = 𝛤𝑤 (
𝜕𝐺

𝜕𝑛
) =

𝜀𝑤

2(2 − 𝜀𝑤)
(4𝜎𝑇𝑤

4 − 𝐺𝑤) (15) 

𝛤 =
1

3(𝑎 + 𝑎𝑝 + 𝜎𝑓 + 𝜎𝑝)
 (16) 

Where, 𝜀𝑤 is the emissivity of the thermal wall, 𝑤 is 

subscript for thermal wall, 𝜎𝑓 is equivalent fluid 

scattering coefficient, and 𝜎𝑝 is identical particle 

scattering factor.  

3.3.2 Particle to Wall Radiation: 

The model is only used under thermal wall boundary 

conditions and only considers radiation between a 

thermal wall and the particle phase and ignores radiative 

heat transfer between particles-walls or wall-fluid. The 

radiation between a thermal wall cell and nearby 

particles (𝑞𝑤𝑝) is calculated as (Barracuda User 

Manual, 2021), 

 

𝑞𝑤𝑝 = 𝐴𝑤𝐹𝑤𝑝𝜀𝑤𝑝𝜎 (𝑇𝑤
4 − �̅�𝑝

4
) 

(17) 

𝛤𝜀𝑤𝑝 = (
1

𝜀�̅�
+

1

𝜀𝑤
− 1) 

(18) 

where, 𝐴𝑤 is the area of the thermal wall, 𝐹𝑤𝑝 is a 

calculated view factor, 𝜀𝑤𝑝 is the effective emissivity 

between the wall and the particles in a cell, 𝑇𝑤 is the 

temperature of the wall, �̅�𝑝 is the mass-weighted average 

temperature of particles in a cell, and 𝜀�̅� is the volume-

weighted average of particle emissivity.  

                                                 
2 Based on (Barahmand et al., 2021b) with the average 

diameter of 98 microns. 

4 CPFD simulations 

The CPFD simulations are based on the particle size 

distribution and reaction kinetics (pure 𝛾-alumina 

chlorination) in an isothermal condition at 700℃ 

(Barahmand et al., 2021b). The geometry (cylindrical 

reactor with extended section) and other operational 

conditions (Barahmand et al., 2021a) for the pure 𝛾-

alumina chlorination.  In Barracuda®, the thermal wall 

of a model applies a user-defined temperature to the 

reactor wall. Energy can be transferred via the reactor 

wall depending on the temperature in between the wall 

and the fluid near the wall. The model has been 

simulated under the following operating condition 

(Table 1): 

Table 1. Reactor’s Operating Condition 

Number of cells in setup grid:  65000 

Bed aspect ratio (H/D) 1.8 

Wall temperature 973.15  K 

Reactor initial temperature: 973.15  K 

Outlet pressure: 1.5  bars 

Particle diameter: Distribution2  

Particle density (envelope): 2100  kg/m3 

Particle sphericity 0.7 

Initial bed void fraction 0.44 

Fluidization regime Bubbling 

 

The alumina chlorination reaction is a rapid and 

exothermic reaction that mainly occurs at the bottom of 

the reactor (Barahmand et al., 2021b). As a result, the 

generated heat will not be distributed homogeneously 

through the entire height of the particle bed. Therefore, 

the surface area of the reactor has been divided into 7 

different sections, as shown in Figure 1 

 

Figure 1. Reactor geometry and thermal-wall sections 
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5 Result and discussion 

Due to a lack of information about the reactor wall 

emissivity, the heat transfer has been studied in three 

different cases. The first case is in the absence of 

radiation (emissivity = 0). In the second simulation, 

maximum possible radiation (emissivity = 1) has been 

set into the calculations, and in the last step, a relatively 

high emissivity (0.85) has been used.  

5.1 Thermal model without radiation 

The thermal simulations need much more time to reach 

pseudo-steady-state. Figure 2 shows the average fluid 

temperature distribution inside the reactor (middle 

cross-section). It seems like the local temperature is 

somewhat evenly distributed at the bottom part of the 

bed. The temperature at the bottom of the reactor is the 

highest since the reaction conversion is very high in that 

area. 

 

 

Figure 2 Particle distribution (left), and temperature 

distribution (right) at steady-state.  

Figure 3 shows the heat transfer through the wall of the 

reactor. It seems it is necessary to transfer 1.56 MW of 

heat through the reactor wall at pseudo-steady-state to 

keep the reactor wall at 700℃. Theoretically, the heat 

duty transferred through the wall is not equally 

distributed. Table 2 gives the information about the heat 

transfer rate in different reactor sections in Figure 1. 

Starting from bottom to top, the sections are named from 

1 to 7. Most of the heat leaves the reactor through the 

bottom half due to high energy generation from the 

exothermic chlorination reaction in the specific area. 

Figure 4 illustrates the average fluid temperature in 

different sections of the reactor. Comparing figures 2 

and 4 confirms that the fluid temperature inside the 

reactor is almost gradually decreasing from bottom to 

top. The highest recorded temperature is 792℃, and the 

average fluid temperature leaving the system is about 

744℃. 

 

 

Figure 3. Overall heat transfer through the reactor wall 

 

Table 2 Heat transfer in different sections 

Section Heat Transfer 

(MW) 

(%) 

of total 

1 0.22 14.2 

2 0.41 26.2 

3 0.61 39 

4 0.26 16.6 

5 0.31 2 

6 0.016 1 

7 0.013 < 1 

 

 

Figure 4. The fluid average temperature profile in 

different heights 

Average heat duty in steady-state 
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5.2 Thermal model with radiation 

5.2.1 Radiation (emissivity = 1) 

By activating the P-1 model with maximum possible 

emissivity, the overall heat transfer through the reactor 

wall increases significantly. In this case, the overall heat 

transfer is 2 MW, almost 30 % higher than the heat 

transfer with no radiation (Figure 5). The portion of the 

convective mode is 29 % by 0.58 MW, and radiative 

heat transfer is 71 % by 1.4 MW (see Figure 6). In the 

current simulation, radiation is the dominant heat 

transfer mechanism.  

Table 3 gives the overall view of heat transfer in the 

different sections of the reactor. Convective heat 

transfer has not been observed at the three upper 

sections of the reactor. The average fluid temperature in 

the middle vertical cross-section of the reactor is given 

in Figure 7. The fluid temperature is considerably lower 

because of the higher heat transfer (compared to the case 

with no radiation). 

 

 

Figure 5 Reactor’s overall heat transfer with maximum 

radiative heat transfer.  

 

Figure 6. Convective and radiative heat transfer in the 

reactor (max emissivity) 

 

Table 3. Convective and radiative Heat transfer in different 

sections of the reactor 

 Convection Radiation 
Section Heat Transfer 

(kW) 

(%) 

 

Heat Transfer 

(MW) 

(%) 

 

1 92.4 16 264.8 19 

2 163 28 240.6 17 

3 224.9 39 266 19 

4 90.3 16 180.4 13 

5 6 1 192.5 14 

6 2.9 < 1 224.3 16 

7 2.1 ~0 46.1 3 
 

 

 

Figure 7. Particle distribution (right), and temperature 

distribution (left) in steady-state. 

 

Figure 8. The fluid average temperature profile in 

different heights 

Average heat duty in steady-state 
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Figure 8 illustrates the average fluid temperature in

different sections of the reactor. The reactor temperature

distribution can be divided mainly into three areas. The

temperature in the first and the last three sections are

almost constant. Nevertheless, in the middle section

(4th), the reactor experienced a 20 ℃ temperature drop

which can easily be observed in Figure 7. The average

fluid temperature in the outlet is 709 ℃ which is very

close to the desired temperature.

5.2.2 Radiation (emissivity = 0.85)

In Sections 5.1 and 5.2.1, the extreme modes for 

the radiation (emissivity 0 and 1) have been 

investigated. In the last step, the emissivity is set to 

0.85. The average overall heat transfer is 1.94 MW 

(Figure 9) which is 2.5 percent lower than the case 

with the maximum emissivity.
 

 

Figure 9. Reactor’s overall heat transfer with maximum 

radiative heat transfer. 

Table 4. Convective and radiative Heat transfer in different 

sections of the reactor 

 Convection Radiation 

Section Heat Transfer 

(KW) 

(%) 

 

Heat Transfer 

(MW) 

(%) 

 

1 879 15 241.4 18 

2 141.2 24 214.5 16 

3 229.6 39 242.1 18 

4 110.7 19 178.5 13 

5 8 1 204.3 15 

6 3.9 < 1 226.3 17 

7 2.9 < 1 46 3 

 

As expected, change in emissivity shows no effect on 

the convective heat transfer.  The radiative heat transfer 

has been dropped to 1.35 MW. As seen in Table 4, the 

portion on each heat transfer mechanism in the different 

sections is almost the same as before. The average 

Outlet temperature has been recorded at 711℃ in 

comparison with 709℃ in the previous case.  

To compare the heat duty calculated by the CPFD 

method, the reaction has been simulated in Aspen Plus®   

using the Gibbs reactor. A Gibbs reactor is a reactor that 

uses equilibrium processes to minimize the Gibbs free 

energy (Haydary, 2018). The Gibbs reactor simulation 

gave the 1.6 MW, which is slightly higher than the heat 

transfer in the absence of radiation and much lower than 

the cases with radiation. Several reasons may cause this 

variation, such as the difference in enthalpy value or 

heat formation in the libraries and different conditions 

in the outlet (because of the system's dynamics in CPFD 

simulation).  

The enthalpy equation is used to explain energy. 

Energy transport in the fluid phase and energy transfer 

from the solid phase is described by energy 

conservation. Using a turbulent Prandtl number 

approximation, the turbulent thermal diffusion is 

derived from eddy conductivity. For each gas species, a 

transport equation is solved. Particle chemistry transfers 

mass and energy between solid and fluid phases. The 

enthalpy for each gas species includes the heat of 

formation from breaking and establishing chemical 

bonds. 

6 Conclusion 

Design an exothermic reactor with an efficient heat 

transfer performance is probably the most critical task 

from an engineering perspective. The efficiency of the 

reaction is highly affected by temperature. The CPFD 

method is applied to an industrial alumina chlorination 

reactor. The alumina chlorination calculation is three-

dimensional, with chemistry in a large industrial hot 

reactor. The CPFD method provided a chlorination 

solution to 10000 seconds and took 47 days computation 

time on a single Intel Xeon E5 computer.  

The Gibbs reactor simulation in Aspen Plus® shows 

lower heat transfer than thermal analysis by CPFD 

simulation.  In CPFD simulation, at the steady-state, the 

reactor temperature range is 744-792℃ in the case with 

emissivity equal to 0, 709-728℃ for the case with the 

maximum emissivity, and 711-730℃ in the case with 

emissivity equal to 0.85. The possibility of having 

higher radiation by using the material with high 

emissivity helps to reach more heat transfer and lower 

temperature in the reactor. As a result, less cooling duty 

will be needed. For future studies, it is suggested to 

validate the model with other computational or 

experimental studies. Moreover, the mesh convergence 

test can help future studies find the best mesh size for 

the model.    
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