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Abstract  
Wastewater treatment plants (WWTPs) receive 

wastewater that carries a variety of pollutants, including 

antibiotics and antibiotic-resistant bacteria. The 

potential for horizontal gene transfer of resistance 

through conjugation – direct cell-to-cell transfer of 

genes carried on a plasmid – is high in WWTPs because 

of high cell density and residence time in bacterial flocs. 

To better understand how resistance spreads by growth 

and conjugation in such flocs, we propose an individual-

based model with a solver algorithm for dynamic 

simulation. Our model includes only the most relevant 

bacteria properties and functions such as movement, 

growth, division, gene transfer, and death. Simulation of 

our model suggests that resistance can increase by 

conjugation at the early growth stages of a floc and that 

the overall rate of gene transfer depends on floc size. 

Results indicate that our simple model can be a useful 

tool for examining how gene exchange and 

heterogeneity contribute to the spread of antibiotic 

resistance in bacterial flocs. 
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1 Introduction 

Antibiotics are important pharmaceuticals for the 

treatment of infectious bacterial diseases (Hellweger et 
al., 2011; Sabri et al., 2020). Overuse and misuse of 

antibiotics have led to the increased development of 

antibiotic resistance (AR) (Duarte et al., 2019). AR was 

estimated to be responsible for at least 700 thousand 

deaths in 2014 and is estimated to claim 10 million lives 

yearly by 2050, more than other major diseases such as 

diabetes and cancer (O’Neil, 2016). 

Biological wastewater treatment plants (WWTPs) are 

environments with high potential importance for the 

spread of AR (Uluseker et al., 2021). WWTPs contain 

rich microbial populations with very high cell densities 

(around 108 – 1010 cells per mL) supported by high 

nutrient availability (Jenkins and Wanner, 2014). Raw 

sewage originates from various sources and can contain 

large numbers of resistant bacteria (Hassoun-Kheir et 

al., 2020). Studies have shown that resistance levels stay 

high throughout WWTPs (Amarasiri et al., 2020; Gao et 
al., 2012). Most resistant bacteria are fortunately  

 

removed together with other microorganisms during the 

final settling and sedimentation stages; the 

concentration of resistant bacteria in the sludge, 

however, can be as high as in the inlet raw sewage (Gao 

et al., 2012). Resistant bacteria can proliferate in 

WWTPs, and they can spread their resistance genes to 

nonresistant bacteria through horizontal gene transfer 

(HGT). This is worrisome as resistance can spread from 

pathological bacteria that arrive with the wastewater to 

aquatic and soil bacteria that are well adapted to both the 

WWTP environment and to river and soil environments 

that receive WWTP effluents and biosolids. 

Bacterial conjugation is a natural process of plasmid 

transfer between bacteria. A bacterium that contains a 

plasmid with one or several resistance genes can by 

conjugation transfer a copy of this plasmid to other 

bacteria, but only to bacteria that are compatible with 

the plasmid and the biological conjugation process 

(Koraimann et al., 2004). Plasmids that can be shared 

through conjugation are called conjugative plasmids, 

and bacteria that can receive and transfer a conjugative 

plasmid are said to be competent. Such plasmids can 

carry antibiotic resistance genes (ARGs) and replicate in 

a wide range of host bacteria (Krone et al., 2007).  

In order to address the effect of bacterial growth and 

conjugation on the spread of AR in WWTP bacterial 

aggregates, we have designed an individual-based 

model (IbM) where each bacterium cell is a single and 

discrete entity that has its own internal state and that 

interacts only with its closest neighbours. Our model 

captures local heterogeneity and local interactions and 

can be used to simulate how resistance genes are 

transferred by conjugation within a bacterial floc. The 

IbM is constructed as a minimum model but includes 

key processes to capture the spread of ARGs.  

2 Modelling 

Individual bacteria are in the model placed in a bacteria 

position grid where each point in the grid corresponds 

to a position in the environment. There is also a substrate 

grid that is used to keep track of the concentration of the 

growth-limiting substrate, S, at each location and to 

model how substrate diffuses into the bacterial floc. 

Individual bacteria are described by their main 

processes: substrate uptake and cell growth, 
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reproduction, and cell death. Individual bacteria can 

interact with neighbours by conjugation of resistance 

plasmid and displacement (shoving), which happens as 

bacteria grows. The model is developed with a 

minimum of complexity to be suitable for simulating the 

spread of AR in a growing floc. It is implemented 

according to the Overview, Design and Details (ODD) 

standard protocol proposed by Grimm et al. (2006) and 

implemented in MATLAB. 

Each bacterium has the following state variables: - 

position P, the bacterium’s current position in the 

environment; - cell size X, the current dry mass of the 

bacterium; - resistance R, indicating whether the 

bacterium is resistant or not; - conjugation compatibility 

C, indicating whether the bacterium has the molecular 

machinery for horizontal gene exchange; - and 

remaining recovery time T, indicating the remaining 

recovery time after a conjugation event, i.e., the time 

before a donor or receiving bacterium again is capable 

of exchanging genetic material. 

Our algorithm for simulation of bacterial growth and 

resistance gene transfer starts with individual bacteria 

being placed randomly in a defined region within the 

environment. This region represents the bacterial floc. 

A selected number of the cells are initialized, some with 

and some without resistance. Resistant bacteria are 

defined as carriers of a resistance plasmid. The substrate 

grid is also initialized. The algorithm then starts 

simulating the temporal evolution of the floc by an outer 

loop where shoving of overlapping bacteria and 

substrate diffusion occurs. For each temporal iteration, 

an inner loop tracks through all the individual cells. The 

algorithm is summarized in the flow chart in Figure 1 

and model parameters are shown in Table 1. 

The algorithm is explained in detail in the following: 

 

Cell movement: Bacteria in the floc are considered 

non-motile, i.e., they do not move actively. 

Displacement of bacteria from shoving due to growth 

and division is implemented by a shoving mechanism 

based on Kreft et al. (2001). The bacteria are considered 

as hard spheres in a 2-dimensional plane. The radius of 

a bacterium is calculated as: 

𝑟 = √
3𝑋

4𝜋𝜌

3

 

(1) 

where X is the cell size (in dry mass) and ρ is the density 

of the bacterium. 

 

The overlap distances 𝑑𝑖
𝑗
 from bacterium i to 

bacterium j is then calculated by using the formula: 

 

Figure 1. Flow chart of the simulation algorithm. 

Division, gene exchange, shoving and death are 

probabilistic events that depend on the properties of the 

individual cell and its neighbours. See the main text for a 

detailed explanation of the different steps. 

 

𝑑𝑖
𝑗

 = 𝑘𝑟𝑖 + 𝑟𝑗 − ||𝑃𝑖 − 𝑃𝑗||
2

 (2) 

where 𝑃𝑖  and 𝑃𝑗 are the position coordinates of 

bacterium i and j respectively, and k is a constant that 

accounts for maximal bacterial density or as Kreft et al. 
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(2001) states, the minimum spacing. The shove vector 

for bacterium i is then calculated as: 

𝛥𝑃𝑖 = ∑

𝑗∈𝐺𝑖

𝑑𝑖
𝑗
 

𝑃𝑖 − 𝑃𝑗

||𝑃𝑖 − 𝑃𝑗||
2

 

(3) 

where 𝐺𝑖 is the set of bacteria that overlap with 

bacterium i, i.e., all bacterium j for which the overlap 

distance 𝑑𝑖
𝑗
  is positive. 

The maximum distance between bacteria that can 

have a positive overlap distance is (𝑘 + 1)𝑟𝑚𝑎𝑥. Since 

only positive overlap distance is needed in the shoving 

algorithm, all the potential members of 𝐺𝑖 is found by 

only checking bacteria localized at grid points in the 

bacteria location grid that have a distance less 

than 
(𝑘+1)𝑟𝑚𝑎𝑥

2
 away from the grid point containing 

bacterium i. The grid resolution is specified so that the 

8 connected neighbourhood grid points contain all 

potential members of 𝐺𝑖. 

 

Substrate diffusion: The substrate grid is initialized 

with a given substrate concentration at each point. The 

substrate is used during bacteria growth and a part of the 

bacteria dry mass is returned as a substrate when 

bacteria die. Therefore, the substrate concentration (in a 

location) is not constant, and the substrate will diffuse 

towards lower concentrations. A simple diffusion 

algorithm based on Kreft et al. (1998) is used where a 

2-dimensional filter DF is used to calculate the transfer 

of the substrate from each point in the grid to the 8 

adjacent points. 

𝐷𝐹 =  [
1 4 1
4 −20 4
1 4 1

] 
(4) 

 

The concentration at the border of the grid is kept 

constant and the substrate grid is updated according to: 

 

𝑆𝑔𝑟𝑖𝑑,𝑡+1 = 𝑆𝑔𝑟𝑖𝑑,𝑡 + 𝑑𝑘(𝐷𝐹 ∗ 𝑆𝑔𝑟𝑖𝑑,𝑡) (5) 

where 𝑑𝑘 is a diffusion constant that accounts for the 

diffusion coefficient and the length of each time step and 

∗ is the convolution operator. 

 

Bacteria functions and interactions: At every time 

step each cell performs the following: 

 

1. Substrate uptake: The bacterium takes up 

nutrients from the substrate grid corresponding to the 

bacterium's current position. The concentration in the 

substrate grid is immediately updated. The substrate 

uptake rate is determined by a saturable function that 

depends on substrate concentration and cell size 

according to Monod kinetics: 

𝑣 = 𝑉𝑚𝑎𝑥𝑋
𝑆

𝐾𝑚 + 𝑆
   

(6) 

where 𝑉𝑚𝑎𝑥  is the maximum uptake rate per unit of dry 

mass and 𝐾𝑚 is the half-saturation constant.  

2. Growth and maintenance: Nutrients taken up 

from the environment are used for cell growth with 

efficiency according to a yield constant Y. The 

maintenance rate, i.e., how much substrate is used for 

non-growth metabolism, is modelled to be linearly 

dependent on cell size. The total growth rate is given by: 

𝛥𝑋 = 𝑌𝑣 − 𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑋 (7) 

Resistant bacteria are modelled to have a 1% lower 

growth yield than non-resistant bacteria due to the 

metabolic burden of producing resistance enabling 

proteins (Gregory et al., 2008). The effect of the 

metabolic burden is that it reduces the growth rate and 

increases the generation time. The cell shrinks if the 

available nutrients are insufficient for growth. 

3. Dormancy and Death: If the cell size is below 

Xmin the cell is starved and becomes dormant – a state 

where growth and maintenance stop. At each time step, 

a dormant bacterium may die with probability Pdeath, in 

the algorithm determined by the generation of a random 

number.  

4. Division: If the cell size is above the normal 

size of a full-grown cell, Xmax, the cell divides. A 

neighbourhood position is randomly selected and the 

cell divides by displacing occupants of the neighbouring 

position. The cell divides into two daughter cells where 

both cells get 40% of the size of the mother cell, and the 

remaining 20% of the mother cell is divided randomly 

between the two daughter cells. This unequal size helps 

to disrupt synchronous growth in the model. If the 

mother cell is resistant there is a probability Ploss that 

resistance is not transferred to the daughter. Resistant 

bacteria are competent for conjugation and there is a 

chance 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡 that nonresistant bacteria become 

competent for conjugation during cell division or when 

they are added to the environment. 

5. Gene exchange: If the cell size reaches 

Xconjugation, which is 80% of full-grown size Xmax, and the 

cell is resistant it might spread its resistance to a 

competent nonresistant cell in its neighbourhood (Park 

et al., 2018). Plasmid transfer has been estimated to 

happen on average at a rate of 10-3 per individual cell-

to-cell interaction (Gregory et al., 2008). Each time step, 

each potential donor cell checks whether neighbourhood 

cells are competent and nonresistant. If they are, 

conjugation occurs with probability Pconjugation. Plasmid 

transfer to the receiving nonresistant bacterium happens 

instantaneously. Under the condition that conjugation 

occurs, there is a recovery time (𝑇) before the donor and 
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recipient cell can transfer a new plasmid (Gregory et al., 

2008). 

Table 1. Simulation parameters. References: a (Kreft et 

al., 1998), b (Kreft et al., 2001), c (Gregory et al., 2008), d 

(Park et al., 2018). The values for unreferenced parameters 

are arbitrarily decided under the condition that they are 

plausible compared to the value of other parameters and 

that they give a reasonable system response. All parameters 

are given in arbitrary units. 

Parameter description Parameter Value 

Grid size 500x500 

Xmin, minimum cell sizea 0.1 

Xmax, maximum cell sizea 0.5 

k, minimum spacingb 1.3 

𝐾𝑚, half-saturation 

constant 

0.01 

𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 

maintenance rate 

0.002 

Y, yield constanta 0.4 

Cost of resistance on 

growthc 

1%  

Plasmid transfer ratec 10-3 per interaction 

Xconjugation, cell size for 

conjugationd 

80% of Xmax 

3 Results 

We will here present some results from using our model 

to simulate how resistance spreads through conjugation 

and growth in a growing bacterial floc. Three different 

simulations have been implemented to illustrate how the 

two factors recovery time and probability for 

competence affect the spread of resistance.  

The first simulation describes a small floc that starts 

with equal amounts of ten resistant and ten competent 

nonresistant bacteria with parameters from Table 1 and 

a modest recovery time of 200 time steps. The 

probability for nonresistant bacteria to be competent is 

set to 20%. 

The second simulation is similar to the first one 

except for a longer recovery time of 300 time steps with 

a similar 20% probability for competence. This 

simulation is set up to illustrate the importance of 

recovery time on the spread of resistance in the floc. 

A final simulation is made to understand the specific 

effect of the probability for competence. The probability 

for nonresistant bacteria to be competent is set to 10% 

while keeping the recovery time similar to simulation 1, 

as 200 time steps.  

Note that the system parameters are set in arbitrary 

units. Our intention is to illustrate the function and 

qualitative behaviour of the model and not necessarily 

to show results that have a one-to-one relationship in 

specific biophysical units. Quantifying the model 

parameters with proper biophysical units would require 

experimental data and we will leave this for future 

development.  

 

3.1 Gene exchange and resistance 

For the first simulation, the floc is set up to initially 

contain ten resistant and ten nonresistant competent 

bacteria. The probability for a bacterium being 

competent, 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡, is set to 0.2 and the recovery 

time, T, is set to 200 time steps, which is higher than the 

typical division time. Figure 2 provides snapshots of 

floc development for resistant (red) and nonresistant 

bacteria (blue) and transconjugant bacteria (green) 

during simulation. In the early stages of floc 

development, conjugation occurs in most of the floc. At 

t=500 most of the floc has become resistant as shown in 

the population plot in the bottom right of Figure 2. 

Transconjugants, bacteria that have received a plasmid 

are marked green to express the frequency of 

conjugation in the floc. At the later stages of floc 

development (t > 1000) conjugation is limited and 

happens mainly in the intersection of resistant and 

nonresistant bacteria at the edge of the floc. This is 

because most of the bacteria inside the floc are already 

resistant and because nutrient limitations, illustrated by 

the background colour that changes from white to grey 

and black as the substrate concentration reduces, cause 

bacteria in the deeper part of the floc to become 

dormant. At t=1000 regions of nonresistant bacteria 

surrounded by resistant bacteria have emerged, 

primarily due to shoving. Moreover, transconjugant 

bacteria occur on the border of the protrusions. The 

increase in resistance is after t=1000 mostly from 

growth. At t=4000, conjugation stops playing any 

significant part since resistant and nonresistant bacteria 

form and grow on different protrusions. 

The population plot to the bottom right of Figure 2 

summarises the resistant and nonresistant bacteria 

population during the simulation. It is apparent that 

since the very beginning of the simulation, resistant 

bacteria population in the floc is higher than 

nonresistant bacteria. In this case, it is seen that the 

population of resistant bacteria increase even though the 

resistant cells have a higher metabolic burden and a 

reduced growth rate compared to nonresistant cells. 
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3.2 Effect of longer recovery time 

The second simulation is conducted to examine the 

effect of the recovery time on the spread of resistance. 

The recovery time, T, is increased to 300 time steps. 

Initial conditions and probability for competence are 

identical to the previous simulation, and ten resistant 

and ten nonresistant are placed in the middle of the 

environment at t=0. Figure 3 displays the snapshot 

results and the change in the bacteria population during 

the simulation. The results indicate that the relative 

bacteria populations are highly affected by the recovery 

time, T. As expected, increasing the recovery time 

decreases the resistant bacteria population in the floc.  

The effect of conjugation is again larger in the early 

growth stages of the floc up till about time step t=2000. 

In the later growth stages, resistant and nonresistant 

populations grow in more distinct protrusions at the 

edge of the floc but a much larger proportion of bacteria 

are nonresistant in this simulation than in the previous. 

The population plot in the bottom right of Figure 3 

reveals that resistant bacteria have a minor advantage 

and that their population increases faster than 

nonresistant when the overall population is small. As the 

size of the floc increases, the intersection where 

conjugation can occur between resistant and 

nonresistant bacteria becomes smaller compared to the 

intersection between bacteria and substrate rich media 

where most of the growth occurs. The resistant 

population is noticeably higher than the nonresistant at 

t=2000, demonstrating the contributing effect of 

conjugation. As the floc grows, conjugation loses its 

effectiveness and the nonresistant bacteria population 

eventually overtakes the population of the resistant 

bacteria. Moreover, it is observed that a longer recovery 

time also affects the relative population of 

transconjugants. In simulation 2 there are fewer 

transconjugants than simulation 1.  

 

3.3 Effect of lower probability for competence 

The third simulation is performed to examine the 

effect of the probability for competence on the spread of 

resistance. The probability for a bacterium being 

competent, 𝑃𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡, is reduced to 0.1 and the 

recovery time, T, is kept 200 time steps as in simulation 

1. Apart from this, simulation 3 uses the same initial 

Figure 2. Population plot (lower right) and snapshots of floc development (other panels) from simulation 1. Timestep and 

size of the viewed grid are shown above the panels. Resistant (red),  nonresistant bacteria (blue) and transconjugants (green). 

Substrate concentration is constant at the border of the nutrient grid and diffuses toward lower concentration, i.e., into the 

floc (grayscale, white is high concentration). Initially, at t=0 (not shown), ten resistant (red) and ten nonresistant bacteria are 

initialized in the middle of the environment. The probability of nonresistant bacteria being compatible is 20% while all 

resistant bacteria are competent. Conjugation recovery time is 200 time steps. At each time step, t, the simulation algorithm 

is run once. The rightmost snapshot of timestep 8000 (lower middle) shows a further zoomed in image of the floc shown in 

the snapshot to its left and illustrates how the resistant and nonresistant bacteria grow on separate protrusions. 
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conditions as in simulation 1, with ten resistant and ten 

nonresistant bacteria in the middle of the floc at t=0. The 

results of simulation 3 are shown in Figure 4, which 

shows the snapshot results and relative the population. 

The overall growth and shape of the floc are similar 

to simulation 1, but the nonresistant bacteria population 

is higher. Initially, conjugation plays a significant role 

and transconjugants spread in the floc. However, in the 

later stage at t=2000, the floc starts to have a shape with 

clear distinct protrusions and the relative amount of 

transconjugants decrease. 

The relative population plot in the bottom right of 

Figure 4 shows similarities with the results of simulation 

1. It is observed that a lower value of the probability of 

competence has an impact on the relative population of 

resistant bacteria. It introduces a drop in the resistant 

bacteria population. 

4 Discussion 

The persistence of resistance and the interactions 

between bacteria with and without resistance are of 

utmost concern in a wastewater environment. In this 

work, relevant information about bacterial behaviour 

and interactions, especially on conjugation, are put 

together into an IbM. The model is a structurally 

realistic test environment for examining the effect of 

conjugation and nutrient limited growth on the spread of 

resistance in a bacterial floc. The model presented here 

is simplified but is still able to show that population size 

and substrate availability have notable effects in the 

floc.  

A number of other mathematical models have been 

published to analyse bacterial interactions and improve 

our knowledge of the spread of antibiotic resistance 

(Birkegård et al., 2018) and other biological 

phenomena. More specifically, IbMs have been used to 

shed light on interactions on the micro-level and to 

produce more mechanistically accurate representations 

of microbial systems (Kreft et al., 2001; Hellweger et 

al., 2016). Moving aside from resistance spread, in 

particular, there have been attempts to make more 

general-purpose IbMs and solvers for bacterial systems, 

which in addition to basic functions like growth and 

substrate diffusion typically includes physical aspects 

like fluid flow, shear forces, and extracellular polymeric 

substance adhesion forces. Notable are iDynoMiCS 

(Lardon et al., 2011) and NUFEB (Li et al., 2019). Such 

IbMs may also include the possibility to have different 

Figure 3. Population plot (lower right) and snapshots of floc development (other panels) from simulation 2. Timestep and 

size of the viewed grid are shown above the panels. Resistant (red),  nonresistant bacteria (blue) and transconjugants (green). 

Substrate concentration is constant at the border of the nutrient grid and diffuses toward lower concentration, i.e., into the 

floc (grayscale, white is high concentration). Initially, at t=0 (not shown), ten resistant (red) and ten nonresistant bacteria are 

initialized in the middle of the environment. The probability of nonresistant bacteria being compatible is 20% while all 

resistant bacteria are competent. Conjugation recovery time is 300 time steps. At each time step, t, the simulation algorithm 

is run once. 
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species of bacteria in the system, e.g., species that are 

metabolically different like heterotrophic bacteria and 

autotrophic nitrifying bacteria. We will in the future 

examine the possibility to use such general-purpose 

bacterial IbMs for the task of modelling and simulating 

resistance spread, for example by including our model 

or parts of it into them, or by extending our model with 

functionality from them.  

5 Conclusion and future development 

In this paper, we have introduced an individual-based 

model for the spread of resistance in a bacterial floc 

through growth and horizontal gene transfer by 

conjugation. The attributes of each individual bacteria 

in the model includes metabolic processes such as 

substrate uptake and growth in addition to the processes 

of reproduction and conjugation. During the simulation, 

each bacterium in the model is updated according to an 

algorithm that considers the current state of the 

bacterium and its local neighbourhood. Simulations of 

the model show that the effect of conjugation varies as 

the floc grows. Conjugation can only occur between 

bacteria that are neighbours, and resistant and 

nonresistant bacteria seem to grow more and more on 

distinct protrusions as the floc and the overall 

population grows. Compared to population size, more 

conjugation occurs at the start of the simulation while it 

decreases in the later part of the simulation. 

We plan to in the future work on finding ways to 

parameterize our current model with biological data 

from suitable experiments. And then to work on 

extending the model’s functionality. 
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