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Abstract
The paper discusses how to use cumulative confirmed in-
fected numbers to find basic infection parameters. Next,
an extension of the SEIR model, the SEICUR model from
the literature (a renaming of the SEIRU model) is intro-
duced, with details of how to compute the full set of model
parameters, as well as the reproduction number R. A dis-
cussion is given of how the infection rate parameter re-
lates to mitigation policy and various natural variations.
Based on a simple mitigation model, an equivalent miti-
gation policy is found for Italy, Spain, and Norway. An
indication of how to use feedback control theory to de-
velop mitigation policy planning is given.
Keywords: COVID-19 models, deterministic models,
model fitting, control relevance

1 Introduction
1.1 Background
The COVID-191 pandemic spread in 2020 initially caused
fear, irrational hoarding of consumer goods, uncertainty
about future food supply, and economic depression, but
also spawned a renewed interest in epidemiology to un-
derstand how infections spread, and a massive effort in
development of virus medicine and vaccines. Policy mak-
ing and society saw challenges hardly faced before on how
to adapt to the development in real time.

Data for the number of COVID-19 infected and deaths
related to this, started to appear in January-February 2020.
Initially, the number of infected and deaths were highly
uncertain and underreported due to lack of reliable test
procedures. Due to many asymptomatically infected, the
true number of infected is still uncertain, while the num-
ber of deaths is more certain. Still, there is a discussion
on whether people die of COVID-19 or with COVID-19.
Relatively reliable sources suggest around 600 thousand
deaths in USA as of this writing2, while some report more
than 900 thousand deaths in USA based on some estimate
of underreporting3.

A number of COVID-19 models have been developed
since March 2020; many of them are vague on how to in-

1COVID-19 is the COrona VIrus Disease originating in 2019. The
World Health Organization and Wikipedia.com both appear to write
COVID-19 in all caps.

2https://www.worldometers.info/coronavirus/,
https://coronavirus.jhu.edu/

3https://covid19.healthdata.org/united-states-of-
america?view=cumulative-deaths&tab=trend

tegrate data with the models, few discuss mitigation pol-
icy (hand cleaning, social distancing, etc.), how to design
such policy under model uncertainty, and the effects of
virus mutation and vaccination.

1.2 Previous work
Classical epidemiology models were developed in the
decade following the “Spanish Flu”. A renewed public in-
terest in epidemic models started with the AIDS/HIV epi-
demic some decades ago; these models have been used to
study other infectious diseases, e.g., (Brauer et al., 2019).
(Lie, 2021) gives a brief overview of such general models
from a process engineering point of view.

(Zlojutro et al., 2019) give a general framework, pre
COVID-19, for border control to mitigate global out-
breaks, and include stochastic models per country, with
transport between countries by airlines. The IHME
COVID-19 Forecasting Team4 give a general overview of
their model in (Reiner et al., 2021)5. An early study by
Imperial College London6 convinced the government in
USA to take the epidemic more seriously. Many models
have been provided on-line in web pages. A review of
COVID-19 models is given by (Rahimi et al., 2021).

It is difficult to find models that are described com-
pletely, with model parameters. One such model is that
of (López and Rodó, 2020), giving parameters for var-
ious regions in Spain. The SEIRU and SIRU models,
(Liu et al., 2020b,a,c), are relatively; symbol R denotes
reported cases instead of the conventional use of R as re-
covered. These SEIRU class models are macro models
for each country, and have the important advantage over
other models that the “reported” class equals the number
of reported infected. Yet another model is that used by the
Public Health Institute in Norway, (Øyvann, 2020), and
probably several other centers for disease control (CDC)
in Europe. In Norway, this model is posed for each mu-
nicipality (possibly also for certain suburbs), and includes
migration between each compartment — estimated from
anonymized mobile phone locations.

A key parameter in all models is the infection rate. The
infection rate is a problematic quantity which varies with
natural phenomena and season, as well as mitigation pol-

4The Institute for Health Metrics and Evaluation (IHME) is an inde-
pendent global health research center at the University of Washington

5https://covid19.healthdata.org/united-states-of-
america?view=cumulative-deaths&tab=trend

6https://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/covid-19/covid-19-planning-tools/
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Figure 1. Cumulative number of confirmed infected in Italy vs.
time (darkseagreen; left ordinate axis), and cumulative number
of dead (grey; right ordinate axis).

icy and occurrence of mutations.

1.3 Scope

In Section 2, some available data are discussed, and basic
model parameters are found. The SEICUR model is intro-
duced (recasting of the SEIRU model), with procedures
for finding model parameters. This model is constrasted
to the Public Health Institute (PHI) of Norway. The in-
fection rate parameter is related to mitigation policy, and
expressions for reproduction number is given. In Section
3, the SEICUR model is fitted to data for Italy, Spain, and
Norway. In Section 4, the results are discussed, and some
conclusions are drawn.

All computations in the paper are car-
ried out using language Julia, with packages
DifferentialEquations.jl, (Rackauckas and
Nie, 2017a), (Rackauckas and Nie, 2017b), (Rackauckas
and Nie, 2018), LsqFit.jl for initial curve fitting,
BlackBoxOptim.jl for equivalent mitigation policy
fitting, and Plots.jl for plotting results.

2 Materials and Methods

2.1 COVID-19 data

Web page https://github.com/octonion
/COVID-19, at folder csse_covid_19_data,
subfolder csse_covid_19_time_series, file
time_series_covid19_confirmed_global.csv
provides daily updates of globally confirmed infected.
Pre-treatment is required: some countries give regional
data; others total data for the country. Here, we will
focus on models for Norway, Italy, and Spain. Figure 1
shows cumulative number of infected and dead in Italy.
Although it is possible to also model the rate of deaths,
this is not done in this paper.

2.2 Initial evolution of C
Form of initial evolution Let C denote the number of
cumulative confirmed infected, which can be expressed as

dC
dt

= ϕ (1)

where ϕ is the rate at which people are confirmed in-
fected. The actual expression for ϕ depends on the in-
fection model. In the initial phase of an epidemic starting
from the disease-free case, the rate at which people be-
come confirmed infected increases exponentially

ϕ (t) = ϕ0 exp(λ · (t− t0)) ,

with λ > 0. Let ∆t , t− t0, ∆C(∆t) , C(t)−C(t0), and
χ0 ,

ϕ0
λ

, it follows that

∆C(∆t) = χ0 (exp(λ ·∆t)−1) . (2)

Parameters λ and ϕ0 from time series of C Assuming
that time series data for ∆C(∆t) are known, we can tune
χ0 and λ to fit ∆C(∆t) to a function

∆C(∆t) = χ0 (exp(λ ·∆t)−1)

where we need to choose t0, store the corresponding
C(t0) = C0. Finally, we find ϕ0 from ϕ0 = λ ·χ0.

Parameters λ and ϕ0 from C in two data points If C
is known in two time instances t0 and t1, the slope of C is
known at t0, ∆t = t1− t0, and the cumulative number of
confirmed infected is growing,

α ,
∆C/∆t
dC/dt|0

> 1,

it can be shown that λ is given by

λ =−
1
α
+W−1

(
− 1

α
exp
(
− 1

α

))
∆t

, (3)

where W−1 (·) is the lower branch of the Lambert W func-
tion.

With λ computed from Eq. 3, we find ϕ0 as

ϕ0 = λ ·χ0 =
dC
dt

∣∣∣∣
0
. (4)

The accuracy of this method of computing ϕ0 and λ

from two data points depends on how accuratly dC
dt

∣∣
0 can

be found.

Parameters and initial values for Italy Data for Italy
for the 9d period February 23 – March 3, 2020 indicates
relatively exponential growth for ϕ , leading to a good fit
for C(t), Figure 2.

The following procedures are used to estimate λ and
ϕ0:
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Figure 2. Fit of C for Italy in the period February 23 – March 3,
2020.

Method 1 Fitting ∆C(∆t) = χ0 (exp(λ ·∆t)−1) to the
data C. Computing ϕ0 from ϕ0 = λ ·χ0.

Method 2 Using the Lambert W approach, Eq. 3, to
find λ , and next finding dC

dt

∣∣
0 found from fitting

∆C(∆t) = χ0 (exp(λ ·∆t)−1), and computing ϕ0
according to Eq. 4 as ϕ0 =

dC
dt

∣∣
0.

Method 3 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 ≈

C(t1)−C(t0)
t1−t0

where t1 = t0 +1 and t0 is Febru-
ary 23, 2020; ϕ0 =

dC
dt

∣∣
0.

Method 4 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 found by fitting a 3rd order polynomial to C and

computing the initial derivative of C; ϕ0 =
dC
dt

∣∣
0.

Method 5 Using the Lambert W approach to find λ with
dC
dt

∣∣
0 found by fitting a 2nd order polynomial to logC

and computing the initial derivative of C; ϕ0 =
dC
dt

∣∣
0.

The results show that Methods 1, 2, 3, and 5 give relatively
similar results, while Method 4 gives a rather different re-
sult. The reason is that polynomial fit to C gives a poor
estimate of the initial derivative. Also for other countries,
Method 1 appears to give the most reliable results, fol-
lowed by Method 2. Here, we report the parameters from
Method 1.

Summary parameters and initial values Table 1 gives
a summary of fitted parameters t0, t1, C0, ϕ0, and λ for
Italy, Spain, and Norway, based on Method 1.

2.3 SEICUR model
2.3.1 Reaction mechanism
An SEIR model with the infected I population extended
to (I,C,U) was proposed for COVID-19 in (Liu et al.,
2020b)7, Figure 3.

The proposed mechanism implies that susceptibles

7The reference uses symbols (I,R,U); here, R (“registered”) has
been changed to C (“confirmed”) to observe the classic meaning of R as
“recovered”)

Figure 3. Flow of SEICUR reactions.

S are infected by some “pre-infected” I and the non-
quarantined unconfirmed U leading to the exposed phase
E, which is infected but not yet infectious. These exposed
E then are converted to the “pre-infected” I class, which
then either become more serious cases and are confirmed
infected C, or stay as unconfirmed U. Finally, the con-
firmed infected and the unconfirmed end up in the recov-
ered population R (which includes those who die). We
will refer to this model as the SEICUR model.

The following mechanism describes the reactions:

Ei :S I+U→
ki

E, ri = ki
(
Ǐ +Ǔ

)
Š

Ee :E→ke I, re = keĚ

Ec :I→kc C, rc = kcǏ

Eu :I→ku U, ru = kuǏ

Ecr :C→kr R, rcr = krČ

Eur :U→kr R, rur = krǓ .

We introduce

kcu = kc + ku

kc = ηkcu.

Thus, specifying kcu and η , we can find

kc = ηkcu

ku = (1−η)kcu.

The model assumes that the total population is fixed,
and that a preliminary fitting to find φ0 and λ has been
carried out, Table 1. In the model fitting, the cumulative
number of confirmed infected are used as observation y,
i.e.,

y(t) = C(t)

where
dC
dt

= kcI

with C(t0) assumed known. Thus, ϕ = kcI in Eq. 1.
In the initial phase of infection spread before confirmed

cases, it can be questioned whether members of the C class
quarantine. Thus, one could consider that also members
of compartment C participate in the infection. We will
neglect this possibility here.
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Table 1. Values for t0, t1, C0, ϕ0 and λ for some countries. Parenthesis after dates t0 and t1 indicates the element number in the
times series for the data. Population size N taken from https://www.worldometers.info/coronavirus/ ca. April
2020.

Country t0 t1 C0 ϕ0 λ N
Italy 2020-02-23 (33) 2020-03-14 (52) 155 112 0.178 60443857
Spain 2020-02-24 (34) 2020-03-13 (51) 2 6.09 0.281 46758424
Norway 2020-02-27 (37) 2020-03-14 (52) 1 2.73 0.318 5429635

2.3.2 Approximate initial response
With the initial number of susceptibles S (t0) having a
value close to the total population N, S (t0)≈ N, and S (t0)
being more or less constant in the first phase of the epi-
demic, the dynamic model can be approximated with a
linear model with X = (S,E, I,C,U,R) for “small” (t− t0)
,

dX
dt
≈MX .

Matrix M has two zero columns, thus has two eigenvalues
in the origin; these reflect the approximate pure integrator
of S and the true pure integrator for R. It thus suffices
to consider subsystem X ′ = (E, I,C,U) when considering
infection growth:

dX ′

dt
=


−ke ki 0 ki
ke −kcu 0 0
0 kc −kr 0
0 ku 0 −kr


︸ ︷︷ ︸

M′

X ′. (5)

The structure of the system causes the single, posi-
tive eigenvalue λ of M′ to dominate the dynamics during
growth, with solutions X ′i (t) for the elements of X ′:

X ′i (t) = exp(λ (t− t0))X ′i,0. (6)

2.3.3 Parameters and initial states
Parameters ϕ and λ are as found in Section 2.2, where
ϕ = kcI for the SEICUR model.

Assuming that kcu, η , ke, and kr are known, and

kc = ηkcu (7)
ku = kcu− kc, (8)

I0 can be found from kcI0 = ϕ0 and known kc,

I0 =
ϕ0

kc
. (9)

Inserting the assumed solutions of Eq. 6 into the linearized
differential equation Eq. 5 while cancelling the common
term exp(λ (t− t0)), this leads to:

λE0 ≈ ki (I0 +U0)− keE0 (10)
λ I0 ≈ keE0− kcuI0 (11)

λC0 ≈ kcI0− krC0 (12)
λU0 ≈ kuI0− krU0. (13)

The three last of these, Eqs. 11–13 can be solved wrt. E0,
C0, and U0 to give

E0 =
λ + kcu

ke
I0 (14)

C0 =
kcI0

λ + kr
(15)

U0 =
kuI0

λ + kr
. (16)

The first one, Eq. 10, can be solved wrt. ki to give

ki =
(λ + ke)E0

I0 +U0
. (17)

By assuming zero recovered, R0 = 0, and known popula-
tion N, we can compute the initial value of S:

S0 = N−E0− I0−C0−U0−R0. (18)

2.3.4 Reproduction number

Using the Next-Generation Approach, (Lie, 2021), write
M′ = F−V . Making V lower triangular,

M′ =


0 ki 0 ki
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

=F

−


ke 0 0 0
−ke kcu 0 0

0 −kc kr 0
0 −ku 0 kr


︸ ︷︷ ︸

=V

,

(19)
this gives the simplest Next-Generation Matrix; here, both
F and V−1 are positive matrices. The Next-Generation
Matrix N is

N = FV−1

⇓

N =


ki

kcu

(
1+ ku

kr

)
ki

kcu

(
1+ ku

kr

)
0 ki

kr

0 0 0 0
0 0 0 0
0 0 0 0

 .

N has 3 eigenvalues in the origin, and one positive eigen-
value, which is the spectral radius:

ρ (N) =
ki

kcu

(
1+

ku

kr

)
=

ki

kr

(
1−η +

kr

kcu

)
.
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Figure 4. Flow of SEPIAR reactions.

We choose the following expression for R:

R,
ki

kr

(
1−η +

kr

kcu

)
, (20)

which is the same as proposed in (Liu et al., 2020a).
(Sanche et al., 2020) cite initial estimates of R0 for

COVID-19 to be in the range [2.2,2.7].This number varies
with location and time (mutations). The Delta mutant re-
portedly has R0=6,8 or perhaps even up to 8.

2.4 The Norwegian PHI model
The Publich Health Institute of Norway operates with
what can be termed the SEPIAR model, Figure 4.

Here, P is a pre-symptomatic infectious stage, I is the
symptomatic, infectious stage, and A is an asymptomatic
yet slightly infectious stage. This is essentially a slightly
extended SEIR model where I is (P, I, A). Numbers are
provided for the various reaction constants.

The key difficulty with this model is that it does not
directly correlate confirmed cases C to the states; in Fig-
ure 4, it is indicated that dC

dt = ckpP, but constant c is un-
known.

2.5 Variation in infection rate
The infection rate ki is uncertain, and will also vary due
to:

1. Mitigation effects: (a) Hygiene, (b) Social distanc-
ing, (c) Use of face mask, (d) Quarantining, (e) Clos-
ing spaces with loud talk = reducing spreading by
saliva/aerosols.

2. Meteorological effects: (a) Increased humidity
causes aeorosols/saliva droplets to travel shorter, (b)
Stronger solar irradiation/higher temperature kills
virus faster; (Wu et al., 2020).

3. Health + sociology: (a) Age/co-morbidity: old peo-
ple/with co-morbidity are more affected by COVID-
19, (b) Genetic effects: blood type, etc. may influ-
ence infection rate, (c) Immune system status, (d)
Life/behavioral patterns.

4. Mutations.
8Dr. Tim Spector: https://youtu.be/OHBua3aXQ7c

Figure 5. Social distancing (teal color, left ordinate)
and mask (gold color, right ordinate) use in Italy, accord-
ing to model of https://covid19.healthdata.org
/global?view=total-deaths&tab=trend. Screen
capture data converted to time series using WebPlotDigitizer,
https://automeris.io/WebPlotDigitizer/.

Ideally, vaccination does not change the infection rate.9

Instead, vaccination reduces the number of people suscep-
tible to infection, see expression for infection rate ri in
Section 2.3.1.

2.6 Mitigation
Mitigation policies utilize effects that reduce infection
rate. Typical examples are hygiene, social distancing, face
mask use, quarantining, etc. The mitigation policy con-
sists of recommendations or enforcing of law from the
government, denoted u(t), and this leads to a response
from the public, denoted x(t). For a better description,
we might also include seasonal quantities (humidity, etc.),
virus mutation, etc., as a disturbance w(t) to a description.

Figure 5 proposes response in social diatancing and
face mask use in Italy in the first 6 months of the COVID-
19 pandemic. It is not clear whether these response data
are based on actual observations, or based on some vague
estimates.

A more formal description of how the mitigation policy
u and disturbance variable w with response x transforms
itself into an infection rate ki, would be

dx
dt

= f (x,u,w) (21)

ki = g(x,u) . (22)

Here, x is some state which describes the dynamics of the
change of ki, and may include people’s inertia towards
taking measures into use, and the tendency that people
get tired of the measures and want to get back to normal
life. The model with f (x,u,w) and g(x,u) could be found
through some system identification technique when u, to
some degree w, and ki are known.

9...assuming that vaccinated are immune — experience has shown
some cases of breahthrough infection of vaccinated.
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In principle, we could add outputs in addition to ki, such
as social distancing and mask use as in Figure 5, or other
quantities such as humidity, etc.: this would help to give a
more accurate mitigation model.

As an alternative to using system identification to fit
a model from known mitigation policy u and disturbance
w to known outputs, we could find some equivalent mit-
igation policy ufm by postulating a fixed model structure,
e.g.,

dx
dt

=
1

Tm
(ufm− x) (23)

ki = k0
i x, (24)

and compute which input sequence ufm gives a good
model fit to confirmed cases. Here, Tm is the mitigation
time constant, typically chosen to be 7–10d. It follows
that such an equivalent mitigation policy ufm will include
seasonal variations in infection rate, as well as the effect
of virus mutation, etc. In other words, by comparing an
equivalent mitigation policy ufm from two different time
instances, or in two different countries, we can not directly
related ufm to a specific level of social distancing, mask
use, etc.: a value of ufm = 0.5 in June 2020 could imply a
different level of social activity than a level of ufm = 0.5
in February 2021.

In the normal, pre COVID-19 situation with ufm = 1, x
will asymptotically approach x = 1, and ki → k0

i . As ufm
becomes smaller and smaller due to a low social contact
mitigation policy, x will asymptotically approach a smaller
and smaller value until it reaches value x = 0 for zero so-
cial contact. For that case, ki → 0, which means that the
reaction rate ∝ ki approaches zero. In the work of (Liu
et al., 2020c), etc., the assumption of x→ 0 is assumed,
which is unrealistic. In a realistic mitigation effect, we
need to take into account a time varying mitigation policy
ufm.

3 Model Fitting
3.1 Initial evolution
Simulation of the initial (unmitigated) case of Italy using
the SEICUR model is depicted in Figure 6.

As Figure 6 shows, the initial model reponse in C fits the
data Cd quite well, which should be expected: the model
parameters were found by fitting the model to the initial
data.

Based on the initial fitting, this gives a basic reproduc-
tion number of R0 = 3.2 for Italy. Similar numbers for
Spain and Norway are found to be R0 = 4.7 and R0 = 5.4,
respectively.

3.2 Fitted mitigation policy
3.2.1 Case Norway

It is possible to propose a “fitted” mitigation policy ufm
such that good correspondence model and confirmed in-

Figure 6. Initial (unmitigated) evolution according to the SEI-
CUR model for Italy.

Figure 7. Fitted mitigation policy tuned to SEICUR model for
Norway.

fection cases is achieved. The fitted policy is depicted in
Figure 7.

The resulting SEICUR model simulation with compar-
ison to cumulative confirmed infections is shown in Fig-
ure 8. It may also be instructive to compare the smoothed
7-day avareage dC

dt

∣∣
smooth with kcI, Figure 9. As seen, this

gives very good model fit in C, and decent fit in dC
dt

∣∣
smooth.

An important comment is that vaccination started in
Norway (and in Europe) in early 2021. In the above fitting,
vaccination has not been taken into account, and thus the
equivalent mitigation policy of Figure 7 and subsequent
figures for Italy and Spain includes the effect of vaccina-
tion. If vaccination has had an important role for avoid-
ing infection spread, including vaccination in the model
should have lead to a more relaxed mitigation policy.

3.2.2 Case: Italy

The fitted policy is depicted in Figure 10.
The resulting SEICUR model simulation with compar-

ison to cumulative confirmed infections is shown in Fig-
ure 11.
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Figure 8. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 7.

Figure 9. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 7.

Figure 10. Fitted mitigation policy tuned to SEICUR model for
Italy.

Figure 11. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 10.

Figure 12. Fitted mitigation policy tuned to SEICUR model for
Spain.

3.2.3 Case: Spain

The fitted policy is depicted in Figure 12.
The resulting SEICUR model simulation with compar-

ison to cumulative confirmed infections is shown in Fig-
ure 13.

4 Discussion and conclusions
An overview has been given of a specific COVID-19
model of (Liu et al., 2020a), here denoted the SEICUR
model. The minor advantage of this model over the Nor-
wegian Public Health Institute model is related to the lat-
ter’s lack of specifying how states related to confirmed
cases. A number of methods to fit basic parameters ϕ0
and λ to cumulative confirmed cases is given. Next, with
a given model structure and some predetermined param-
eters from clinical data, a discussion on how to find the
remaining model parameters is given, including k0

i , from
ϕ0 and λ . Simulation of the model in an initial phase con-
firms that the model fit is adequate. An original contribu-
tion of the paper is the generalization of the initial model
fit Eq. 2 to be independent of the model. Another contri-
bution is the use of the Lambert W approach to estimate
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Figure 13. SEICUR model simulation with fitted mitigation pol-
icy as in Figure 12.

parameters λ and ϕ0. These initial data have been fitted
for Norway, and re-fitted for Italy and Spain. Also, the
procedure of finding model-dependent parameters (ki) and
initial states (I0, E0, C0, E0) has been streamlined com-
pared to the original papers. A detailed derivation of the
reproduction model is given.

For extended periods of time after the initial phase,
mitigation policy, seasonal changes, and virus mutation
makes it necessary to add some modification to the infec-
tion rate constant ki. Here, infection rate constant modi-
fication is done via an equivalent mitigation policy which
is found by fitting the model to data for cumulative con-
firmed cases. The result is a very good fit. The results also
indicate that the fit to the (averaged) daily new confirmed
cases is less good, which should be expected: using cu-
mulative data always smooths the information.

The formulation of the effect of a fitted mitigation pol-
icy on the infection rate constant is new, and the actual fit-
ting of this policy for countries Norway, Italy, and Spain is
new. The fitted mitigation policy at the current time could
be used in conjunction with model prediction over a fu-
ture horizon to design a feedback controller which could
compute an advice on future mitigation policy, e.g., using
Model Predictive Control. Because of the uncertainty in
the computed equivalent mitigation policy u due to sea-
sonal variations, etc., such a controller will be prone to a
certain level of uncertainty.
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