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Abstract

The present work is aimed at (1) developing
a search machine adapted to the large DReaM
corpus of linguistic descriptive literature and
(2) getting insights into how a data-driven
ontology of linguistic terminology might be
built. Starting from close to 20,000 text doc-
uments from the literature of language descrip-
tions, from documents either born digitally or
scanned and OCR’d, we extract keywords and
pass them through a pruning pipeline where
mainly keywords that can be considered as be-
longing to linguistic terminology survive. Sub-
sequently we quantify relations among those
terms using Normalized Pointwise Mutual In-
formation (NPMI) and use the resulting mea-
sures, in conjunction with the Google Page
Rank (GPR), to build networks of linguistic
terms.

1 Introduction

Linguistics is a discipline rich in terminology. Ter-
minology specific to this domain is needed ev-
erywhere from the fine description of individual
speech sounds over the categorization of differ-
ent syntactic constructions to features of language
use, and the abundance of terminology stemming
from the empirical nature of inquiry itself is com-
pounded by the excess of theoretical approaches,
each of which tends to develop its own terminology.
Thus, there is no dearth of handbooks of linguis-
tic terms, but they only provide selective glimpses
of the vocabulary coming into play when linguists
write about languages. Here we take a data-driven
(corpus-based) approach to the study of linguistic
terminology using a set of 19,761 texts in English
that belong to the DReaM corpus of linguistic lit-
erature (Virk et al., 2020). These texts consists
of full grammars, partial descriptions of certain
features, comparative studies, etc. That is, works
that describe one or more features of the world’s

languages. According to the most recent count it
spans 4,527 languages (Hammarström et al., 2021).
It is important to emphasize that the corpus gener-
ally does not include purely theoretical literature.
Thus, we are unlikely to come across some term
that a theoretician has proposed if its actual usage
in descriptions is rare.

This paper has two foci, where the first (1) is
the pipeline immediately preceding the harvest of
linguistic terms and the second (2) is the analy-
sis of relationships among those terms. As for
the first focus (1), we exclude a discussion of all
the work that has gone into assembling the cor-
pus, preparing metadata, and running documents
through OCR. Instead, we focus on the pipeline
for extracting linguistically relevant terms. This
pipeline will be presented only summarily, but all
steps, both trivial and less trivial ones, will be listed.
The second focus (2) is on the relationships among
terms. Mapping the relationships between these
terms serves two purposes. First, (2a), the on-
line DReaM corpus1 currently allows for string
searches in the available texts. We would like to
enhance this functionality with an option to retrieve
search results not only for a specific term but also
related terms. For instance, in the procedure to be
explained below, we find empirically that the term
direct object is closely related to indirect object,
and relative clause is closely related to head noun.
A user should be given the option of choosing to
include such related terms in a search. Secondly
(2b), we want to analyze the network or networks
constituted by related terms. A central question
here is whether the network(s) can somehow lay
the ground for an ontology of linguistic terms.

1https://spraakbanken.gu.se/korp/?mode=dream?lang=en



2 Related work

This work pertains to the fields of terminology ex-
traction and automated domain ontology construc-
tion. Although the literature in these areas is rich
(Medelyan et al., 2013; Qiu et al., 2018; Heylen
and Hertog, 2015), it is not the case that an appro-
priate off-the-shelf tool can be found and applied
to the case at hand. Most approaches are directed
at cases which are more privileged in terms of the
nature of the corpora analyzed. A large proportion
of the texts of our sample are replete with OCR er-
rors making the filtering of noise a real issue which
is not usually present. Some approaches take re-
course to generic resources such as WordNet for
establishing concept relations or plugging relations
into a wider framework (Navigli and Velardi, 2004;
Alrehamy and Walker, 2018). Linguistic termi-
nology, however, is of such a specialized nature
that such resources cannot easily be drawn upon.
Related to this problem, the common strategy of
identifying hypernym-hyponym or is-a relations
from texts (Velardi et al., 2004; Alfarone and Davis,
2015) is complicated by the abstract nature of lin-
guistic terminology and the fact that many such
relations depends on a particular theoretical frame-
work. For instance, a subject can be a kind of topic,
argument, position, noun etc. depending on the
language, point of view, and theory of grammar.
Moreover, such terms are often defined through
examples rather than discursively in different gram-
mars. Our approach is minimalist, so we also do
not produce a fully POS-tagged corpus as input
to term extraction, unlike some other approaches
(Bourigault and Jaquemin, 1999).

There seems to be just one published approach
similar to ours (Kang et al., 2016). It is similarly a
minimalist approach, only relying on the particular
corpus of interest. It proceeds from the extraction
of terminology to a procedure of relating terms
through a vector-based similarity metric. Neverthe-
less, this approach and ours are only comparable at
a general level.

3 Pipeline for term extraction

The following describes the pipeline in numbered
steps. Most steps were carried out using R, while a
few steps additionally involved Python scripts.

S1. An initial database of text files OCR’ed from
linguistic descriptive materials was used. These
have been collected and processed by Harald Ham-
marström over several years (Virk et al., 2020). He

also supplied a bibliography file in BibTex style
with metadata (henceforth source.bib), which was
parsed. The current version of this file is publicly
available as part of Glottolog (Hammarström et al.,
2020).

S2. When several files were associated with
the same bibliographical entry, the besttxt field of
source.bib was visited in order to select the best
file.

S3. Files tagged in the bibliography as not pri-
marily being grammatical descriptions, but rather
lexicographic, ethnographic, etc. works, were re-
moved.

S4. Works having English as the metalanguage
(i.e., works written in English, although typically
describing some other language) were singled out.
Documents using a metalanguage other than En-
glish were removed.

S5. All lines having characteristics of something
other than running text (tables, lists, short head-
ings, bibliographical entries, etc.) were removed.
A machine learning system for recognizing biblio-
graphical entries is under development, but was not
actually applied. Remaining lines were concate-
nated in a single line and subsequently split into
sequences delimited by a full stop—in most cases
representing sentences, but best described neutrally
as ‘chunks’. They were then put in a single file,
collected.txt.

S6. Another file was created with two columns:
one having numbers representing the sentence num-
ber in collected.txt and another having the file
names. Thus, numbers indexing terms remain
cross-referenced with the document where they
occur.

S7. Since in linguistics, as in so many other
domains, terminology is generally represented by
noun phrases rather than just nouns (Nakagawa
and Mori, 1998), an NLTK-based shallow parser
(Babluki, 2013)2 was used to identify noun phrases
representing the topics (terms) of each sentence.

S8. The list of all terms and their indices was
converted to a list of unique lower-cased terms,
each with a list of indices. Most recently, this list
had 34,437,644 items. Note that at this stage any
term is included, not just linguistic terms. (Hence-
forth we will simply indicate new numbers of items
in square brackets and preceded by an arrow as we
go through the steps that it took to reduce the list).

S9. Only terms occurring 50 times or more were

2Available at https://gist.github.com/shlomibabluki/5539628



retained. [→ 142,729 items].
S10-11. Files were prepared allowing to deter-

mine the number of different documents in which
a terms occurred. After manual inspection it was
decided that a term should occur in at least 6 doc-
uments in order to minimize noise and maximize
the inclusion of valid linguistic terms. [→ 133,927
items].

In the following three steps a rudimentary form
of Named Entity Recognition (NER) is applied.
The goal is to remove such entities not belonging
to linguistic terminology.

S12. The presence of author names in the list
of terms was reduced by matching more than 30k
names found in source.bib with the list of terms.
[→ 129,791 items].

S13. The presence of language names in the
list of terms was reduced by matching more than
30k language names from an earlier version of
Ethnologue (Eberhard et al., 2020) with the list
of terms. [→ 121,699 items].

S14. The presence of publishers in the list of
terms was reduced by matching more than 7k pub-
lisher names from source.bib with the list of terms.
[→ 121,371 items].

S15. Manual inspection showed noisy terms to
often have one of the following symbols in initial
position: ‘, /, ¡, =, ¿, @, , —, , , , $. Such terms
were found and deleted. [→ 117,648].

S16. Since the number of terms was still very
large, at this point we passed from just eliminating
negatives (non-linguistic terms) to first identify-
ing positives (linguistic terms). This was done by
using a glossary of linguistic terminology (7819
terms, including spelling variants) from the Sum-
mer Institute of Linguistics (SIL).3 3684 out of
the 7819 SIL terms were found to recur among
the 117,648 surviving terms in a non-case sensitive
matching. We reasoned that a bona-fide linguistic
term should bear some distributional similarity to
at least one member of the core set of 3684 ver-
ified linguistic terms. The amount of similarity
could be used as a cut-off for excluding terms not
likely to be linguistic in nature. Thus, we mea-
sured the Normalized Pointwise Mutual Informa-
tion (NPMI) (Bouma, 2009) between each of the
117,648 extracted terms and each of the 3684 ver-
ified linguistic terms among them, isolating the
highest value and using that as a criterion for ‘lin-

3Available at https://feglossary.sil.org/english-linguistic-
terms (accessed 2019-09-02).

guisticality’ of the term. Some manual inspection
showed that a maximal NPMI value of 0.5 would
allow for a good balance between the inclusion of
true positives and computational feasibility. By
settling on this cut-off we excluded 98,474 terms,
leaving 19,174. The vast majority of the included
terms are relevant for the field of linguistics, and a
19, 174∗19, 173/2 = 183, 811, 551 size object en-
tering into the computation of all pairwise NPMIs
(see next section) can be handled efficiently in R.

The list of 19,174 terms along with indices link-
ing them to sentence-like chunks in the collective
file containing our database of linguistic literature
(further linked to bibliographical references and
other metadata) constitutes the basic data for this
study. Several steps in the pipeline could be im-
proved. For instance, more work could be done
(and is being done) on the identification of bib-
liographical references in the text, and improve-
ments to and extensions of the NER steps are emi-
nently possible. Moreover, steps taken preceding
the pipeline on OCR-error correction and other
improvements of the input will increase the perfor-
mance as well. Finally, it would be helpful if some
form of performance evaluation could be developed
(Granada et al., 2018). Still, taking into account the
likely presence of a few thousand false positives,
we have arrived at a list of linguistic terms about
twice as large as the handmade SIL list and, most
importantly, the list is one that reflects actual usage.

4 Related terms

Given that the list of 19,174 terms is associated
with indices representing their occurrence in texts
we could compute NPMI values (Bouma, 2009)
for all pairs (using our own implementation of the
NPMI). Pairs receiving the value -1, meaning that
they do not co-occur, were excluded from further
consideration. We also computed the Google Page
Rank (GPR) for each of the items using the R pack-
age igraph (Csardi and Nepusz, 2006). The textual
units used for computing NPMI and GPR were the
‘chunks’ (mostly equal to sentences) mentioned
earlier.

Analyzing and plotting networks based on these
data are useful aids in coming to decisions both
about the design of a search functionality involving
related terms and the prospects of basing an ontol-
ogy of linguistic terms on such networks. Figures
1-2 show two clusters of related terms, selected
from 3537 clusters. Clustering is based on a two-



column table where each of the 19,174 terms sits
next to the term to which it has the highest NPMI
value, here called ‘best friend’. The 3537 clusters
were extracted using igraph4. They range from hav-
ing 2 to 200 elements, with median size 3 and mean
size 5.42. log(size) and log(rank-of-size) is roughly
a power-law distributed function (fit: R2 = .964,
exponent: -.668). Figures 1 and 2, respectively,
are rather typical of a simple and a more complex
cluster. The size of a cluster is determined by the
availability of neighbors. For instance, the best
friend of voicing is degemination, but there is no
term that has voicing as its best friend. And all
the clusters contain exactly one knot, representing
the situation where two terms are each other’s best
friends. In both figures an arrow indicates relat-
edness in terms of NPMI and the direction of the
error is from the term with the higher GPR to the
one with the lower GPR. These directions currently
have no real functionality but are included for ex-
ploratory purposes.

The clusters tend to be tightly knit around partic-
ular areas of linguistic terminology, as in the terms
in Figure 1 that refer to processes that consonants
may undergo (typically in intervocalic position)
and the terms in Figure 2 that refer to elements of
the organization of narratives.

We believe that the kind of clustering approach
illustrated in Figures 1 and 2 is a useful way of
supplying a search machine with suggestions for
search terms that are related to the target term. An-
other possible approach would be to pick the terms
that are highest-ranked in terms of their NPMI
value, but they would tend to occur in the text re-
turned for the target term by the search machine
anyway and would not take the user in new, yet
related directions in the same way as the present
approach. The choice of how many terms should
be returned is a matter of design. Currently even all
elements of the largest cluster (200 terms) can be
accommodated in a drop-down menu, so no restric-
tions may be necessary. The order of such a list
could be determined by closeness in terms of the
number of connecting edges, ties being resolved by
GPR values, for instance.

As for the prospects for developing an ontol-
ogy of linguistic terminology we believe that the
present approach could also be productive. The
clusters identified already offer themselves as ba-
sic components. One challenge is to connect these

4‘graph from edgelist’ and ‘decompose’ functions

clusters. It seems that this could be done by finding
an ‘NPMI friend’ of an appropriate member of the
cluster in another cluster, and then linking clusters
through such single edges.

Figure 1: A simple cluster of related terms.

Figure 2: A more complex cluster of related terms.

5 Conclusion

In this paper we have demonstrated a pipeline for
extracting terms from a thematically coherent text
corpus, in this case a corpus of descriptive linguis-
tic literature (to refer back to the outline in the
Introduction this was Focus 1). We then went on
to show that a simple clustering method, relying
on single ‘best friends’ in terms of Normalized
Pointwise Mutual Information (NPMI), is a useful
basic step for designing a search machine suggest-
ing search terms related to the target term (Focus
2a) and also has potential for helping in the con-
struction of an ontology (Focus 2b).



We place importance on the fact that the pipeline
for the extraction of domain-specific terms was
fully automated, apart from some shortcuts where
we used list of terms from external sources to prune
the list.

Future work not already mentioned above, will
go into developing a more systematic evaluation
procedure, applying a similar pipeline to texts in
languages other than English, and connecting the
output in a ways such as to create both a multilin-
gual search machine and a multilingual ontology.

Acknowledgments

Our research was carried out under the auspices
of the project “The Dictionary/Grammar Reading
Machine: Computational Tools for Accessing the
World’s Linguistic Heritage” (NWO proj. no. 335-
54-102) within the European JPI Cultural Heritage
and Global Change programme (http://jpi-ch.eu/).
It would not be possible without the DReaM corpus
and associated metadata painstakingly compiled by
Harald Hammarström.

References

Daniele Alfarone and Jesse Davis. 2015. Unsuper-
vised learning of an IS-A taxonomy from a limited
domain-specific corpus. In IJCAI’15: Proceedings
of the 24th International Conference on Artificial In-
telligence, pages 1434––1441.

Hassan H. Alrehamy and Coral Walker. 2018. Sem-
cluster: Unsupervised automatic keyphrase extrac-
tion using affinity propagation. In Advances in
Computational Intelligence Systems: Contributions
Presented at the 17th UK Workshop on Computa-
tional Intelligence, September 6–8, 2017, Cardiff,
UK, pages 222–235, Cham. Springer.

Shlomi Babluki. 2013. An efficient way to
extract the main topics from a sentence.
https://thetokenizer.com/2013/05/09/efficient-
way-to-extract-the-main-topics-of-a-sentence/.
Technical report.

Gerlof Bouma. 2009. Normalized (point-wise) mu-
tual information in collocation extraction. In Pro-
ceedings of GSCL, pages 31–40. Gesellschaft für
Sprachtechnologie und Computerlinguistik.

Didier Bourigault and Christian Jaquemin. 1999. Term
extraction + term clustering: An integrated platform
for computer-aided terminology. In Ninth Confer-
ence of the European Chapter of the Association
for Computational Linguistics, pages 15–22, Bergen.
Association for Computational Linguistics.

Gabor Csardi and Tamas Nepusz. 2006. The igraph
software package for complex network research. In-
terJournal, Complex Systems:1695.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2020. Ethnologue: Languages of the World.
SIL International, Dallas, TX.

Roger Granada, Renata Vieira, Cassia Trojahn,
and Nathalie Aussenac-Gilles. 2018. Evalu-
ating the complementarity of taxonomic rela-
tion extraction methods across different languages.
https://arxiv.org/abs/1811.03245.

Harald Hammarström, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2020. Glottolog 4.3.
Max Planck Institute for the Science of Human His-
tory, Jena. (Available online at http://glottolog.org).

Harald Hammarström, One-Soon Her, and Marc Alla-
sonnière-Tang. 2021. Keyword spotting: A quick-
and-dirty method for extracting typological fea-
tures of language from grammatical descriptions.
In Swedish Language Technology Conference 2020
(SLTC 2020). NEJLT.

Kris Heylen and Dirk De Hertog. 2015. Automatic
term extraction. In Handbook of Terminology, Vol.
1, pages 203–221, Amsterdam. John Benjamins Pub-
lishing Company.

Yong-Bin Kang, Pari Delir Haghigh, and Frada
Burstein. 2016. TaxoFinder: A graph-based ap-
proach for taxonomy learning. IEEE Transactions
on Knowledge and Data Engineering, 28:524–536.

Olena Medelyan, Ian H. Witten, Anna Divoli, and Jeen
Broekstra. 2013. Automatic construction of lexi-
cons, taxonomies, ontologies, and other knowledge
structures. WIREs Data Mining Knowl. Discov.,
3:257–279.

Hiroshi Nakagawa and Tatsunori Mori. 1998. Nested
collocation and compound noun for term recogni-
tion. In Proceedings of the First Workshop on Com-
putational Terminology, pages 64––70, Montreal.
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